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Statistical characteristics of plasma fluctuations in the solar wind (SW), the Earth’s
magnetosphere and fusion devices are reviewed. The turbulence in all these media
has a complicated multiscale structure and exhibits a generalized self-similarity in an
extended scale range. The anomalous transport of mass and momentum is intermittent
and is carried by sporadic plasma flux bursts with non-Gaussian statistics, long-range
correlation and multifractality. Intermittent turbulent transport is characterized by
superdiffusion with power law 〈δx2〉 ∝ τ α, α ≈ 1.2–1.8. The structure functions in all
these plasma environments are well fitted by the log-Poisson model of turbulence.
Intermittent plasma turbulence displays universal properties and consists of quasi-1-D
singular dissipative structures.

1. Introduction
Turbulence is a natural state of space and laboratory plasmas. The fundamental

principles to investigate developed turbulence were laid by Kolmogorov (1941a,b) in
the framework of a statistical description and cascading model. Turbulence in a flow
usually emerges due to boundary effects. In hydrodynamic flows, the velocity shear
near the flow boundary strongly affects the development of turbulence. For viscous
neutral fluids (even with an arbitrarily small viscosity coefficient ν), the velocity
must vanish at the flow boundary. In magnetohydrodynamics (MHD), a theoretical
treatment must consider not only the material boundaries of the flow and the presence
of highly dispersive modes, but also the structures (waves, eddies, etc.) formed by the
magnetic and electric fields. In 1987, Zeldovich discussed the concept of turbulent
flow with filamentary vortices in magnetofluids in order to explain the intermittency
as a turbulence property originated from the coupling of hierarchical vortices. He
also considered a hypothesis on the universality of intermittent turbulence properties
on small scales.

Satellite observations of space plasmas provide experimental data on the turbulence
properties on spatial and temporal scales that are unavailable in laboratory experiments.
Studies of low-frequency MHD turbulence in the solar wind (SW) and at the outer
magnetospheric boundaries with turbulent boundary layers (TBL) in the frequency
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FIGURE 1. (a) The Earth’s magnetospheric plasma, a schematic of the SE streaming of
the MP: 1 – magnetopause, 2 – polar cusp, 3 – dipole moment, 4 – magnetic field, 5 –
plasma cloud, 6 – plasma flow, 7 – turbulent boundary layer, 8 – summer (upper half)
and 9 – winter (bottom half). (b) Tokamak plasma cross-section: 1 – core, 2 – edge, 3 –
scrape-off layer, 4 – divertor plasma, 5 – wall, 6 – divertor.

range 10−7 Hz < f < 10 Hz (the plasma is to be treated as a magnetohydrodynamic
fluid; as Alfven wave phenomena and reconnection phenomenon can be investigated
experimentally in detail) are especially important, because such measurements turn
out to be complementary to measurements available in laboratory plasma experiments.

At the boundary of the Earth’s magnetosphere (magnetopause, MP), an external
boundary layer is formed due to interaction of the collisionless SW plasma flow with
the magnetospheric magnetic field (figure 1). The small scale plasma fluctuations in
the SW and at the boundary of the Earth’s magnetosphere are observed to be highly
turbulent (see for example: Burlaga 1991; Bruno et al. 2003; Zelenyi & Milovanov
2004; Savin et al. 2005–2014; Bruno & Carbone 2013 etc.). The turbulence in the
boundary of the Earth’s magnetosphere is inhomogeneous.

In laboratory experiments, plasma turbulence can be investigated depending on
different driving forces, magnetic and electric field effects. This especially relates to
high-temperature plasma in fusion devices (tokamaks, helical devices and stellarators,
linear machines). The different magnetic topology of fusion devices gives an
opportunity for the study of various magnetically confined plasmas. Confinement
of thermonuclear plasma in a tokamak (toroidal magnetic volume, figure 1) is highly
promising for the realization of fusion reactors. Plasma in a tokamak and other
fusion devices demonstrate the properties of complex systems with self-organization
(Kadomtsev 1992). Purely diffusive transport processes cannot explain a variety
of experiments in magnetically confined plasmas. Experimental observations have
shown that plasma losses due to particle transport across the (via) magnetic field
significantly exceed what was expected in the case of collisional diffusion only.
Numerous experimental studies in fusion devices (see, e.g. Diamond et al. 2005;
Zweben et al. 2007; Budaev et al. 2008a,b; Budaev, Savin & Zelenyi 2011; Conway
2008; Tynan, Fujisawa & McKeeb 2009 etc.) show that the core and edge plasmas
are highly turbulent. Strong plasma turbulence drives enhanced plasma losses due to
large cross-field transport (called anomalous diffusion) above the standard collisional
diffusion. Large cross-field transport induced by plasma turbulence due to fluctuations
on a microscopic length scale such as the ion Larmor radius, collisionless skin
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depth or resistive layer width (see, e.g. Connor & Wilson 1994) results in the
degradation of plasma confinement. There are many possible driving mechanisms
in fusion devices that can lead to anomalous diffusion. Plasma turbulence models
consider different types of instabilities to investigate transport properties of a 3-D
pressure-gradient-driven turbulence (see, e.g. Carreras, Lynch & LaBombard 2001a)
over a broad range of space and time scales. The underlying instabilities are resistive
ballooning modes, resistive interchange modes and others. The coupling of processes
on different scales is essential in a treating of the anomalous diffusion processes and
of the nonlinear evolution of 3-D plasma turbulence.

The turbulence level (the ratio of the fluctuation amplitude to their mean value)
and cross-field turbulent transport are increased in the edge region. It is observed
in fusion devices of different scales, with various magnetic topologies (tokamaks,
helical devices and others) and plasma heating. Several reasons for such turbulent
level enhancement have been considered, but the dominant factor is presumably
the universal behaviour of turbulent processes under the influence of boundary
effects. The edge plasma region (figure 1) is characterized by substantial variations
of plasma parameters and transport barriers. Edge plasma turbulence is driven by
drift-wave, interchange and kinetic alvenic-type instabilities in the frequency range
from ∼0.1 kHz to ∼1 MHz. In tokamaks, in an edge plasma with closed magnetic
surfaces, the turbulence is dominated by drift waves (Scott 2005), while in the region
of open magnetic field lines (so called scrape-off-layer SOL), interchange instability
is the main mechanism driving the turbulence. In edge plasmas, fluctuations of the
background plasma exist in the form of long-living large-scale correlated structures
Sometimes they are called blobs or coherent structures. These correlated structures
were experimentally registered in the SOL of various fusion devices (see e.g. Zweben
et al. 2007).

Typical signals of turbulent plasma fluctuations in space and laboratory plasmas are
shown in figure 2. Fluctuations are self-similar and have power spectra exhibiting
non-trivial frequency dependence. In the TBL near Earth’s MP and in the edges of
fusion devices, plasma turbulence demonstrates a strong intermittency (see Budaev
et al. 2011) with bursty waveforms.

Intermittency was first considered by Novikov & Stewart (1964), who considered it
to be a local breaking of turbulence homogeneity which occurs when active regions
coexist with passive (quasi-laminar) ones. It is a general belief that intermittency in
hydrodynamics was observed to be a clear departure from the Kolmogorov −5/3
scaling exponent of the energy spectrum in various turbulence experiments at finite
Reynolds numbers. The consensus is that the intermittent property of turbulence
calls for a power-law of the energy spectrum having an exponent −5/3− c, with an
intermittency correction exponent c > 0. The intermittency can be characterized by
using statistical properties which deviate from the statistics of the Kolmogorov K41
model. In experiments, intermittency is typically observed as non-Gaussian statistical
fluctuations (see discussion below).

The intermittency phenomenon is observed in hydrodynamics (see Frish 1995) and
in turbulent magnetized plasmas (see, e.g. review Budaev et al. 2011 and references
therein), both with high and moderate kinetic Reynolds numbers (Re) and magnetic
Reynolds numbers (Rem) Re, Rem < 1000. Intermittency is the property responsible
for anomalous plasma transport: anomalous cross-field diffusion in fusion devices and
enhanced transport by intensive plasma jets from the SW through the TBL inside the
geomagnetic trap of the Earth (Savin et al. 2010; Zelenyi et al. 2013). Intermittency
is observed to be a property of different variables – the plasma density, electric field,
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FIGURE 2. Fluctuations in space and laboratory plasmas. (a) Ion flux SPECTR-R data
2012-03-20, 12-21 UT; (b) SW ion flux, WIND data 12-03-20 12-21 UT; (c) ion flux
CLUSTER 4 data 2012-03-20 13-18 UT; (d) edge plasma density in tokamak T-10.

velocity, magnetic field and the particle flux both in the Earth’s TBL and in the edges
of fusion devices (see Zweben et al. 2007; Budaev et al. 2011).

Consideration of interrelated phenomena in laboratory and space plasmas helps
to promote the interpretation of scientific results in a broader context by sharing
data, methods, knowledge, perspectives and reasoning. It is unrealistic to expect
the dimensional parameters corresponding to space plasmas to be matched in the
laboratory. In comparison to space plasmas, laboratory devices generate plasmas with
dimensions that are too small, magnetic fields that are too big, neutral pressures
that are too large and plasma densities that are too high. However, in a laboratory
experiment on fusion devices, the subset of plasma turbulence parameters are observed
to be relevant to a specific process which share the same phenomenological regime
as the subset of analogous space parameters, even if less important parameters are
mismatched (see, e.g. Koepke 2008a,b). Spatial and temporal scales in space can be
vastly different from those in laboratory plasmas, but normalization by the gyroradius
or the Debye length and ratios of the plasma-to-cyclotron frequency for electrons
and ions allow a more relevant subset of dimensionless parameters that offer a valid
link between experiments in the laboratory and plasmas in space. Regime boundaries
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are assigned by normalizing a dimensional parameter to an appropriate reference or
scale value to make it dimensionless, and noting the values at which transitions occur
in the physical behaviour or approximations. Turbulence-related problems involve
interactions between flow, waves and instabilities. The treatment of this problem can
be based on the similarity of the dimensionless, hydrodynamics parameters including
the Euler number and the Reynolds number. The dimensionless Euler number, derived
from pressure, density and velocity is defined according to Eu=υ ′(ρ ′/p′)1/2, where υ ′,
ρ ′ and p′ are normalized versions of the velocity, density and pressure, respectively.
The dimensionless Euler number conveys the degree of similarity between the
hydrodynamics in the laboratory and in a space plasma (see discussion in Ryutov
et al. 1999). For both the laboratory plasma in the edge of a fusion device, and
magnetospheric plasma, the dimensionless Euler number Eu is estimated to be in the
range from ∼0.1 to ∼10 (see Koepke 2008a,b). Although the laboratory and space
values of velocity and pressures are very different, the Euler numbers for laboratory
and space plasmas are the same, indicating that the hydrodynamics both in the
laboratory and in space should behave similarly (see discussion in Koepke 2008a,b,
Ryutov et al. 1999. Likewise, kinetic and magnetic Reynolds numbers Re,Rem< 1000
are similar in the magnetospheric TBL and boundary plasma in fusion devices.

The driving forces of the intermittent bursts can be pressure gradients and other
effects which can drive various large-scale instabilities. In space plasma, some recent
experimental spacecraft observations inside the magnetosheath – MSH (see Nemecek
et al. 1998; Savin et al. 2005, 2012, 2014 and references therein) revealed the
presence of very fast plasma streams (supermagnetosonic plasma stream – SPS).
SPS’s last up to several tens of seconds and have an extremely high pressure (several
times larger than the SW pressure). SPS’s are considered to be extreme events, which
can drive an intermittent turbulence at the MP TBL (Savin et al. 2012, 2014). In
the edge SOL region of fusion devices, interchange instabilities can drive large-scale
coherent structures which are observed as filaments elongated along magnetic field
(see, e.g. Scott 1997; Budaev et al. 2011 and references therein).

There are no clear observations that density filaments may be a trigger and an origin
of the intermittent nature of plasma velocity fluctuations. Moreover, experimental
observations have shown a similarity of statistical characteristics of the observable
variables (plasma density, velocity, electric and magnetic field fluxes). This is an
argument in favour of investigating the intermittency as a phenomenon induced by
these observable variables. In the treatment of the intermittency problem, driving
and damping due to nonlinear coupling of small and large-scale modes should be
considered.

Developed turbulence is characterized by a large number of coupled modes, a small-
scale structure and random fluctuations of velocities and fields. Hence, it can be best
described by statistical methods using a probability distribution function (PDF) or,
equivalently, all of the moments of the distribution function which can be measured
in experiments. In the simplest case, the PDF of the fluctuations amplitudes obey the
Gaussian (so called normal) law. Gaussian statistics describe e.g. classical Brownian
motion, in which correlations decay exponentially. To describe random processes with
memory and long-range correlations, other laws can be considered (see, e.g. Guikhman
& Skorokhod 1969).

In the literature, it is considered that the non-Gaussian distribution of turbulence
velocity increments lead to a violation of the original Kolmogorov scaling −5/3 (see
below), and in fact intermittency manifests as a non-Gaussian velocity distribution.
This argument has been controversial since even in local homogeneous isotropic
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turbulence the velocity increments cannot be Gaussian (see discussion in Chen 2006).
Lévy flights, or anomalous diffusion processes (known in the mathematical literature
as α-stable Lévy processes), can be used as a description of non-Gaussian fluctuations.
They have infinite variance (except for the Gaussian case). The non-Gaussian Lévy
stable distribution of the velocity difference has an algebraic decay tail and possesses
scale-invariance and self-similarity properties. There are a few models which have
considered intermittency (see below).

Two-point, or higher order quantities, measured in intermittent turbulence obey non-
Gaussian statistics (contrary to near-Gaussian statistics of the single-point quantities
measured in homogeneous and isotropic flows). The departure of the PDF from a
Gaussian shape leads to a break of the trivial self-similarity – scale invariance.

In turbulence research, analytic methods have been developed, such as the
quasilinear approximation (Millionshtchikov 1941; Vedenov, Velikhov & Sagdeev
1961), the weak turbulence theory or direct interaction approximation (Kraichnan
1959; Kadomtsev 1965 and other related works). However, existing analytic
models are as yet incapable of providing as detailed and exact descriptions as
semi-empirical cascade models based on a statistical approach. Theoretical treatments
of plasma dynamics based on kinetic theory, MHD equations and Braginsky equations
(Braginskii 1965; Galeev & Sudan 1983, 1984) and reduced equations (see Horton
1990; Zeiler, Drake & Rogers 1997; Diamond et al. 2005 and references there)
describe many plasma properties in space and laboratory plasmas. No theoretical
models are now available (analytically and by numerical simulations) to predict the
long-term behaviour of plasmas and to explain all experimental observations. This
especially concerns the description of intermittent turbulence, long-range correlations
and anomalous turbulent transport observed in plasmas. In analytical models, the
theoretical treatments in fact consist of the renormalization of viscosity and of a
random force (which obey Gaussian statistics in most of the models) in order to
account for mode coupling and long-range correlations. Since this treatment is made
in a mean-field approach, it cannot give a detailed description of intermittency. The
intermittency results from turbulent activity; but this activity is itself not distributed
homogeneously. In such a process, the distribution function is not described by
exponential laws (such as a Gaussian) but it is described by power laws. The
turbulence of hydrodynamic flows, plasma turbulence in laboratory devices and
astrophysics are described by non-trivial algebraic, fractional stable (see (Monin
& Yaglom 1971, 1975) and other related papers), log-normal (Kolmogorov 1962),
log-Poisson (Dubrulle 1994; She & Leveque 1994), log-Levy (Schertzer, Lovejoy &
Hubert 2002) and other statistics known in probability theory (see, e.g. Guikhman &
Skorokhod 1969).

The main hypotheses on the statistical treatment of developed turbulence were
formulated by Kolmogorov (known as K41 theory). According to Richardson’s
scenario (Richardson 1922), in a turbulent flow there is a cascade transfer of energy
toward small scales, where dissipation is due to molecular friction. For fully developed
isotropic turbulence, Kolmogorov suggested a constant rate of energy transfer
from large to small scales in a turbulent cascade process, assuming the statistical
quasi-equilibrium of turbulent fluctuations in the inertial range η� l� L (where L
is energy-injection scale and η is the dissipation scale), for high Reynolds numbers.
It is considered that energy dissipation is averaged over a ball of size l, εl, and
velocity differences across a distance l. Kolmogorov in the K41 model assumed that
all statistically averaged moments (the qth-order structure functions S(q, l)∼ 〈|δlυ|q〉,
〈· · ·〉 in an ensemble averaging of increments δlυ = υ(x + l) − υ(x) at scale l)
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depend only on the mean energy dissipation rate and spatial scale l. The scaling
behaviour is

S(q, l)∼ lζ (q), (1.1)

with a linear functional exponent, ζ (q)= q/3.
From dimensionality considerations, Kolmogorov derived the well-known scaling

Ek ∼ k−5/3 (the five-thirds Kolmogorov–Obukhov spectrum) for the energy spectrum
of developed isotropic turbulence in the inertial range. This law provides a relatively
good description of the spectrum of fully developed isotropic hydrodynamic
turbulence. More precise measurements of the turbulence spectrum showed that the
exponent in the law Ek ∼ k−γ differs from five-thirds, γ = 1.71± 0.02 (see, e.g. Frish
1995). This slight difference from five-thirds is of fundamental importance because it
arises from intermittency and special statistical symmetries of the turbulent process.
Experimental investigations and computer simulations of turbulent hydrodynamic
flows have shown that the scaling for structure functions of high orders (q > 3)
deviates from the q/3 predicted by the K41 theory; the reason is the intermittent
nature of turbulence.

The magnetic field in a turbulent plasma induces an anisotropy of the dynamics
since field lines can easily be shifted but resist bending. In a plasma embedded in a
strong magnetic field, small-scale fluctuations occur mainly in planes perpendicular
to the magnetic field, making the turbulence anisotropic. Iroshnikov (1963) and
Kraichnan (1965) (IK model) include the influence of a magnetic field via mutual
scattering of Alfvén waves triggered by velocity fluctuations. The IK fluctuations
have an energy spectrum Ek ∼ k−3/2. Recent results in MHD turbulence theory and
3-D numerical simulations (see, e.g. Schekochihin & Cowley (2007) and references
therein) cause some doubts regarding the general validity of the scaling predicted
by 2-D phenomenology. It appears that the weak-turbulence Alfvén wave interaction
along the local magnetic field, the basis of the IK concept, does not control the
turbulent dynamics, which is instead dominated by swirling cross-field motions
similar to hydrodynamic turbulence. These results illustrate that decaying turbulence
is qualitatively different from its forced counterpart: in the viscous scale, the system
can lose a property of 2-D dynamics. A paradigm of simplified 2-D slab models
(e.g. Hasegawa & Mima 1977) and a separation of a purely parallel (shear Alfvén)
dynamics from a cross-field motion (vorticity advection) is now reconsidered in
MHD turbulence (Goldreich & Sridhar 1995) as well as in laboratory edge plasma
turbulence (see e.g. Scott 1997, 2005 and references therein). A phenomenology
of ‘intermediate’ turbulence by Goldreich and Sridhar (known as the GS95 model
(Goldreich & Sridhar 1995)) was postulated as a balance between the K41 and IK
energy cascades and has accounted for the local anisotropy induced by a magnetic
field. The GS95 model assumes that eddies are filamentary, contrary to the spherical
eddies in the IK model. In MHD turbulence theory, the GS95 model came to be used
instead of the IK model.

One of the typical features of intermittent turbulent flow (hydrodynamic and
magnetohydrodynamic) is the anisotropy emerging due to the effect of the flow
boundary. This anisotropy locally violates symmetries that are allowed in the flow as
a whole, and conserves only those that are responsible for the turbulent cascade; it
preserves scale invariance not in an infinite range, but only in a restricted range of
the scales. Therefore, the intermittency and self-similarity properties are related not
only and not so much to turbulence driven instability types, but rather to symmetries
responsible for the scale invariance in the significantly restricted range of scales
(e.g. scales of the boundary layer or wave structures in magnetofluids). Such an
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approach to the treatment of self-similarity properties suggests a description of
experimental data in various turbulent media in the framework of a single paradigm
(see, e.g. Budaev et al. 2011).

Turbulence can possess several types of symmetries, including scale invariance
symmetry. The problem of scale invariance (a self-similarity or a dilatational
symmetry) is important for the study of turbulence. The symmetries are presented
in the governing equations of motion. Theoretical studies predict generalized scale
invariant laws associated with hidden statistical symmetries. The extended self-
similarity (ESS) criterion, which was proposed phenomenologically in hydrodynamics
by Benzi et al. (1993) and was later considered in the log-Poisson model of turbulence
in Dubrulle (1994) and She & Leveque (1994), assumes a scaling of the form
Sq(l) ∼ S3(l)ζ (q)/ζ (3) for an extended scale of l > 5η. In neutral fluid turbulence, the
ESS property is observed up to the dissipation scales (Benzi et al. 1993; Dubrulle
1994; Frish 1995).

Statistical self-similarity considered by the hierarchical cascade paradigm of
turbulence involves (instead of exact self-similarity) random fractal construction:
at each iteration the scaling of each piece is selected randomly from a set range
and sub-pieces of each piece have the same distribution of sizes. Kolmogorov’s
K41 model considers statistical homogeneity. Intermittency can be generated by the
anisotropy in the cascade process leading to a statistical inhomogeneity and a break
of the simplest scale invariance. A multiplicative cascade is used to consider an
intermittency: energy is transferred from large eddies down to small scales through
a cascade process (or vice-versa in inverse cascade) in which the transfer rate at a
given scale is not spatially homogeneous as in the K41 theory.

The multifractal formalism (see Frish 1995) was introduced to overcome the
significant limitations of traditional approaches for the exploration of extremely
variable fields (e.g. intermittency) in the context of fully-developed turbulence
data analysis to account for the experimental observations of the deviation from
Kolmogorov’s K41 theory. Multifractal phenomena describe the concept of different
regions of an object having different fractal properties. In a stochastic multifractal
field A, the behaviour around any point is described by a local power law:
A(x) − A(x + a) ∼ ah(x) with the singularity exponent h(x) describing the local
degree of singularity or regularity around the point x. The multifractal approach
provides a quantitative description of a broad range of heterogeneous phenomena
including intermittency of developed turbulence (see Mandelbrot 1982; Harte 2001).
The advantage of the multifractal approach is its ability to treat and to analyse
self-similarity from the largest to the smallest scales considering the large scales to
be coupled with the intermediate and small scales (see appendix A).

An analysis of turbulence self-similarity (or equivalently a search for the statistical
symmetries of turbulence) led to models of fully developed turbulence for
hydrodynamic systems such as the log-normal Kolmogorov model (K62, 1962),
the multifractal (see Frish 1995) and the log-Poisson (Dubrulle 1994; She & Leveque
1994) models. In the K62 model, Kolmogorov proposed to account for the local
inhomogeneity of turbulence. Kolmogorov originated the similarity hypothesis (power
laws) for the moments of the dissipation energy and formulated the normal law for
the logarithm of the dissipation energy (the log-normal law). Later, multiplicative
hierarchical cascade models such as the β-model, the α-model and the p-model
(see Frish 1995) considered the energy cascading process in turbulent flows. Studies
of power laws for the moments led to the development of later turbulence models
including the most favourable one – the log-Poisson model (Dubrulle 1994; She &
Leveque 1994).
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A generalized description of intermittent turbulence is provided by the log-Poisson
model, which considers a stochastic multiplicative cascade and a log-Poisson
distribution of the dissipation energy. This model makes use of a hierarchy of
moment’s, the existence of limiting dissipative structures and power laws. Such
characteristics agree with the most common turbulence properties observed in
experiments, in particular with the ESS property. The assumptions of the log-Poisson
model concern the scaling properties of structures of different intensities in a system
with a relatively low Reynolds number and a limited (in the classical sense) inertial
range. The ESS property accounts for boundary effects and implies that self-similarity
occurs on a finite spatial and temporal scale rather than in infinite space, thereby
providing a natural means of analysing viscous (dissipative) effects and the properties
of limiting dissipative structures (in particular, their dimensions). For instance, the
log-Poisson model of 3-D isotropic hydrodynamic turbulence assumes a filamentary
geometry for singular dissipative structures (Dubrulle 1994; She & Leveque 1994).
The log-Poisson model that accounts for the 2-D Iroshnikov–Kraichnan (IK) empirics
describing 2-D singular dissipative structures (Carbone, Veltry & Bruno 1996;
Politano, Pouquet & Carbone 1998). The ESS of the log-Poisson process establishes
long-range correlations, which give rise to an anomalous process – superdiffusion. In
the TBL of the Earth’s magnetosphere, this results in anomalous transport through the
barrier. In edge plasma of fusion devices, this property leads to enhanced cross-field
plasma losses.

All cascade models of intermittent turbulence have adjustable parameters that are
difficult to determine from first principles and physical arguments and which provide
enough freedom to account for the experimental data. The scaling ζ (q) of the structure
functions (1.1) is helpful to validate cascade models of developed turbulence with
intermittency. In hydrodynamics, experimental scaling follows the predictions of the
log-Poisson model, see Frish (1995). In plasma turbulence, the first results were
obtained in the last decade. In this review we present recent experimental results
regarding self-similarity observed in space plasmas (SW and Earth’s magnetosphere)
and in fusion devices. We focus on the cascade models of plasma turbulence, with
intermittency and scale invariance. It helps to reveal the universality of intermittent
turbulence features (both in magnetofluids and in neutral fluids) currently under
discussion in the literature.

2. Experimental data
2.1. Measurements in space plasma

Space plasmas in the outer magnetosphere and SW have been investigated by a
number of spacecraft: WIND/ACE (SW), INTERBALL-1, CLUSTER, DOUBLE
STAR, GEOTAIL, POLAR, THEMIS etc. Measurements have allowed for the
collection of data on the ion and electron moments (sampling rate up to 0.1–0.3 Hz),
electric and magnetic fields (sampling rate 1–64 Hz) and energetic particles. Since
2011, the measurements have been made on the SPECTR-R spacecraft (Zelenyi
et al. 2013) at a unique orbit with high apogee ∼300 000 km, sliding along the
magnetospheric boundaries for up to a few days. Measurements by SPECTR-R
provide data regarding ion flux, density, velocity and temperature from the solarward
hemisphere, with record sampling over a broad frequency range up to 32 Hz and
energetic particle distributions (see e.g. Savin et al. 2005–2014, Zelenyi et al. 2013
and references therein). The magnetic field (B) measurements rely on standard fluxgate
magnetometers aboard scientific spacecraft (see e.g. Klimov et al. 1997). Faraday cups
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(a) (b)

FIGURE 3. (a) Typical signal of SW ion flux, BMSW measurements on SPECTR-R from
27-09-2011 23:00 to 28-09-2011 08:20 UT. (b) Power spectrum of ion flux (grey curve,
black dots give average value in frequency with 1f /f ∼ 20 %) in SW, SPECTR-R 28-
09-2011 03:08-03:25 UT. Solid black lines show the linear approximation by power laws
with power exponents of P1 and P2. Above 10 Hz the device noise becomes comparable
with the signal in SW and we do not use these data for analysis. Fbreak marks the kink
frequency where the average slope changes (‘is breaking’).

of various orientation are used for the measurement of the ion flux amplitude and its
direction. Faraday cups on INTERBALL-1 and SPECTR-R were used to measure the
ion flux with a sampling rate up to 32 Hz, which is comparable with magnetometer
data sampling, see Zelenyi et al. (2013) and references therein for details. For the
other spacecraft, the data are provided by ion energy spectrometers (of the ‘top hat’
type), which give n and V time series with sampling rate less than 1 Hz (see e.g.
Reme et al. 1997). The dynamic pressure (∼nV2) is calculated from the measured
parameters n and V . Signal-to-noise ratio is typically >10 for all plasma parameters
measured in the outer magnetospheric space.

The plasma in the SW and at the magnetospheric boundaries are observed to be
non-equilibrium and turbulent. Significant progress in studying the SW turbulence has
been achieved in recent decades (see Chang, Tam & Wu 2004; Hnat, Chapman &
Rowlands 2005; Marsh & Tu 2006; Macek 2007; Matthaeus et al. 2008; Zastenker
et al. 2011; Alexandrova et al. 2009; Riazantseva, Zastenker & Karavaev 2010;
Podesta & Gary 2011; Vörös 2011; Wicks et al. 2011; Chen et al. 2012, 2014;
Dura et al. 2012; Kiyani et al. 2013; Zastenker et al. 2013; Osman et al. 2014a,b;
Riazantseva et al. 2015 and references therein). The most comprehensive study of
SW turbulence properties are provided in the low-frequency range (see Bruno &
Carbone 2013 etc.). The majority of these papers discuss the power spectrum of the
interplanetary magnetic field fluctuations. In numerous papers, it has been indicated
that the slope of these spectrum nears −5/3, corresponding to a Kolmogorov–Obuchov
spectrum. The high-frequency magnetic field fluctuations have been well studied (see,
e.g. Alexandrova et al. 2009; Yordanova et al. 2009; Salem et al. 2012 etc.). The
deviation of the velocity spectra from the magnetic field spectra in the SW has
been discussed (see, e.g. Borovsky 2008; Salem et al. 2012 etc.). The ion flux
fluctuations measured on the SPECTR-R spacecraft (Riazantseva et al. 2015) are
shown in figure 3. The SW ion flux variations obey a multiscale character, which
is discussed in numerous papers (see e.g. Zelenyi & Milovanov 2004; Budaev et al.
2011; Riazantseva et al. 2015 and references therein).

The spectrum of the ion flux fluctuations measured by SPECTR-R is shown in
figure 3 (Riazantseva et al. 2015). A spectral kink is typically observed in frequency
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FIGURE 4. An example of the PDF of ion flux variations on a scale 0.1 s (solid line) and
the corresponding Gaussian fit (dashed line), SPECTR-R 28-09-2011 03:08–03:25 UT.

spectra. The kink frequency, Fbreak, is close to the low hybrid one. The Doppler shift
effect has been discussed to explain the kinked frequency spectrum, for example a
Kolmogorov-like k-spectrum was observed by Doppler shifts, accounting for Cluster
magnetic measurement above the cusp MP (Romanov, Zelenyi & Savin 2012).

The distribution function of ion flux fluctuations is non-Gaussian, demonstrating
heavy tails originating from the intermittent behaviour of the signal (see figure 4).

Multi-spacecraft simultaneous measurements allow comparison of turbulence spectra
in the SW and at the magnetospheric boundaries, such as bow shock (BS) and MP.
The ion flux power spectra in a quiet SW (obtained by the WIND spacecraft) is
compared with data obtained by SPECTR-R in the TBL, figure 5(a): maxima of
the spectra (e.g. at ∼0.05 mHz, ∼0.2–0.3 and ∼0.5 mHz, figure 5a) are observed
in the same frequency bandwidths. This allows for consideration of a link in the
processes in the SW and TBL, including a cross-magnetospheric correlation (Savin
et al. 2014). The spectra on figure 5(b) demonstrate rather good correspondence
between BS/foreshock (most probable source region for the SPS/jets) and TBL at the
magnetic obstacle boundary. The maxima in the low-frequency part and slopes in the
high-frequency part of the spectra are observed downflow until the boundary of the
geomagnetic tail (SPECTR-R, shadowed curve in figure 5b, see Savin et al. 2008,
2012, 2014).

In the magnetospheric boundary layers, the plasma jets (supermagnetosonic plasma
streams, SPS, being the most powerful, see e.g. Budaev et al. (2011), Savin et al.
(2012–2014) and references therein) are observed with a highly enhanced dynamic
pressure (Pdyn). At the magnetospheric boundary downtail, these deflected SPS are
mixed with the laminar plasma flow around the MP, flowing with subsonic velocity
at the dayside MSH area. The SPS are seen as spikes in the pressure evolution
Pdyn (detected by the spacecraft DOUBLE STAR, CLUSTER-4 and GEOTAIL) with
an amplitude exceeding three standard deviations, see figure 6. Observations at the
different locations demonstrated SPS in MSH with an average magnetosonic Mach
number of 2.1. Statistics of the flux and dynamic pressure fluctuations have quite
close features (Savin et al. 2014).

Maxima of the power spectra (see figure 5) can be analysed by using bicoherence,
which is obtained by averaging the bispectrum over statistically equivalent realizations
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(a) (b)

FIGURE 5. Power spectra of ion flux in SW, BS and TBL-simultaneous measurements
on WIND, CLUSTER-4 and SPECTR-R on 20.03.12. (a) WIND (SW, lower curve) and
SPECTR-R (TBL, upper curve), 13-21 UT, red line shows the power law fit with exponent
of −1.67, (vertical lines indicate local maxima); (b) Cluster-4 (SW/BS/MSH, thick violet
curve) and SPECTR-R (TBL, shadowed), 13-18 UT.

(a)

(b)

(c)

(d )

FIGURE 6. Plasma jets with enhanced dynamic pressure observed on 27-03-2005 (Savin
et al. 2014), (a–d) Dynamic pressure normalized by the SW pressure, Pdyn/PSW ; obtained
by DOUBLE STAR, horizontal lines show the levels of 2 and 3 standard deviations used
for jet identification; – dynamic pressure Pdyn, (nP), obtained by Cluster-4; – CNO –
channel of energetic particles (>274 keV, C+, N+ and O+, units – 1/(cm2 sr s keV))
obtained by CLUSTER-4; – Dynamic pressure Pdyn, (nP), obtained by GEOTAIL.
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FIGURE 7. Wavelet bicoherence of Pdyn measured by DOUBLE STAR at 04-13 UT on
27-03-2005 (Savin et al. 2014).

and normalizing the result. The bicoherence measures three-wave coupling and is only
large when the phase between the wave at sum frequency Fs=Fl+Fk and the other
two is nearly constant over a significant number of realizations. The 2-D bicoherence
graph is used to detect 3-wave interactions considering the 3-wave process with sum
frequency Fs (Fl is the vertical axis of figure 7, Fk is the horizontal one). The
bicoherence can be computed using a (continuous) wavelet transform (WT) instead
of a Fourier transform, in order to improve the statistics (see details in van Milligen
et al. 1995; Savin et al. 2005). We assume cascade signatures e.g. for the horizontal
maxima in figure 7, when at the sum frequency, Fs= Fl+ Fk, the bicoherence has a
comparable value with that at the starting point (F1; F2). This implies that the wave
at the sum frequency interacts in its turn with the same initial mode at frequency F1
in the further 3-wave process: F3 = F1 + F2 etc.

Figure 7 demonstrates 3-wave interactions: at the low-frequency bandwidth there
are local maxima points indicating sharply defined, locked frequencies on the
bicoherence graph which are the result of a coupling of several resonance modes, with
frequencies suggested by the cavity and surface modes’ theories. At the high-frequency
bandwidth, the bicoherence graph has no discrete maxima. Such observation allows
the following scenario of the excitation mechanism to be invoked: the SW fluctuations
at 0.15–10 mHz excite several boundary modes; the BS and the BS foreshock (see
figure 6) are likely a source of the energy. The coupling of these resonance boundary
modes leads later on to a cascade process which forms a power-law spectrum in the
high-frequency bandwidth (cf. figure 5). The resonance boundary modes modulate the
penetration of the SW plasma through the flank MP due to SPS impacts, and they
also modulate the O+ ion outflow from the magnetosphere into the SW (see figure 6
and Savin et al. 2014).

Taylor ‘frozen-in turbulence’ hypothesis. We here note the Eulerian viewpoints of
turbulence and the Taylor ‘frozen-in turbulence’ hypothesis which is usually used
in plasma measurements both in space and in laboratory devices. In space, the SW
speed, Vsw is much higher than the local MHD wave speeds. We can thus consider
measurements at a set of times ti to be at a set of locations in the plasma given
by xi = x0 − Vswti This approximation, known as the Taylor ‘frozen-in turbulence’
hypothesis greatly simplifies the analysis of the data. The Taylor (1938) hypothesis
makes an assumption that the advection contributed by the turbulent circulations
themselves must be small and that therefore, the advection of a field of turbulence
past a fixed point can be taken as being mainly due to the larger, energy containing
scales (the mean flow). Taylor proposed his frozen-in turbulence hypothesis in terms
of Eulerian mean flow. Although it is only valid when the integral scales have
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sufficiently high power compared with the smaller scales, this hypothesis delivered a
linkage between the Eulerian and Lagrangian viewpoints of turbulence. The Taylor
‘frozen-in turbulence’ hypothesis is widely used in neutral fluid measurements. Usually
experimentalists performed Eulerian measurements based on time-resolved single-point
measurements. Lagrangian measurements are challenging because they involve the
tracking of particle trajectories, but such measurements are not now available in
plasma. For a detailed introduction to the statistical mechanics of Eulerian and
Lagrangian turbulence see Monin & Yaglom (1975) and Frish (1995). In MHD
turbulence of interplanetary plasmas, the Lagrangian information has been extracted
following the Taylor hypothesis, involving the magnetic flux frozen in a wide scale
range. In the Earth’s magnetosheath, the plasma flow speed can be lower than the
wave speed and therefore temporal changes at the spacecraft are due to a complex
combination of the plasma moving over the spacecraft, and the turbulent fluctuations
propagating in the plasma frame. Taylor’s hypothesis has been used to explain,
e.g. the morphologies of jets in MSH (Savin et al. 2014). However, it remains a
hypothesis. To describe intermittency, a problem of chaotic motion of individual fluid
particles and mixing flow should be considered. To characterize the intermittency of
developed turbulence in the Eulerian framework, one can consider mixing and chaotic
motion (chaotic advection, when neighbouring trajectories separate exponentially fast
with time) due to Lagrangian chaos phenomenon (see, e.g. Monin & Yaglom 1975;
Ottino 1989). Considering chaos in Lagrangian space, the exponential growth of
separation between advected trajectories l(t) = l0eλt in time is assumed only for a
separation l � η, where λ is the Lyapunov exponent, η is the characteristic scale
of the smallest Eulerian structures (i.e. dissipative eddies in plasma turbulence). In
isotropic homogeneous 3-D turbulence in the inertial range η� l� L the Richardson
law 〈l2〉∼ t3 and standard diffusive regime 〈l2〉∼ t for very large separations l� L are
assumed. In order to treat intermittent turbulence keeping in the Eulerian framework,
we may assume power law scaling 〈l2〉∼ th (i.e. index h may depend on a scale) being
more general than Richardson’s law. Such an approach corresponds to the multifractal
formalism that is a bridge between the Eulerian and Lagrangian descriptions, see, e.g.
Frish (1995). The intermittency can be described by the multifractal formalism (see
below) exploiting Eulerian measurements in space and laboratory plasmas.

2.2. Measurements in fusion devices
Plasma turbulence has been measured in many fusion devices, starting with
experiments on tokamak TMP in 1956 at Kurchatov Institute (see Nedospasov
1992). Experiments are made in fusion devices with different topology of magnetic
field – tokamaks, helical devices and stellarators, reversed field pinch and linear
devices. Topology of the magnetic field is taken into account when MHD stability
and large-scale plasma dynamics are considered. A lot of experimental evidence
has been observed now that plasma in fusion devices is turbulent and level of
plasma fluctuations is increased in the peripheral zone of plasma discharge. Edge
plasma turbulence is intermittent with an enhanced level of turbulent flux, leading
to anomalously large cross-field plasma transport (see Introduction). Thus, the edge
region of the plasma in fusion devices is highly interesting for the investigation of the
nature of enhanced plasma transport linked with intermittency and the self-similarity
of plasma turbulence.

Experimental measurements of edge plasma parameters are reviewed in Zweben
et al. (2007) and other related papers. In such experiments, plasma dynamics
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is characterized typically by moderate kinetic Reynolds numbers (Re< 100) and
magnetic Reynolds numbers (Rem < 1000), see Budaev et al. (2011).

The main fluctuating quantities of interest for edge plasma turbulence are the
electron density n, electron temperature Te, the electrostatic potential ϕ and the
flow speed v. Electric (Langmuir) probes are used to measure plasma fluctuations in
magnetic fusion devices. The technique of Langmuir probes is simply to insert one or
more small biased electrodes inside the plasma and then to measure the fluctuations
seen by these probes. Probe signals contain a large amount of data which can be
interpreted in terms of the local n, Te, ϕ within the frequency and length scales
of ∼1 kHz–1 MHz and ∼0.1–10 cm. The limitation of probes (with size typically
1 mm) is that they must not significantly perturb the plasma or vice versa. In practice,
this allows for the investigation of plasmas with up to Te∼ 100 eV, which is a typical
condition of edge plasma in fusion devices.

Accuracy of plasma parameter estimation depends on the assumptions made during
probe data analysis. If the electron temperature fluctuations are neglected, the poloidal
electric field E and hence the radial drift E×B velocity (cross-field) of fluctuations, v,
can be calculated from measurements of the potential fluctuations with two separated
Langmuir probe tips. The cross-field particle transport Γ due to fluctuations can be
calculated from such velocity estimation and density fluctuations with a third tip
in between, Γ = nv. The calculation of electric field and the radial E × B velocity
assumes that the temperature and sheath drop are identical in both tips and that the
intermittent objects are larger than the separation between the tips; the last assumption
is justified later using beam emission spectroscopy data (see Boedo et al. 2001). In
experiments, probe separation between two neighbouring probe tips is typically
3–5 mm which is sufficiently small. This separation influences the underestimation
of Fourier components with wavelengths as small as twice the probe tip separation.
Details on the possible errors introduced by neglect of the temperature fluctuations
and finite probe tip separation is discussed by Endler (1999). Probe measurements
of density and temperature have been successfully compared with non-perturbing
measurements such as Thomson scattering (see Zweben et al. 2007).

Numerous Langmuir probe measurements were made on tokamaks: T-10 by
Vershkov, Grashin & Chankin (1987), D-IIID by Boedo et al. (2001), TEXTOR
by Huber et al. (2005), JET by Gonçalves et al. (2005), Tore Supra by Antar,
Counsell & Yu (2003), JT-60U by Asakura et al. (2000), Asdex-U by Endler et al.
(1995), MAST by Antar, Counsell & Ahn (2005), on stellarators and helical devices:
LHD by Ohno et al. (2006), L-2 by Skvortsova et al. (2006), TJ-II by Alonso et al.
(2006), on linear machines by Carter (2006), Chiu & Sen (2000), on reversed field
pinches by Antoni et al. (1998), on plasma device NAGDIS-II by Ohno et al. (2004),
PISCES by Schmitz et al. (1990) and others fusion devices. The plasma fluctuations
have been experimentally observed to be highly correlated and of constant amplitude
along the magnetic field lines (over more than one toroidal turn in toroidal devices).
Magnetic pickup coils are used to measure magnetic field.

Typical time traces of the density n(t) fluctuations measured using Langmuir probes
in the edge of fusion devices are shown in figure 8. Taylor’s hypothesis was used to
make analyse this experimental data.

The density, electric field (i.e. cross-field velocity) and cross-field particle flux
fluctuations possess a high-frequency part and the peaks of total intensity (referred
to as the bursts) caused by the intermittent structures. There exist fluctuations in
each burst and maxima are separated by a time greater than the auto-correlation
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(a) (b)

(c)

FIGURE 8. (a) Time traces of density fluctuations (subtracted by mean value and
normalized by standard deviation) in magnetized edge plasmas: the T-10 tokamak SOL
plasma, NAGDIS-II attached plasma, LHD divertor plasma, JT-60U tokamak SOL plasma.
(b) Typical waveform of high intensity bursts in T-10 tokamak and NAGDIS-II device.
(c) Power spectrum S(f )= |n(f )|2 of the density fluctuations. Solid line – power-law 1/f ;
dashed line – a noise level in the signal. SOL plasma, T-10 tokamak.

time. The characteristic time scale of the bursts is of ∼40–200 µs (figure 8b). In
many experiments, several scaling ranges with respect to the frequency are typically
registered in the broadened frequency spectra of density and electric field fluctuation
(see example on figure 8) with no 1/f behaviour. The typical value of the scaling
exponent of the power spectra in the high-frequency range above ∼100 kHz is in
the range of γ ≈ 1.2–2.5. There are no monochromatic peaks in the broadened
spectra. Thus, the process cannot be considered to consist of any coherent structures
in isolation from the background turbulence. It should be noted that the frequency
Fourier spectra of all observables (density, electric field and velocity, cross-field
particle fluxes) are of decayed shape.

The spectrum of poloidal wavenumber, kpol, (integrated over all frequencies)
broadens similarly to the shape of the frequency spectrum (integrated over all
poloidal wavenumbers) as is expected from the Taylor hypothesis of frozen flux.
In the edge plasma kpol is in the range ∼0.1–5 cm−1, corresponding to the scaling
〈kpol〉ρi ∼ 0.02–0.1 (〈kpol〉 is averaged value, ρi – local ion gyroradius), i.e. to the
typical low-frequency turbulence range (see Zweben et al. 2007).
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(a) (b)

FIGURE 9. Cross-field plasma flux in the edge of the T-10 tokamak: (a) typical signal
and (b) wavelet decomposition, white curve is the flux signal.

Turbulence properties regarding magnetic structure and magnetic curvature
were studied in tokamaks TF-2 (Budaev et al. 1990), T-10 (Kirnev et al. 2005),
HYBTOK-II (Budaev et al. 2003) and the Large Helical Device (Ohno et al. 2006).
Turbulent fluxes, fluctuation level and turbulent spectra were measured in these
toroidal plasma discharges at outboard and inboard sides (which are of different
magnetic curvature) of the torus to reveal any differences in the property regarding
magnetic curvature. Intermittent fluctuations were observed both at the outboard and
inboard side of a toroidal plasma; they were identical statistically. These experimental
observations have demonstrated that B∇B drift due to magnetic curvature is likely
not a dominant effect of intermittency origin in toroidal plasmas.

Intermittent plasma transport. Experimental results obtained in the last two decades
have shown that intermittent turbulence of plasma in the edge of tokamaks, helical
devices and linear devices have similar properties independent of which device the
measurements are made in (see Budaev et al. 2011). Cross-field plasma particle flux
in the edge of fusion devices is inhomogeneous in time and space (see figure 9a).
Numerous experiments have shown that cross-field plasma transport in the edge
plasma of fusion devices (tokamaks, helical and linear devices) cannot be described
by classical diffusion with constant diffusion coefficient. A large fraction (up to
∼50 %) of cross-field plasma flux consists of large-scale coherent structure transport.
Such cross-field transport in the literature is often described by an effective diffusion
coefficient that can reach a value much larger than the Bohm coefficient (up to tens
of magnitude). This is called anomalous diffusion (despite the fact that the process
does not look like gas diffusion). Intermittent transport (radial and poloidal) was
observed using different diagnostics (see review Boedo et al. 2001; D’Ippolito, Myra
& Zweben 2011; Maqueda, Stotler & Zweben 2011). The level of time-averaged
flux originates not only from amplitudes of density and electric field fluctuations, but
also a large contribution from the correlation between density n(t) and drift velocity
v(t) (defined by electric field). The Fourier spectra of the flux is broadened. Detailed
analysis of experimental data has shown the self-similarity of the plasma flux. A
hierarchy of structures is seen, e.g. on the WT as tree-like structure (figure 9b). This
hierarchy of scales is evidence of fractality and long-range correlation. Such a feature
is typical of a cascade process in developed turbulence and should be analysed by
statistical methods.

Numerous experimental evidence in edge plasmas of fusion devices have shown
that the PDFs of the fluctuations (constructed as a histogram of the experimental

https://doi.org/10.1017/S0022377815001099 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377815001099


18 V. P. Budaev, L. M. Zelenyi and S. P. Savin

(a)

(c)

(b)

FIGURE 10. Typical PDFs of fluctuations in edge plasma. (a) Cross-field particle flux Γ
in the T-10 tokamak SOL by solid line. Experimental data are normalized by the standard
deviation σ . Gaussian fits of the PDF’s are shown in dashed-dotted line, the Lorentz
distribution by dashed line. (b) Evolution of the PDF’s shape with minor radius, the SOL
of the T-10 tokamak LCMS at r=30 cm. (c) Density (blue thick dashed line) and velocity
(red solid line) simultaneously measured in the same location in the T-10 tokamak SOL.
Experimental data are normalized by the standard deviation value. Gaussian fits of the
PDF’s are shown in dashed line.

signal – density, electric field or particle flux) are typically non-Gaussian, figure 10,
and illustrate the intermittent nature of the process. Positively skewed PDFs are
typically observed in the SOL and in the far-SOL region in fusion devices, e.g. on
Tore Supra, Alcator C-Mod, MAST and PISCES (Antar et al. 2003). At the same
time, a negatively skewed PDF (related to negative burst waveforms) was observed on
the Large Helical Device in some edge plasma regions (Ohno et al. 2006). Intermittent
fluctuations (non-Gaussian PDFs) of the edge density, velocity and turbulent transport
flux have been seen in many toroidal fusion devices (see Zweben et al. 2007).

It is worth stressing that both the density and velocity of the plasma fluctuations
obey a non-Gaussian PDF of similar shape. This is illustrated in figure 10(c), where
PDFs of density and velocity fluctuations measured by Langmuir probes in the same
location (within size of 4 mm) are shown. Such observations are an argument in
favour of treating turbulent transport intermittency as linked with both density and
velocity intermittency.

There is no clear evidence that the PDF’s shape depends strictly on plasma
parameters such as local plasma density, electron temperature, plasma gradients and
particle flux value. An evolution of the PDF’s shape with minor radius is observed
(see figure 10b), e.g. from a near-Gaussian shape at LCFS to the strictly positively
skewed at the far-SOL. To analyse the shape of the PDF in detail, the structure
function should be investigated.
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The fluctuations observed in tokamaks, helical devices and linear devices are
characterized by scale-invariance (self-similarity) (see, e.g. Budaev et al. 2008a,b).
The self-similarity is illustrated by the hierarchy of scales on WT, figure 9(b). The
observations of scale-invariance and power-laws are a manifestations of the fractality
(self-similarity) of turbulence which can be characterised by a fractal dimension
(or a set of dimensions). The fractal structure of edge plasma turbulence in fusion
devices is very complicated. Depending on the accuracy of the description, different
fractal indices can be used to characterize the scale invariance, such as the correlation
dimension (fractal dimension) and Hurst exponent (see Hurst 1951; Grassberger &
Procaccia 1983). The correlation dimension of edge plasma turbulence in TEXTOR,
T-10 tokamaks is in the range from ∼6 to 15 (Budaev et al. 1993, 2011). This is
a relatively low fractal dimension (in comparison with infinity for ‘white noise’).
The Hurst exponent for edge plasma turbulence was estimated to be of 0.6–0.8
(on tokamaks DIII-D Carreras, Lynch & Zaslavsky (2001b), Tore Supra (Antar
et al. 2001), T-10 (Budaev & Khimchenko 2007)) and demonstrates a tendency to
increase toward the wall. Values H> 1/2 corresponds to a long-range correlation and
superdiffusion. The Hurst exponent describes the coarse grain structure of a fractal
object. Detailed characterization is available by multifractal analysis.

3. Generalized self-similarity of plasma turbulence
3.1. Multifractal cascade process

A treatment of the turbulence problem in any analytic theory or direct numerical
solution of the equations describing plasma turbulence face a fundamental problem:
the cascade nature of the process, the number of degrees-of-freedom increases
algebraically for increasingly small spatial scales. This is why cascade turbulence
models are better suited for a description of the long range spatiotemporal scales.
Within the cascade paradigm, many properties of such turbulence can be described,
in particular, its multiscale and multifractal nature. By incorporating an anisotropic
multiplicative cascade, it becomes possible to develop a multifractal turbulence model
(see review Budaev et al. 2011 and other related papers), i.e. to consider how the
self-similarity depends on the local spatial scale.

The multifractal approach is a generalization of a self-similarity consideration in
a system with rich statistical properties. It is appropriate to study both statistically
homogeneous plasma turbulence (such as interplanetary SW or core tokamak plasmas)
and intermittent plasma turbulence in the Earth’s magnetosphere and in edge of fusion
devices. The multifractal approach is used to model a hierarchical turbulence cascade
of a flow bounded by an upper limit (e.g. TBL). Such an approach reconsiders the
cascade model K41 of Kolmogorov which represents a monofractal model with trivial
self-similarity in the inertial range, supposing the inertial range is very large.

In the developed turbulence of incompressible fluids, Kolmogorov (1962) first
formulated a hypothesis invoking some statistical independence in the cascading
process, which led to the log-normal model for the rate of dissipation of turbulent
kinetic energy. The next step of a generalization was the multifractal formalism (see
Frish 1995) proposed to quantify the boundary conditions influence on the turbulence
statistical properties.

For multifractals, as far as the PDF of increments δlX(t) at different time scales l
are concerned, reshaping from ‘quasi-Gaussian’ at large scale L (i.e. boundary scale)
will occur, with fat tailed PDF’s at small scales. This transformation of the PDF’s
for SW turbulence is illustrated in figure 11 where, the PDF’s for different time
scales are plotted in logarithmic scale. The fat tails appear at the scale related to the
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(a)

(b)

FIGURE 11. Multifractal property of magnetized plasma, SW ion flux, SPECTR-R
data, 20.03.2012 12UT. (a) Standardized estimated PDF’s of ion flux increments δτΓ (t)
(normalized to its standard deviation σΓ ) for different time scales (from top to bottom)
τ = 0.25, 1, 4, 16, 64, 256, 1024, 2048, 4096, 16 384 s (from top to bottom). Plots have
been arbitrary shifted for illustration. (b) Third (skewness – by circles) and fourth (flatness
– by squares) moments of the increment PDFs for different time scales τ .

‘coarse’ time scale L – a characteristics of multifractality. A typical scale for L is of
∼10–104 s for the Earth’s magnetosphere and of ∼50–500 µs for the edge plasma in
fusion devices (see Budaev et al. 2011). The multifractality property was registered
in TBL of the Earth’s magnetosphere (Budaev et al. 2011), in edge turbulence of
tokamaks: Tore Supra (Antar et al. 2001), T-10 (Budaev et al. 2008a,b), Hybtok-II
(Budaev et al. 2004), CASTOR (Zajac et al. 2005), TCABR (Rodrigues Neto et al.
2008), MAST (Kono & Škorić 2010), JT-60U, heliotron LHD and a linear device
NAGDIS-II (Budaev et al. 2008a,b). The multifractal theory of energy transfer in the
multiplicative cascade process can involve multifractal properties of the observables,
see appendix A.

Considering stochastic cascade models in the Eulerian framework, the intermittency
can be described quantitatively in terms of a multifractal formalism that is a bridge
between Eulerian and Lagrangian descriptions (see above discussion on Taylor
‘frozen-in turbulence’ hypothesis in § 2) The goal is to compute the multifractal spectra
D(h) starting from the equations of motion or from the experimental investigation
of a turbulent process. Experimental observations of scaling ζ (q) and multifractal
spectra D(h) are crucial to understand how we can formulate the most general form
of a multifractal random field which is consistent with the time and space scaling
properties of the governing equations describing plasma turbulence.

A statistical description of plasma intermittency relates to the question how higher-
order correlations influence the development of turbulence. In hydrodynamics, a well-
known Kolmogorov (‘4/5’) law relates the third-order structure function to the energy
dissipation rate. Usually, it is stated with the assumptions of isotropy, homogeneity and
time stationarity of the statistics of the velocity increments δlυ. Kolmogorov’s third-
order law (Kolmogorov 1941a,b) requires that (certain) third-order moments, S(q, l)=
〈|δlυ|q〉, q= 3, are non-zero and proportional to the non-zero energy flux ε,

S(3, l)=−4/5εl. (3.1)
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Derived from the Navier–Stokes equations (NSE) (see Frish 1995) and valid in
the inertial range, assure that the third-order structure function is unaffected by
intermittency. It also requires adoption of the von Kármán–Howard–Monin hypothesis
(von Kármán & Howarth 1938; Monin & Yaglom 1975) that the rate of energy
dissipation ε approaches a constant non-zero value as the Reynolds number tends to
infinity. The well-known von Kármán–Howard–Monin hierarchy of equations relate
the evolution of the second-order correlations to third-order ones, the evolution of the
third-order correlations to fourth order ones, and so on to infinite order.

For turbulent MHD fluctuations exact relations for third-order structure functions
and their derivatives are considered in theoretical treatments (see Basu, Naji & Pandit
2014 and references therein, Politano & Pouquet 1998a,b). It is a direct analog of the
von Kármán–Howarth–Monin vector relation in anisotropic hydrodynamic turbulence.
The quantities used in MHD treatment (e.g. by Politano & Pouquet 1998a,b) are
the plus and minus Elsässer vectors, z± = υ ± b, where b is the magnetic field in
Alfven speed units, and their fluctuations over vector spatial differences. On this point,
Chandrasekhar (1951) noticed that the Elsässer variables have an ambiguous symmetry
under parity. Considering von Kármán–Howard–Monin hypothesis, the prospects of
a universal description of MHD turbulence are discussed in the literature (see Wan
et al. 2012; Basu et al. 2014). Multifractal measures are appropriate quantities for
such a description.

Exploiting Eulerian measurements (see discussion on Taylor ‘frozen-in turbulence’
hypothesis in § 2), the scaling ζ (q) and D(h) are calculated from experimental
time-series by using the WTMM method, which is very powerful in estimating the
multifractal measures, see appendix A.

Multifractal spectra D(h) estimated by the WTMM method (see appendix A) are
plotted in figure 12 against the Hölder exponent h∗ = 1+ (h− hDmax) (where hDmax is
the Hölder exponent at a maximum of the D(h) spectrum). In this frame, the spectra
are centred around 1. The experimental signals from space and laboratory plasmas
are characterized by the broadened D(h) spectra, being of a convex (bell-like) shape
(figure 12). This is the typical shape of singularity spectra observed in multifractal
fields (cf. examples in Harte 2001). For a monofractal process, the D(h) spectrum
collapses to a point (an example is the data from SW and MSH outside the TBL in
figure 12). The maximum of D(h) is in the range of 0.8–1. A value close to 1 suggests
that the experimental signal is singular almost everywhere. This implies that turbulent
fluctuations are characterized by a rapid increase in amplitude. The broadness of the
D(h) singularity spectrum provides a measure of multifractality (deviation from the
monofractal process, i.e. K41) and lies in the range of 0.5–1.2. This range is typical
for the strong intermittency observed in numerical models and experiments in fluids
and plasma turbulence (see Budaev et al. 2011). The Hölder exponents exceed that of
a Brownian signal with h= 1/3. A typical view of h(q) is shown in figure 13.

Waiting-time statistics. Another statistical approach is studying extreme events
(bursts) in the signal. The waiting-time is defined as the time interval 1t between
two consecutive maxima in a burst intensity selected above a threshold (of level
crossing of a signal, e.g. of 2–3 standard deviation in amplitude). The distribution
P(1t)∼ (1t)γ of the times are called persistence PDFs and the exponent γ is called
the persistence exponent (see, e.g. Perlekar et al. 2011).

Typical waiting-times series constructed from intervals between successive bursts in
the signal are shown in figure 14, demonstrating intermittency and the scale hierarchy
in the wavelet decomposition. Typically, the PDFs of these series are not decayed
exponentially. A typical power law exponent of the PDF, P(1t)∼ (1t)γ (see example
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FIGURE 12. Multifractal spectra D(h) versus the normalized Hölder exponent h∗ = 1 +
(h − hDmax) (centred around 1 by subtracting hDmax). TBL ion flux SPECTR-R data
(SW SPECTR-R) 20.03.2012, magnetic field Bx in the MSH outside the TBL (MSH
Bx) INTERBALL-I, 19.06.1998, SW ion flux WIND data 20.03.2012, the ion flux in
the Earth’s magnetosphere TBL (TBL ion flux), 29.03.1996; edge plasma turbulence
in tokamak T-10 (T-10 SOL), near the last closed magnetic surface (T-10 LCFS); in
NAGDIS-II for attached plasma (N-II attach) and for detached plasma (N-II detach).

FIGURE 13. Hölder exponent h(q). Density fluctuations in SOL of T-10 tokamak (T-10
SOL), magnetic field Bx in SW (SW Bx) from GEOTAIL data; ion flux in TBL (TBL ion
flux) INTERBALL data 19.06.1998.
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FIGURE 14. Intermittent waiting-time series 1t and its wavelet decomposition. Hierarchy
of scales is observed as an evidence of fractality and long-term correlation. Cross-field
flux in the SOL of T-10 tokamak.

FIGURE 15. The PDF of waiting times for extreme events (peaks above 2 standard
deviations) in log–log plot. 2 – TBL, Bz, CLUSTER, 02.02.2003, 3 – TBL, nVz,
CLUSTER, 02.02.2003, 4 – TBL, By, GEOTAIL, 16.04.1996, 18:54-20:04 UT, 6 – TBL,
nV , GEOTAIL, 16.04.1996, 18:54-20:04 UT.

in figure 15 is of γ ≈−3 to −2, Savin et al. 2011). For the normal random process
with Gaussian statistics it should be ∼1. The power law of the waiting-time PDF
was observed in experiments on T-10 tokamak (Budaev et al. 2008a,b), Large Helical
Device (Ohno et al. 2006), D-IIID tokamak and other devices (Sánchez et al. 2003)
and in the Earth’s magnetosphere (Savin et al. 2011).

If the triggering of the turbulent bursts are not correlated, such a process may
follow the Poisson process, and the probability density function of the waiting times,
1t, should be an exponential law: P(1t) = γ −1e−1t/γ – the law of rare events.
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(a) (b)

FIGURE 16. The high-order structure functions Sq(τ ) of different orders (q= 2, 3, 4, 5,
6, 7, 8 from bottom up) versus time scale τ in log–log plot. (a) SW ion flux, BMSW
data SPECTR-R on 28.09.2011; (b) plasma density in edge of T-10 tokamak.

This exponential PDF is considered in the frame of self-organized criticality (SOC)
hypothesis (Bak, Tang & Wiesenfeld 1988). However, statistical analysis shows
a general lack of an exponential decay of the waiting-time PDF observed in the
plasma TBLs, suggesting long-range correlation. This has raised criticism about the
applicability of the simple SOC concept to the plasma TBLs.

3.2. Generalized scale invariance
A statistical description of intermittent turbulence is available through the structure
functions. The structure functions are the various order moments of the PDF of
the fluctuating quantity: Sq(τ ) = 〈|δτX|q〉, where δτX = X(t + τ) − X(t), 〈· · ·〉 is
the ensemble average of experimental time-series X(t). Typically, the structure
functions Sq(τ ) exhibit a saturation over some ‘coarse’ time scale (>1 s in the
Earth’s magnetosphere TBL and >10 µs in fusion devices), figure 16. The power
dependence Sq(τ )∼ τ ζ (q) is observed only on limited time scales. Such behaviour is
typical for data from plasma TBLs. This was observed in space plasma (INTERBALL,
CLUSTER, WIND, SPECTR-R, DOUBLE STAR, GEOTAIL, POLAR spacecrafts)
and laboratory plasma devices (tokamaks, stellarators and linear machines), Budaev
et al. (2011).

Hydrodynamic turbulence (Benzi et al. 1993) in wind tunnel experiments have
shown that scaling laws of the velocity increments can be extended up into a
dissipative range: Sq(l) has a power-law dependence on S3(l),

Sq(l)∼ S3(l)ζ (q)/ζ (3), (3.2)

over a range which is substantially longer (for long ranges of scale l > 5η, η –
dissipation scale) than the scaling range obtained by plotting Sq(l) as a function of l.
This behaviour holds even for intermittent turbulence at a moderate Reynolds number
and was named an ESS. This ESS property is observed on the broad range of scales
from large to small scales including the dissipation range. The ESS corresponds to
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(a) (b) (c) (d)

FIGURE 17. The ESS plot of the structure function Sq(τ ) of different orders (q =
2,3,4,5,6,7,8 from bottom up) versus the third-order structure function: (a) the magnetic
field Bx in the TBL near MP, (b) plasma density in edge of T-10 tokamak, (c) plasma
density in NAGDIS-II device, (d) SW ion flux, BMSW data SPECTR-R on 28.09.2011
(for q = 2, 3, 4, 5, 6, 7, 8, 9 from bottom up). A linear behaviour is interpreted that the
ESS holds.

the scaling in a turbulent cascade not with respect to the usual distance, but with
respect to an effective scale defined by the third-order moment of the velocity field.

This phenomenological observation led to the criterion of the generalized self-
similarity in the form Sq(l) ∼ Sp(l)ζ (q)/ζ (p), for any pair of structure functions.
Such a property is explained in the frameworks of the log-Poisson cascade models
(generalization of multifractal models) of intermittent turbulence, see below. In the
general case, scaling laws ζ (q) represent a nonlinear function of q. So, generalized
self-similarity (scale invariance) is considered to be the ESS property and nonlinear
scaling laws ζ (q) describing a universal property of scale invariance in the framework
of the log-Poisson cascade models (see below).

The ESS property is illustrated in the log–log plots: the dependence of Sq(τ )

on S3(τ ) is seen to be linear almost over up to three orders of magnitude in
time (figure 17). All data from edge plasma in fusion devices (tokamaks T-10,
HYBTOK-II, JT-60U, heliotron LHD, linear NAGDIS-II (Budaev et al. 2008a,b))
and space plasma (SPECTR-R, INTERBALL, CLUSTER, WIND) demonstrate such
an ESS property, which confirms the universality of this property, Budaev et al.
(2011). Such observations lead to the hypothesis of the universality of the scaling in
turbulence boundary layers which is currently widely discussed in the literature (see
Budaev et al. 2011 and other related papers). With the exact result ζ (3)= 1 and by
using the ESS property, with experimental data one can obtain rather accurate values
of ζ (q) considering ζ (q)/ζ (3) by plotting S(q) as a function of S(3).

From this point, we are going to discuss some critical issues regarding the ESS
property and determination of the intermittency exponents.

The property of ESS suggests that scaling properties in turbulence should be
investigated as a function of the generalized scale Ω(l), rather than a function of
the resolution scale l. This is similar to critical phenomena in a finite size system
in which the scaling properties are considered as a function of a correlation length,
depending on the system size and diverging at the critical point. The ESS property can
become fully compatible with a generalized scale transformation moment hierarchy
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in the log-Poisson She–Leveque–Dubrulle model (see appendix B) in terms of a
generalized scale Ω(l)= 〈〈εl〉−1δυ3

l 〉, (see Dubrulle 1994) i.e. depending on the scale
defined by the third-order moment. The She–Leveque–Dubrulle model postulates that
the moment hierarchy originates from some hidden symmetry of the NSE, Dubrulle
(1994). The plasma turbulence is treated by governing equations which are more
complicated than the NSE. At the same time, all these governing equations remain
formally invariant (as with the NSE) under any affine contraction of the space–time
x→ x/λ, t→ t/λ1−h, (of scale ratios λ), see discussion in Cartes et al. (2009). There
are no limitations to suggest that hidden symmetry, similar to NSE, can regulate
plasma dynamics: symmetry transforms for MHD equations and other equations
used for a description of plasma dynamics are considered in Gridnev (1968), Nucci
(1984), Samokhin (1985), Gusyatnikova et al. (1989), Bogoyavlenskij (2002). Thus,
observation of the ESS property for plasma data is an argument to examine the
scalings proposed by the log-Poisson models in the same way as in hydrodynamics.

Questions regarding similarity of the energy transfer cascade process in neutral flow
and magnetofluids can arise on this way. In laboratory plasma, dissipation occurs on
different scales, including large scales, which supposes an inverse cascade process.
While in hydrodynamics, theoretical models assume a single direct cascade to small
scales in terms of a scalar cascade approach. However in 3-D hydrodyamic flows, the
existence of an inverse cascade is still an open question (see discussions in Paret &
Tabeling 1998; Boffetta et al. 2005; Celani, Musacchio & Vincenzi 2010). Strictly
speaking, in 3-D, the scalar approach is insufficient for a description of both the
hydrodynamics and plasma dynamics, and turbulence should be studied using vector
Lie cascades (see discussion in appendix A). However, the main features of cascades
can be revealed using the scalar approach in terms of multifractals. The multifractal
approach to the intermittency proposes self-similarity analysis independently of the
issue of cascade direction (direct or inverse) – multifractal measures are a very general
outcome of stochastic cascades.

It is worth noting that the absolute value of the velocity differences are often used
to construct structure functions from experimental space data. Such structure functions
of absolute values of velocity are not described by any theory. Whereas it is often the
first step to make meaningful analysis of statistics from experimental data.

A fundamental open question connected to intermittency is the dependency of
velocity statistics at various temporal scales on large scale forcing and boundary
conditions: the so-called problem of universality (see Arneodo et al. 2008). Universality
features are linked to the degree of anisotropy and non-homogeneities of the turbulent
statistics. Different forms of anisotropy might have different effects on the small scales
of turbulence. In hydrodynamics, the conjecture of local isotropy has received much
attention, and has been tested in hydrodynamics flows with various kinds of anisotropy
(see e.g. Biferale & Procaccia 2005). Understanding the way turbulence tends towards
local isotropy from various states of anisotropy remains an important challenge in
the study of turbulence. Different forms of anisotropy might have different effects
on the small scales of plasma turbulence. In hydrodynamics, the conjecture of local
isotropy has received much attention, and has been tested in flows with various kinds
of anisotropy (see e.g. Biferale & Procaccia 2005). Finite Reynolds number effects
and anisotropy may lead to a discrepancy of longitudinal and transverse components
of the structure functions and scaling exponents (Biferale & Procaccia 2005). These
authors have suggested an approach to treat the anisotropy problem in the following
way: it is necessary to decompose the structure function of each order into the
symmetry group determined by the large-scale flow and intermittency exponents
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calculated sector-by-sector. In a system where the large-scale isotropy is broken, for
example in the plasma TBL, such an approach will help to improve intermittency
investigation in plasma turbulence. This is an important consideration in the case of
interpreting SW measurements in terms of anisotropic turbulence theories (see, e.g.
Chen et al. 2010).

To summarise, ESS is a procedure that remarkably extends the range of scaling for
structure functions and thus allows improved determination of intermittency exponents.
In spite of several attempts to explain the success of ESS (see discussion, e.g. in
Chakraborty, Frisch & Ray 2010), the latter is still not fully understood. It was shown
by Chakraborty et al. (2010), that by the process of ESS, the sub-leading terms to the
leading scaling exponent are made smaller. This was shown for the Burgers equation
and speculated for the NSE. ESS has been applied to Burgers turbulence at high
Reynolds numbers and a gain of about three-quarters of a decade was numerically
observed: there is a reduction of the subdominant contributions to scaling when going
from the standard structure function representation to the ESS one (Chakraborty et al.
2010).

4. Log-Poisson models of intermittent turbulence
4.1. Comparison with She–Leveque–Dubrulle model

The phenomenon of intermittency is explained in the framework of the log-Poisson
models. The log-Poisson models were developed by the generalization of β-model
incorporating asymmetry and the hypothesis of scale invariance and cascade. The
assumption of the existence of a random multiplicative process for the inertial range
dynamics is important. Over a finite range of scales, a quantized cascade provides a
log-Poisson process containing an infinite number of discrete values for the multipliers.
It considerably contrasts to previous discrete cascade models which contain a finite
number of multipliers: the α-model and p-model contain two multipliers, the random
β-model contains three multipliers. Comparative study of the velocity and magnetic
field in the interplanetary medium regarding scalings proposed by the α-model,
p-model, the random β-model, IK model has been done in a wide range of scales
(see Carbone et al. 1996; Budaev et al. 2011). The log-Poisson intermittency model
reproduces these experimental and numerical findings in hydrodynamic and MHD
(see Carbone et al. 1996; Müller & Biskamp 2003; Budaev et al. 2011) turbulence
very well.

The She–Leveque–Dubrulle model (Dubrulle 1994; She & Leveque 1994) is
explained in appendix B. It assumes the existence of a limiting value ε∞l associated
with the most dissipative structures. Advantages of the log-Poisson models are the
consideration of intermittent turbulence properties such as the scale invariance, power
law scaling for dissipation energy of the most intermittent dissipative structures,
ε∞l ∼ l−∆, l→ 0 where the parameter ∆ is associated with the geometry (dimension)
of dissipative structures. To treat the plasma turbulence problem, we can suggest
a geometry of dissipative structures from experimental observation of theoretical
consideration. In this subsection, we review the comparison of experimental scalings
with the prediction of the She–Leveque–Dubrulle model:

ζ (q)= (1−∆)q
3
+ ∆

1− β
[
1− βq/3

]
. (4.1)

For 3-D isotropic hydrodynamic turbulence, She & Leveque (1994) proposed that ∆=
β = 2/3. The fitting of experimental data to scaling (4.1) is a way to classify the
intermittency property.
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(a) (b)

FIGURE 18. (a) The scaling law of the high-order structure function ζ (q)/ζ (3) for the
Earth’s magnetosphere and edge plasma fluctuations in fusion devices. The dashed line
shows the Kolmogorov K41 scaling q/3, the solid line shows the log-Poisson model
prediction for β = ∆ = 2/3 by the She–Leveque model (SL). (b) The deviation of the
scaling laws of the structure function from Kolmogorov K41spectrum. The edge plasma
in T-10 tokamak: (T-10 n far SOL) is the plasma density, (T-10 Γ far SOL) is the particle
flux; plasma density in NAGDIS-II in the attached mode (N-II attach) and detached mode
(N-II detach); the ion flux in the TBL of the Earth’s magnetosphere (TBL ion flux),
the magnetic field in the TBL of the Earth’s magnetosphere (TBL Bx, 19.06.1998), the
magnetic field in the MSH outside TBL of the Earth’s magnetosphere (MSH Bx) and in
the SW from the Geotail data (SW, Bx).

She & Waymire (1995) considered a stochastic multiplicative cascade in which com-
plicated topological structures, namely, dissipative structures of different dimensions
(in particular, those having fractal dimensions), can be formed simultaneously. In
probability theory, such a process is described by the Khintchine–Levy approach (She
& Waymire 1995). This approach is important for interpretation of the experimental
data when experimental scalings deviate insignificantly from scaling (4.1) with fixed
∆ and β values. The deviation can arise from the complicated geometry of the
dissipative structures, or from the fact that structures of different dimensions are
present in the process simultaneously. This is why a real turbulent process can be
characterized by the fitting values of ∆ and β.

The log-Poisson model reproduces experimental and numerical results in hydro-
dynamic (see Frish 1995) and plasma turbulence rather well (see Budaev et al. 2011).
In figure 18, the structure function scalings ζ (q) of space and fusion devices data
are shown in the same plot with the scalings predicted by the K41 and the standard
log-Poisson (She–Leveque, SL) models. The scalings are anomalously deviated from
the K41 scaling. Many experimental spectra can be described by the log-Poisson
model (4.1) with adjusted parameters ∆ and β: ∆ = 0.12–0.8, β = 0.25–0.7, see
table 1. It is worth stressing that different observables (magnetic field, velocity,
density, fluxes) have the closed multifractal measures which characterize intermittency
(table 1).

Values of ∆ between ∼1/3 and 2/3 are found (table 1); these cases can be
interpreted as an evidence of dominant contribution of 1-D (filament-like) dissipative
structures to the process. Such dissipative structures appear to have not a trivial
geometrical topology but a fractal one. Only in the velocity shear layer in tokamaks
(where the destruction of turbulent eddies is assumed) and in MSH far from TBL of
the Earth’s magnetosphere, non-intermittent signals with β ≈ 1 were observed.
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Experimental data ∆ β

TBL near Earth’ magnetopause, Bx, Interball-1 0.24 0.38
MSH out the TBL, Bx, Interball-1 ≈0 1
TBL near Earth’ magnetopause, ion flux, Interball-1 0.2 0.36
CLUSTER 1 2.02.2003, Earth MP, Bz 0.38 0.56
CLUSTER 1, 2.02.2003, barrier near the Earth TBL, Bz 0.12 0.45
INTERBALL-I, 22.12.1996, Bz geomagnetic tail 0.15 0.26
SW ion flux, WIND, 20.03.12 ≈0 1
TBL, SPECTR-R, ion flux 20.03.12, 32 Hz 12:00–12:30 UT 0.19 0.14
TBL, SPECTR-R, ion flux 20.03.12, 32 Hz 12:30–13:00 UT 0.42 0.22
TBL, SPECTR-R, ion flux 20.03.12, 12–21 UT, 3 Hz 0.34 0.3
CLUSTER 4 ion flux 20.03.12, 06–13 UT, SW in front of BS 0.48 0.17
Double Star, 27.03.2005, ion flux, BS/MSH 0.32 0.18
T-10 SOL, r= 34 cm 0.43 0.33
T-10 LCFS, r= 30.5 cm 0.41 0.36
T-10 shear layer, r= 29.5 cm 0.28 0.5
LHD limiter, shot 33 355 0.15 0.62
LHD high beta, shot 30 206 0.57 0.48
LHD, short magnetic connection length 0.73 0.72
LHD, long magnetic connection length 0.43 0.83
NAGDIS-II attached, r= 18 mm 0.23 0.36
NAGDIS-II detached, r= 18 mm 0.35 0.3
HYBTOK-II, with RHMF of 7 kHz 0.3 0.4
HYBTOK-II SOL 0.26 0.11

TABLE 1. Indicies ∆ and β.

To verify the hypotheses regarding power laws in the log-Poisson model, we can
analyse the scalings for the relative moments

Πq(τ )= Sq+1(τ )

Sq(τ )
(4.2)

and examine the dependence
Πq+1 = (Πq)

δq . (4.3)

The index δq can be changed between δ0, as averaged flow scales Π0(l)∼ lδ0, and
δ∞, consistent with limit scaling Π∞(l)∼ lδ∞. A dependence of δq on q for different
models:

(I) δq ≡ 0 – Kolmogorov K41.
(II) δq ≡ const., isolated vorticities in the turbulence

(III) δ0 = 0, δ∞ = 2/3 – She–Leveque model.
(IV) δ0 = const., δ∞ is limited, She–Leveque–Dubrulle model δq = δ∞ + ζ31Q(q),

where Q(q)-monotonic decay function Q(0) = 1, Q(∞) = 0, e.g. Q(q) =
exp(−acq).

Figure 19 illustrates experimental observations of the case (IV). We point out that
these results support hypothesis of moments hierarchy and generalized scale invariance
of the plasma turbulence in terms of She–Leveque–Dubrulle model (see appendix B).
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FIGURE 19. Index δq versus q. Magnetic field Bx in the Earth’s magnetosphere TBL,
plasma density in SOL (T-10 SOL) at r = 31 cm and in the far SOL (T-10 far SOL)
at r= 36 cm in the T-10 tokamak.

(a) (b)

FIGURE 20. (a) Diagram of singular objects (dissipative structures in magnetic field B)
of different dimension D in a unit cube. The probability of having a given δυl in a sphere
of radius l by an object with dimension D is P(l) ∼ l3-D at l→ 0 (see Frish 1995). (b)
Diagram of the nonlinear interaction of filamentary dissipative structures (D = 1) in the
cross-field direction.

4.2. Anisotropic turbulence cascade and dimension of dissipative structures
The scaling properties depend on a topology of singular dissipative structures (see
Frish 1995). The dimension of dissipative structures D (see figure 20a) relates to the
probability distribution of active turbulent zones in intermittent turbulence. Therefore
it is important to know which dissipative structures are dominant (if structures of
different topology co-exist) and determine the scaling properties.

In the She–Leveque model of 3-D isotropic hydrodynamics, dissipative structures
are considered to be 1-D filaments. In the Biskamp–Mueller model (BM) of 3-D
isotropic MHD turbulence, dissipative structures are assumed to be 2-D current sheets
(Müller & Biskamp 2003). A diagram of the process when nonlinear interaction
across the magnetic field is of Kolmogorov’s type locality, i.e. only modes with
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close k⊥ interact nonlinearly, is presented in figure 20(b). This scheme illustrates
the condition in the SOL (edge plasma) of tokamaks and other fusion devices: the
magnetic field lines are open and turbulence is characterized by flute-like structures
along the magnetic field (which could be a result of interchange instability). Inside
the Earth’s magnetosphere, field-aligned perturbations are also observed. In boundary
layers with a high ratio of thermal to magnetic pressure, the jets are extended along
the direction of the mean flow velocity (see Savin et al. 2005 and references therein).
In the general case, as was discussed in the pioneering work by Zeldovich et al.
(1987), the filamentary structures produce the dominant contribution to intermittent
manifestation of magnetized plasma dynamics.

In the framework of the log-Poisson model, to consider a geometry of the most
singular dissipative structures we have to treat a scaling of energy dissipation ε∞l ∼ l−∆
and the scaling of velocity υl∼ l1/g (Müller & Biskamp 2003) with the parameter g=3
for K41, g= 4 for IK. In a random cascade model, the intermittency index β relates
with ∆ and co-dimension C0 of the most singular dissipative structures: β= 1−∆/C0
(see Politano & Pouquet 1995; Boldyrev 2002) C0= 3−D, where D is the dimension
of dissipative structures. In 3-D, C0= 2 for filaments (D= 1), C0= 1 for micro-sheets
(D= 2). The log-Poisson model scaling:

ζ (q)= (1−∆)q/g+C0(1− [1−∆/C0]q/g). (4.4)

Usually ∆ and g are related assuming an equal scaling for the time scale t∞l of
the rate ε∞l ∼ E∞/t∞l (E∞ is the amount of the energy dissipated in the most
singular structures) and for the nonlinear transfer time tNL

l of the energy cascade rate
ε∼ δυ2

l /t
NL
l . From ε∞l ∼ l−∆ and υl ∼ l1/g, we obtain ∆= 2/g. The hydrodynamic SL

formula results from C0 = 2, g = 3, ∆ = 2/3. The IK MHD model assumes g = 4,
∆ = 1/2, and C0 = 1 with dissipative structures interpreted as 2-D current sheets.
In DNS of 3-D isotropic MHD turbulence (the BM model, BM Müller & Biskamp
2003) scalings are reproduced well with the combination g= 3, ∆= 2/3, and C0 = 1
implying hydrodynamic scaling and sheet-like dissipative structures. To consider
anisotropy statistics of the cascade strength, we may follow the phenomenological
interpretation of Biskamp and Mueller by dropping the scaling equality of tNL

l and
t∞′l . Instead, t∞l is fixed to the K41 time scale, t∞l ∼ l/δυl∼ l1−1/g, ∆= 1− 1/g, which
with C0 = 1 leads to Müller & Biskamp (2003):

ζ (q)= q/g2 + 1− (1/g)q/g. (4.5)

As an alternative we can consider the same scaling t∞l ∼ l/δυl ∼ l1−1/gf with C0 = 2
of 1-D filament-like structures (see figure 20b). On this basis, the anomalous scaling
that captures 1-D filament-like structures was proposed by Budaev (2009):

ζf (q)= q
g2

f
+ 2

(
1−

(
1+ gf

2gf

)q/gf
)
. (4.6)

The quantity gf /3 expresses the cascade strength relative to the isotropic K41
case (here we use the notation gf to distinguish from the case g in (4.5)). The
modified transfer time tNL

l ∼ (l/l0)
θ (l/δυl) can be considered detaching tNL

l and t∞l
to characterize the strength of the field-perpendicular and field-parallel polarized
fluctuations. Here, l0 is an arbitrary reference length, and θ is a dimensionless
efficiency parameter. Assuming a constant energy cascade ε ∼ δυ2

l /t
NL
l = const.,

tNL
l ∼ l(1+θ)2/3. In a standard phenomenology tNL

l ∼ l2/g. In a such approach, the
cascade efficiency is controlled by the (l/l0)

θ factor (Müller & Biskamp 2003):
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(a) (b)

FIGURE 21. (a) Scaling for the structure function (its deviation from the K41 prediction).
Edge plasma of the T-10 tokamak. Shown are the plasma density at r = 34 cm in
the SOL region (triangles) and the cross-field particle flux Γ at r = 36 cm in the
far SOL region (circles). The K41 model (dashed curves), the log-Poisson model with
two-dimension 2-D (solid curves – fitting by (4.5) with g= 2.85) and one-dimension 1-D
(dotted curves – fitting by (4.6) with gf = 3.03) dissipative structures in three dimensions
with anisotropy from magnetic field. (b) Scalings for the structure function. SPECTR-R,
20.03.12, ion flux, TBL, 12-21 UT, 3 Hz (circles), CLUSTER-4, 20.03.12, ion flux,
SW/BS/MSH/MP (triangles). Kolmogorov K41 model (dashed line). The log-Poisson
model with two-dimension 2-D (dashed-dotted curves – fitting by (4.5) with g=2.90); and
one-dimension 1-D (solid curves – fitting by (4.6) with gf = 3.008) dissipative structures
in 3-D with anisotropy from magnetic field.

(i) θ = 0 (g, gf = 3) yields the isotropic K41 cascade;
(ii) θ < 0 (g, gf > 3) corresponds to a cascade enhancement;

(iii) θ > 0 (g, gf < 3) corresponds to a cascade depletion.

Scaling laws (4.5) and (6.5) are helpful to classify experimental data and to prove
the hypothesis of a topology and the dimension of dominant dissipative structures.

For the T-10 tokamak scaling (4.6) was tested in Budaev (2009). In the main edge
region of T-10 (30 cm< r< 34 cm), the scaling is described by the model with 1-D
dissipative structures (4.6), figure 21(a). Only in the far edge (far SOL) region (r >
34 cm), the scaling is close to the scaling (4.5) of the model which captured 2-D
sheet-like dissipative structures. This result gives evidence of the dominant presence
of 1-D singular dissipative structures in edge plasma of a fusion device. Observation
of space plasma (see examples in figure 21b) demonstrate scaling properties which
captured 1-D filamentary and 2-D sheet-like dissipative structures. Table 2 lists values
of g and gf in space and laboratory plasmas. In most experiments, the parameter gf

is close to 3: filament-like dissipative structures (1-D topology) dominate intermittent
turbulence. It appears that the intermittency observed in space and laboratory plasmas
displays universal properties.

The above approach makes it possible to utilize the language of the structure
function’s scaling in order to characterize turbulent structures of different spatial scales.
The results of the above analysis provide insight into the topology of the structures
responsible for dissipation in plasma turbulence. The theoretical prediction of scaling
laws depending on dissipative structure dimension and cascade are summarized in
table 3. All cascade models of intermittent turbulence have adjustable parameters
that are difficult to determine from first principles and physical arguments and that
provide enough freedom to account for the experimental data (e.g. determined by
the scaling ζ (q) of the structure functions). The scaling ζ (q) is helpful to validate
cascade models of developed turbulence with intermittency.
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Experimental data g gf

T-10 SOL, ne, r= 34 cm 2.61 3.03
T-10 SOL, ne, r= 36 cm 3.02 3.53
T-10 SOL, flux Γ , r= 36 cm 2.9 3.4
T-10 LCFS, ne, r= 30 cm 2.5 2.87
T-10 shear layer ne, r= 29 cm 2.35 2.73
NAGDIS-II ‘attach’, ne, r= 18 mm 2.65 3.05
NAGDIS-II ‘detach’, ne, r= 18 mm 2.59 3.0
LHD, SOL ne, long magnetic field line 2.3–2.6 2.8–3.1
LHD, SOL ne, short magnetic field line 2.5–2.8 3.1–3.3
JT-60U, SOL ne, r= 40 mm from separatrix 2.63 3.06
CLUSTER 4, 02.02.2003, Vz, MSH barrier 2.58 3.03
CLUSTER 4, 02.02.2003, Vz, TBL MSH of Earth magnetosphere 2.48 2.9
INTERBALL, 22.12.1996, Bz in the geomagnetic tail 2.4 2.76
TBL, SPECTR-R, ion flux 20.03.12, 32 Hz 12:00–12:30 UT 2.4 2.79
TBL, SPECTR-R, ion flux 20.03.12, 32 Hz 12:30–13:00 UT 2.7 3.19
SPECTR-R, 20.03.12, ion flux, TBL, 12-21 UT, 3 Hz 2.59 3.00
WIND, 20.03.12, ion flux, SW in L1 2.24 2.56
CLUSTER-4, 20.03.12, ion flux, SW in front of BS 2.64 3.07
CLUSTER-4, 20.03.12, ion flux, SW/BS/MSH/MP 2.9 3.35
DOUBLE STAR, 27.03.2005, ion flux, BS/MSH 2.61 3.03

TABLE 2. Indicies g and gf .

The results of the above analysis in the framework of the log-Poisson model
can be interpreted by considering the topology of the structures responsible for a
dissipation in the plasma TBL. They can be associated both with the large-scale
coherent structures (which are vivid in experiments) and with small-scale structures
(which are usually not seen) of intermittent turbulence. We note that structures of
different topology can coexist in the framework of the log-Poisson model (She &
Waymire 1995).

A theoretical analysis (She & Waymire 1995) of a stochastic multiplicative cascade
(such as the log-Poisson cascade) shows that the process can involve generating
dissipative structures of different (in particular, fractal) geometries (as was also
discussed by Zeldovich et al. 1987). As was discussed above, the properties of
the experimental scalings for 1-D dissipative structures are adequately described by
the log-Poisson model. The approach used here does not provide information on
the particular spatial shape of quasi-1-D dissipative structures. From the properties
of MHD flows, it is possible to assume that they have complex shape, stretched
predominantly along the magnetic field. Additional experimental observations are
needed to clarify this issue.

5. Comparison with hydrodynamic turbulence
In this section we present some recent experimental results of intermittency in

the study of hydrodynamic flow for comparison with plasma turbulence. Developed
turbulence was measured in wind tunnels, atmosphere, channels, liquids etc. (see
Clauser 1956; Monin & Yaglom 1971, 1975; reviews McKeon & Sreenivasan 2007;
Marusic et al. 2010). Turbulence intermittency was observed in turbulent flows with
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Model Dissipative structure’s
dimensionality

t∞l tNL
l υl ∼ l1/g Scaling ζ (q)

Kolmogorov’s ∼l/δυl g= 3 q/3
K41 (1941a,b) ∼l1−1/g

Iroshnikov–Kraichnan, IK ∼l/υA g= 4 q/4
Iroshnikov (1963),
Kraichnan (1965)

Log-Poisson intermittent D= 1 ∼l1−1/g ∼l1−1/g g= 3
q
9
+ 2

[
1−

(
2
3

)q/3
]

Hydrodynamic turbulence, Filament-like tNL
l = t∞′l tNL

l = t∞′l
She & Leveque (1994),
Dubrulle (1994)

Log-Poisson intermittent D= 2 ∼l1−1/g ∼l(1+θ)2/3 g≈ 3
q
g2
+ 1−

(
1
g

)q/g

MHD turbulence, Current tNL
l 6= t∞′l tNL

l 6= t∞′l
Müller & Biskamp (2003) sheets

Log-Poisson intermittent D= 1 ∼l1−1/g ∼l(1+θ)2/3 g≈ 3
q
g2
+ 2

(
1−

(
1+ g

2g

)q/g
)

Turbulence of magnetized Filament-like tNL
l 6= t∞′l tNL

l 6= t∞′l
plasma in TBL,
Budaev (2009)

TABLE 3. Scaling laws predicted by different cascade models.
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(a) (b)

(c)

FIGURE 22. (a) Velocity pulsations (in arbitrary units) and (b) PDF – in TBL over
the surface at y = 2 mm, mean flow U = 30 m s−1, T-36I wind tunnel. (c) The Fourier
spectrum S(f ) of velocity pulsations in TBL over the surface at y=0.2 mm, x=1515 mm,
mean flow U = 10 m s−1, T-36I wind tunnel. The fit by power law f−1.97 is shown by a
line.

Reynolds number (estimated by Taylor’s microscale) Re∼ 102–104. Most experimental
data was obtained by using local probes (hot-wire anemometer). Modern methods
of turbulence visualisation have confirmed the existence of intermittent coherent
structures in the boundary layer of turbulent flows. The visualization of the developed
turbulence registered long-lived filamentary structures of different lengths existing in
the flow (see Camusi et al. 2008). A significant new result obtained in recent years
is the experimental observation of very large-scale motion (VLSM) in a flow (see
Marusic et al. 2010). These structures are coupled with small-scale fluctuations and
contain a significant fraction of the overall energy of the flow, the energy of the
VLSM is increased with the Reynolds number.

Intermittency is a typical property of hydrodynamic TBLs (see, e.g. Cadot, Douady
& Couder 1995; Camusi et al. 2008; Marusic et al. 2010). Fourier spectra of the
velocity pulsations in TBLs are broadband and statistics are non-Gaussian. Below,
we demonstrate the intermittency property observed in the low-turbulent aerodynamic
T-36I wind tunnel at TsAGI (Russia) by Brutyan et al. (2013). The test section of
2600 mm had a rectangular cross section of 500 mm × 350 mm of the velocity of
8–55 m s−1. Forced turbulization of the boundary layer was implemented by means
of a stationary vortex generator installed in the front of the test section.

Typically, velocity pulsations in the TBL have intermittent structure with non-
Gaussian statistics (figure 22a,b) contrary to the near-Gaussian statistics in the
main flow. Fourier spectra of the velocity pulsations in TBLs are broadband in the
frequency range from 10 Hz to 10 kHz (figure 22c). The Hurst exponent of the
time-series measured in the TBL varies from 0.6 to 0.8. The TBL is characterized by
a multifractal property: the PDF of the velocity increments δlU(t) at different time
scales l demonstrate an evolution from ‘quasi-Gaussian’ at large scale from ∼10−1
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FIGURE 23. Multifractal spectra D(h) versus the normalized Hölder exponent h∗ = 1 +
(h − hDmax) (centred around 1 by subtracting hDmax), TBL ion flux from Spectr-R (SW
Spectr), TBL ion flux Interball-I on 19.06.1998, cross-field flux in edge T-10 tokamak
(T-10 flux SOL); aerodynamic flow velocity pulsation in TBL at different locations y =
0.4 mm and y= 1.5 mm over the surface, U = 10 m s−1, T-36I wind tunnel.

to ∼10−2 s to fat tailed PDF’s at small scales. Multifractal spectra D(h) are typically
broadened and have a convex shape similar to the observations in space and laboratory
plasma (figure 23).

The ESS property is shown in figure 24(a). Typically, the structure function scaling
ζ (q) is a nonlinear function of q, figure 24(b) similar to the intermittent plasma
data. The scalings deviate from the K41 scaling. The experimental spectra can be
described by the log-Poisson model (4.1) with adjusted parameters ∆ and β in the
range ∆ = 0.2–0.4, β = 0.2–0.8. The results can be interpreted as an evidence of
dominant contribution of 1-D filament-like dissipative structures to the turbulent
process. It supports observations of long-lived filamentary structures, including
VLSM, in hydrodynamic TBLs. The scalings in figure 24(b) illustrate similarity
of hydrodynamic TBLs with plasma TBLs. Such observations open a way for the
detailed investigation of generalized self-similarity, including attempts at turbulence
control (e.g. as was demonstrated in first experiments with fractal boundary surface
to test impact on the spectral and statistical properties in Brutyan et al. (2013)). Thus
the comparative study of intermittency in plasma and neutral fluid TBLs is helpful
for the validation of developed turbulence models, including the log-Poisson model,
to reveal universal features of the intermittency.

6. Scalings of intermittent plasma transport

The statistical description of transport processes in turbulent plasma is an alternative
approach to the traditional characterization of transport based on the computation
of effective transport diffusion coefficients assuming Einstein’s law of diffusion.
Traditionally, a displacement of plasma particles with time τ is considered as
〈δx2〉 ∝ Dτ with a constant (or independent on time scale) diffusion coefficient D.
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(a) (b)

FIGURE 24. (a) ESS property of the intermittent turbulence in boundary layer: dependence
of the structure functions of different orders q on the third-order structure function,
velocity pulsations at y = 20 mm, x = 1515 mm, U = 10 m s−1, T-36I wind tunnel.
(b) Scaling of structure functions – the deviation from the K41 model (dashed line).
Log-Poisson model of She–Leveque (SL-solid line) and scaling Biscamp–Mueller (4.5)
(BM log-Poisson) are shown; aerodynamic flow velocity pulsation at in TBL at different
locations y = 0.9 mm, y = 4 mm, y = 30 mm, U = 10 m s−1, T-36I wind tunnel; TBL
ion flux data Spectr-R (SW Spectr), TBL ion flux Interball 19.06.1998, cross-field flux in
edge T-10 tokamak (T-10 flux SOL).

In such models, D is estimated from some assumptions supposing some dominant
physical mechanism and eliminating other contributions. In such an approach, effects
of the nonlinear coupling of modes with different scales (large and small) are excluded
which could lead to a significant deviation of the model predictions from the real
plasma properties. Because plasma transport is a multi-scale process, the statistical
approach is most appropriative for a self-consistent description of turbulence and
transport phenomena.

To understand the transport analysis, we note that according to the cascade
paradigm, the turbulent energy fluxes ε are (on average) conserved from scale-to-scale
during the cascade. In hydrodynamics, the cascade starts at a large outer scale, large
structures break-up into smaller eddies due to instability or nonlinear interactions, the
flux through the latter being multiplicatively modulated by the former. The variability
at scale ratio λ is

〈εq
λ〉 = λK(q); λ= Leff /l, (6.1)

ελ is the energy flux non-dimensionalized by the ensemble mean flux, Leff is the
effective outer scale of the cascade, l is the scale of an eddy, the angular brackets
indicate statistical averaging and K(q) is a convex function which characterizes the
multiscaling (see Lovejoy, Schertzer & Stanway 2001). This fundamental cascade
equation describes the variability from the weak fluctuations (low q) up to strong
fluctuations (high q) at all scales. Considering ελ as a stochastic 1-D multifractal
density field (e.g. generated by a multiplicative cascade process; see appendix B)
denoted ϕλ where λ > 1 is the ratio of the largest scale of interest to the smallest
scale of homogeneity displaying singularities h:

ϕλ ∼ λh. (6.2)

The statistical moments of the multifractal field are described by the moment scaling
function K(q):

〈ϕq
λ〉 = λK(q). (6.3)
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If we assume the dynamics as being controlled by scale invariant turbulent cascades of
various (scale-by-scale) conserved fluxes ϕ, then in a scaling regime, the fluctuations
1f (1x) in an observable f (e.g. density or velocity of plasma fluctuations)
over a distance 1x are related to the turbulent fluxes by a relation of the form
1f (1x)= ϕ1xH . This relation is a generalization of the classical laws of turbulence.
For example, the Kolmogorov (1941a,b) law for velocity fluctuations has H = 1/3
and ϕ = εη, η = 1/3 (ε is the energy flux) (see Stolle, Lovejoy & Schertzer 2009).
Without knowing η or H – nor even the physical nature of the flux – we can use
this to estimate the normalized (non-dimensional) flux at the smallest resolution of
our data (see Stolle et al. 2009):

ϕ′ = ϕ/〈ϕ〉 =1f /〈1f 〉. (6.4)

Regarding energy flux, ϕ′ = εη/〈εη〉 is used to investigate diffusion process in
multifractals. Averaging over stochastic multifractals (see Lovejoy, Schertzer & Silas
1998; Lovejoy et al. 2001) yields the coefficient of diffusion Deff

Deff = λKη(−1), (6.5)

where Kη(ηq)= qH− ζ (q), assuming H= 1/3 and η= 1/3 (see details in Stolle et al.
2009), relates to the scaling of the high-order structure function ζ (q). In multifractals,
there is a one-to-one relationship between moments and field values (singularities),
thus, there is a critical order of singularity controlling the diffusion process: K(−1)
in (6.5).

The log-Poisson model could be used to estimate a transport scaling law based on
the self-similarity index responsible for the percolation effect in turbulent plasma. In
such an approach (see Budaev 2009; Budaev et al. 2011) the diffusion scaling law
depends on the structure function scaling ζ (q) assuming a log-Poisson scaling. Hence,
a displacement of particles with time τ is scaled as

〈δx2〉 ∝Dτ ∝ τ α (6.6)

with an exponent α ∝ 1 + K(−1). This index was estimated from scaling ζ (q) by
using experimental measures (see tables 1 and 2) of scaling measured in space
and laboratory devices (Budaev et al. 2011), see table 4. The normal diffusion law
(as classic diffusion implies that α = 1) is observed in quiet SW, in MSH out of
the Earth’s magnetosphere TBL and sheared flows in the vicinity of X-points with
destroyed magnetic structure in fusion devices, Budaev et al. (2011). Superdiffusive
transport with scaling exponent α close to 2 is discussed in Savin et al. (2014) for
the observations of SPS at deformed BS, in BS/MSH. The most of transport scaling
exponent estimated for data from TBL α≈ 1.2–1.8> 1 (Budaev et al. 2011), i.e. such
scaling invokes superdiffusion. Similar observations were registered in hydrodynamics
TBL: the scaling α≈ 1.4 (see Brutyan et al. 2013). These results support a view that
the intermittent transport in TBLs display the universality predicted by the log-Poisson
model.

7. Conclusions
Fluctuations observed both in space and laboratory plasma are characterized by

the generalized (extended) self-similarity in an extended scale range. The generalized
self-similarity (scale invariance) is described in frame of the log-Poisson model
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Experimental data α

CLUSTER 3, 1; magnetospheric barrier: 02.02.2003, Bz 1.15
CLUSTER 3, 1; TBL/MP: 02.02.2003, Bz 1.3
CLUSTER 1, quiet MSH: 02.02.2003, Bz ≈1
INTERBALL-1, 22.12.1996, Bz in the geomagnetic tail 1.42
Solar wind ion flux, quiet, WIND, L1 20.03.12 ≈1
SPECTR-R, 20.03.12, ion flux, TBL, 12–21 UT, 3 Hz 1.79
CLUSTER-4, 20.03.12, ion flux, SW in front of BS 1.48
Tokamak T-10, ne 1.33
Tokamak JT-60U, ne 1.33
Tokamak JT-60U, ne, X-point of divertor ≈1
Heliotron LHD, ne 1.4
Linear device NAGDIS-II, ne 1.41

TABLE 4. The scaling exponent α of transport in space and laboratory plasmas.

which allows different functional dependences of the scaling on the geometry of the
particular dissipative structures. 1-D (filamentary) and 2-D (sheet-like) dissipative
structures emerging in the cascade process were studied. Many of the scalings
experimentally obtained both in cosmic and fusion conditions have been found to be
quite close to the model one for 1-D dissipative structures. The question of whether
intermittent plasma flows are really dominated by the presence of 1-D dissipative
structures requires additional theoretical and experimental efforts. Turbulent transport
scaling can be evaluated using the universal log-Poisson model parameters. The
average squared displacement of a given particle can be described as: 〈δx2〉 ∝ τ α
where α is estimated from self-similarity scaling measured in space and laboratory
plasma. In the TBLs α ≈ 1.2–1.8> 1 assuming the superdiffusion regime. It appears
that intermittent turbulence in a magnetofluid is similar to the hydrodynamic analogue.
This demonstrates the universal properties of intermittent turbulence for many natural
phenomena.
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Appendix A. Statistical description of multifractal cascade process

This appendix offers an explanation of the multifractal formalism meant to analyse
statistical self-similarity. In mathematics, a stochastic process X(t) is called statistically
self-similar for exponent H if for ∀λ > 0, λ−HX(λt) is the same process as X(t) (in
statistics). Stochastic homogeneous signals are characterized by a single global Hurst
exponent H and have the same scaling properties at all time intervals. Widely used
examples of such processes are fractional Brownian motion and Lėvy walks. The
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Brownian motion is self-similar with an exponent H = 1/2. The definition above
describes only a monofractal process.

For the monofractal process being self-similar with an exponent H, the probability
density functions (PDF) Pl(δX) of increments δlX at scales l and L = λl are related
by

Pl(δX)= λHPλl(λHδX). (A 1)
The qth-order moments (structure functions) S(q, l) = 〈|δlX|q〉 at scales l and L = λl
are related by

S(q, l)= S(q, L)(l/L)qH. (A 2)
Here 〈· · ·〉 is the statistical averaging. This is a ‘monofractal’ process with exponent
ζq = qH.

Another class of stochastic process includes multifractal signals that are described
by many local Hurst exponents (or Hölder exponents) quantifying the local singular
behaviour and local scaling in time series. According to this definition, the Hölder
exponent h(t0) of a function f at the point t0 is the greatest h so that f is Lipschitz
at t0, i.e. there exist a constant A and a polynomial Qn(t) of order n so that for all t
in the neighbourhood of t0 we have,

|f (t)−Qn(t− t0)| ≈ A|t− t0|h. (A 3)

This measures the degree of irregularity of f at the point t0.
In order to account for multifractality, one has to generalize the classical definition

of self-similarity. This was originally proposed in the field of developed turbulence
(see Frish 1995). The definition of the multifractal self-similarity as follows. A process
is self-similar if the increment PDF’s at scales l and L= λl(λ> 1) are related by the
relationship,

Pl(δX)=
∫

Gl,L(u)e−uPL(e−uδX) du (A 4)

where the self-similarity kernel Gl,L(u) depends only on l/L. The PDF Pl(δX) can be
obtained through a ‘geometrical convolution’ between the kernel Gl,L and the PDF
PL. In case of monofractal self-similar process of exponent H,Gl,L is the Dirac delta
function Gl,L(u) = δ(u − H ln(l/L)). In the multifractal case, the moments (structure
functions) at scales l and L= λl are related by

S(q, l)= S(q, L)(l/L)ζ (q) (A 5)

with nonlinear spectrum ζ (q).
For fractional Brownian motion (which is a monofractal process and the only self-

similar Gaussian process) the PDFs of increments δlX(t) at different time scales l
are the Gaussian for all scales l. For a α-stable Levy process (a monofractal process
with one scaling exponent) distribution function is non-Gaussian (e.g. PDF with heavy
tails).

A multifractal model originated from the phenomenological assumptions that the
successive cascade steps define the fraction of the flux transmitted to smaller scales
and that a cascade from scale ratio λ to scale ratio Λ= λλ′ is a rescaled version (by
scale ratio λ) of a cascade from ratio 1 to λ′.

One possible interpretation of the multifractal formalism is the multiplicative
cascade paradigm, that for any l< L, the multifractal theory predicts:

δυ(l)=W(l, L)δυ(L), δυ(l)= υ(x+ l)− υ(x). (A 6a,b)

Then, according to the scaling properties of velocity, the generator W(l, L) is a
random quantity proportional to (l/L)h. It turns out that for l1 < l2 < l3 we have

W(l1, l3)=W(l1, l2) ·W(l2, l3). (A 7)

https://doi.org/10.1017/S0022377815001099 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377815001099


Intermittent plasma turbulence 41

The property of the generator W defines a statistics of the process. The hypothesis
on universal multifractal process (see Schertzer et al. 2002) establishes renormalized
nonlinear mixing over finite range of scales (i.e. in the TBL of a turbulent flow). It
opens a way for the continuous scale cascade paradigm to overcome a problem of
discrete scales in models.

In discrete cascades, a finite cascade step is assumed: the ratio of scales is 1/2 6
λ < 1. Continuous cascade scales (so-called continuous cascades) are also used. For
this, it is necessary to decrease the step value between consecutive steps of a discrete
cascade. Such a cascade can be formally (mathematically) considered (see Schertzer
et al. 2002) for any λ< 1 and even λ< 1/2, but statistical relations between different
structures depend not on the metric of the ordinary space, but on a metric related with
the parametrization. The distance between structures on a given scale is determined by
the hierarchy level in the cascade. So, the distance between centres of adjacent cells
is not homogeneous anymore.

Although stochastic multifractal cascade models of turbulence respect various
symmetries of the dynamical equations, namely, the scaling and the energy flux
conservation, there is nonetheless a large gap between the deterministic (i.e. Navier–
Stokes or MHD) equations for the vector velocity field and phenomenological
cascades for the scalar energy flux. In order to bridge the gap, an extension to
vector cascades called ‘Lie cascades’ (see, e.g. Schertzer et al. 2002) has been
considered. Strictly speaking, in 3-D, the scalar approach is already insufficient and
turbulence should be studied using Lie cascades. However, in this framework, the
extra symmetries which must be respected are not yet known. In Lie cascades, new
symmetries emerge that have not been studied to date. However, the main features of
cascades can be revealed using the scalar approach.

Involving statistical independence in the cascade and developing Kolmogorov’s
theory, Parisi and Frisch in the frame of a multifractal formalism assumed (see Frish
1995) that the velocity field has local scale-invariance with continuous spectrum
exponents h (Hölder exponents) each of which belongs to a given fractal set Ωh
with dimension D(h): δυl(x, t) ∼ (l/L)h, for x ∈ Ωh, for h ranges in h ∈ [hmin, hmax],
L-maximal scale in the process. In K41 model h = const. = 1/3. The probability
of having a given δυl in a sphere of radius l (on the set with dimension D(h)) is
Ph(l)∼ (l/L)3−D(h). So, the structure function assumes the form:

Sq(l)= 〈|δυl|q〉 ∝
∫ hmax

hmin

(
l
L

)hq ( l
L

)3−D(h)

µ(h) dh∼
(

l
L

)ζ (q)
, (A 8)

where µ(h) is a smooth function independent of l. If l/L � 1, using a saddle
point estimate, one obtains: ζ (q) ∼= h∗q + 3 − D(h∗), where h∗ is a solution of
the equation D′(h∗(q)) = q and D′′(h∗(q)) < 0. The scaling ζ (q) depends on the
shape of D(h), which has a convex shape. D(h) is called the singularity spectrum
or multifractal spectrum. From the analogy between the multifractal formalism and
statistical thermodynamics, the variables h and D(h) play the same role as the energy
and entropy in the thermodynamics, whereas instead of the inverse of temperature
and free energy, we have q and ζ (q) (Muzy, Bacry & Arneodo 1991; Arneodo, Bacry
& Muzy 1995).

Several methods can be used for estimation of multifractal spectrum (see, e.g. Parisi
& Frisch 1985; Halsey et al. 1986; Chhabra & Jensen 1989; Harte 2001). To estimate
the scaling ζ (q) and singularity spectrum D(h) from experimental data, the wavelet
analysis can be used.
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The WT of the function X(t) is defined as TΨ (t, l)= (1/l) ∫ +∞−∞ Ψ ((t′ − t)/l)X(t′) dt′,
where Ψ is the analysing wavelet, l ∈ R+ is a scale parameter and t ∈ R is a space
parameter. The WT TΨ (t, l) (WT) is an analogue of the increments of the variable
δlX(t) = X(t + l) − X(t), but in practice, WT provides information about scaling
properties in more detail than the increments. Usually, Morlet wavelets are used to
analyse experimental data (see, e.g. Mallat 1999). This allows analysis of the process
X(t) both in physical space and in scale space. Wavelet analysis is available to study
scale-invariance properties of the signal.

As was proven by Muzy et al. (1991) and Arneodo et al. (1995), Arneodo, Muzy
& Roux (1997) the WTMM (local maxima of TΨ (t, l) at a given scale l) detect all the
singularities of a signal under investigation. The skeleton from the modulus maxima
lines contains all information about the hierarchical distribution of the singularities in
the signal. The WTMM method includes a construction of a partition function which
scales, in the limit l→ 0+, as:

Z(q, l)=
∑

{ti(l)}i
|TΨ (ti(l), l)|q ∼ lζ (q) (A 9)

where {ti}i are the WTMM and q∈R. Scaling exponent ζ (q) of the structure function
of order q one can get the Hausdorf dimension D(h) of the subset of R for which the
increments behaves as δlX ∼ lh.

According to the theorem (Muzy et al. 1991; Arneodo et al. 1995, 1997), D(h), the
singularity spectrum of the function X, is obtained by Legendre transformation of the
function ζq defined above, D(h)=minq(qh− ζ (q)).

In practice, the scaling exponents are calculated numerically as (Muzy et al. 1991;
Arneodo et al. 1995, 1997):

h(q)= lim
l→0

1
ln l

∑

{ti(l)}i
T̃Ψ (q, ti(l), l) ln |TΨ (ti(l), l)| (A 10)

and
D(h(q))= lim

l→0

1
ln l

∑

{ti(l)}i
T̃Ψ (q, ti(l), l) ln |TΨ (q, ti(l), l)|, (A 11)

where T̃Ψ (q, ti(l), l) = |TΨ (ti(l), l)|q/∑tii
|TΨ (ti(l), l)|q. The set of Hölder exponent

and corresponding singularity spectrum D(h) are extracted from the log–log plot of
h(q) and D(h(q)). When increasing |q|, oscillations become larger in the logarithmic
presentation of Z(q, l) versus l, which very quickly deteriorate the power-low scaling
behaviour observed for q= 0. To make easier and more reliable the regression linear
fit estimate of ζ (q), we can analyse log2(Z(q, l)/Z(0, l)) as a function of log2(l).
The ζ (q) spectrum evaluated from experimental data may provide a test for various
cascade models of turbulence. To test the analysis code used for the multifractal
analysis, the numerical simulation of fractional Brownian motion can be used, this
has the linear dependence of ζ (q) on q.

Appendix B. She–Leveque–Dubrulle model
In this appendix, the log-Poisson model of intermittent turbulence proposed by She,

Leveque and Dubrulle is explained. The log-Poisson models were developed by the
generalization of β-model incorporating asymmetry and hypothesis of scale invariance
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and cascade. The She–Leveque–Dubrulle model (Dubrulle 1994; She & Leveque 1994)
assumes the existence of a limiting value ε∞l associated with the most dissipative
structures. This model makes use of the dimensionless dissipation energy πl = εl/ε

∞
l

and of the following three similarity hypotheses:

(I) The scaling for the structure function is the same as that in the K62 model, with
the mutually dependent exponents, ζ (q)= q/3+ φ(q/3), specifically, 〈εq

l 〉 ∼ lφ(q),
where εl is the mean dissipation rate measured within the cells (say, spheres, or
cubes) of size l. This scaling describes a local inhomogeneity (intermittency).

(II) The hierarchy of the moments of the mean dissipation rate is described by a
power dependence,

〈πq+1
l 〉
〈πq

l 〉
= Aq

( 〈πq
l 〉

〈πq−1
l 〉

)β
. (B 1)

It is assumed that this property arises from the hidden symmetries of dynamic
equations, such as the N–S equation in hydrodynamics and MHD equations in
plasma physics. The exponent β characterizes the degree of intermittency (for
non-intermittent homogeneous developed turbulence in, e.g. the K41 model, we
have β = 1).

(III) The scaling for singular (l → 0) dissipative structures has the form εl ∼ l−∆,
where the parameter ∆ is associated with the geometry of dissipative structures
(She & Leveque 1994; Frish 1995).

These three hypotheses assume the existence of power laws associated with the self-
similarity symmetries of a turbulent process. By analysing hypotheses (I)–(III), one
can derive the scaling for the structure functions.

Dependence (B 1) yields

〈πq+1
l 〉 = 〈πq

l 〉β+1〈πq−1
l 〉−β . (B 2)

Let us write the hierarchy in expanded form,

〈π2
l 〉 = 〈πl〉β+1

〈π3
l 〉 = 〈π2

l 〉β+1〈πl〉−β
· · ·

〈πq
l 〉 = 〈πl〉ψ ,





(B 3)

where

ψ =
q−1∑

m=0

βm =
∞∑

m=0

βm −
∞∑

m=q

βm = 1
1− β −

βq

1− β =
1− βq

1− β . (B 4)

In shortcut form, we have

〈πq
l 〉 = 〈πl〉((1−βq)/(1−β)) ∼ (δlυ)

∆((1−βq)/(1−β)). (B 5)

In terms of the third-order moments, the qth-order scaling for the velocity can then
be written as

〈δlυ
q〉 ∼ (δlυ

3)q/3
〈πq/3

l 〉
〈πl〉q/3 = (δlυ

3)((q)/(3))(1−∆)+∆((1−β
q/3)/(1−β)), (B 6)

〈δlυ
q〉 = 〈δlυ

3〉ζ (q), (B 7)

ζ (q)= (1−∆)q
3
+ ∆

1− β [1− β
q/3]. (B 8)
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FIGURE 25. Scheme of a random anisotropic multiplicative cascade in the
log-Poisson model.

For 3-D isotropic turbulence, She & Leveque (1994) proposed that ∆=β=2/3, which
gives the scaling

ζ (q)= q
9
+ 2

[
1−

(
2
3

)q/3
]
. (B 9)

The hierarchy of the moments can be explained by considering invariance under the
generalized scale transformation, in which case the scaling should be considered with
respect to the generalized scale determined by the third moment of the distribution
function. This is the ESS property.

Let us briefly describe the hierarchy in the log-Poisson model. Consider a
multiplicative cascade turbulent energy process in a system with hierarchical turbulent
cells or with velocity fluctuations of different amplitudes on different scales. Let us
divide the entire region into small cubic cells of side l0 and introduce the energy
dissipation rate εl for each of the cells. In the steady state, the energy dissipation flux
is the same as the energy influx into the system on the largest scales. In the K41
model, this energy dissipation flux is constant. Let us then divide each of the cells
into smaller cubic cells of side λl0, where 0< λ< 1, and repeat this procedure with
the same λ for all smaller scales. As a result, we arrive to a hierarchy of cells such
as that shown in figure 25. Let us consider two hierarchical levels: the levels l with
the flux εl and the level l′= λl with the new cells. Assume that the dissipation energy
flux through a fraction y of these new cells is 1− y and that the dissipation energy
flux through the remaining fraction of the same cells is ε′1 = β1εl. Provided that the
energy flux along the cascade is conserved, we have yβ1 + (1 − y)β2 = 1. Assume
then that the division into cells is random, i.e. that a fixed observation point can
occur in any of the new, smaller scale cells with equal probability. A large number
m of divisions ends with the spatial scale lm = l0λ

m. The energy moment 〈εq
l 〉 ∼ lφ(q),

averaged over the entire large initial region, obeys the scaling law

φ(q)= log(Wq)/ log λ, (B 10)

here W = εi+1/εi is the cascade factor that describes the process and is defined by

W =





0 with probability 1− yβ1 − (1− y)β2

1/β1 with probability yβ1

1/β2 with probability (1− y)β2.

(B 11)

Accordingly, we can find the β1 value with probability y and the β2 value with
probability (1− y). Assume that the fraction y is small and that the parameter of the
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BMSW Brightmonitor of SW plasma spectrometer operating on SPECTR-R spacecraft
BS Bow shock
ESS Extended self-similarity
GS95 Model of Goldreich & Sridhar (1995)
IK Model of Iroshnikov (1963) and Kraichnan (1965)
K41 Theory of Kolmogorov (1941a,b)
LCMS Last closed magnetic surface
MHD Magnetohydrodynamics
MP Magnetopause
MSH Earth’s magnetosheath
NSE Navier–Stokes equations
PDF Probability distribution function
Re Kinetic Reynolds numbers
Rem Magnetic Reynolds number
SOL Scrape-off-layer in tokamak edge plasma
SL Log-Poisson model of turbulence (She & Leveque 1994)
SLD –Log-Poisson model of turbulence (Dubrulle 1994; She & Leveque 1994)
SOC Self-organized criticality
SPECTR-R Spacecraft
SPS Supermagmetosonic plasma streams
SW Solar wind
TBL Turbulent boundary layers
VLSM Very large-scale motion
WIND Spacecraft
WT Wavelet transform
WTMM Wavelet transform modulus maxima

TABLE 5. List of acronyms and abbreviations.

cascade is also small, λ= 1−C0/y. For a small y value, we have β1 < 1 and β2 > 1,
in which case the structures with β2 are the most intense, singular structures. Using
definition (B 10), we obtain

φ(q)=C0(β1 − 1)q+C0(1− βq
1 ). (B 12)

The parameter C0 is related to the fractal dimension of structures with the fraction of
energy β2. The number of such cells is Nm=N0((1− y)/λ3)m, the side of a cubic cell
at the mth hierarchical level being ln = l0λ

m. The fractal dimension calculated for a
small y value by the box-counting method is

D=− lim
m→∞

log(Nm)/ log(lm/l0)= 3−C0. (B 13)

That is, the parameter C0 is the co-dimension of the structure that involves only cells
characterized by the parameter β2: for 1-D, or filamentary, structures, we have C0= 2
and, for 2-D sheet-like structures, we have C0 = 1. We can then use the Kolmogorov
formula for the dissipation rate, εl ≈ δlυ

3/l, so the scaling for the structure velocity
function is

ζ (q)= (1−C0(1− β))q/3+C0(1− βq/3). (B 14)
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This scaling coincides with scaling (B 12). The parameter β = β1, which characterizes
the degree of intermittency, can be determined from numerical or laboratory
experiments (for non-intermittent turbulence, we have β = 1).

Under the additional assumption that velocity fluctuations near the most dissipative
structures are non-intermittent, we can reduce scaling (B 14) to She–Leveque scaling
(B 9).

The logarithm of the dissipation energy εl obeys the Poisson distribution, P(y, µ)=
(µye−µ)/Γ (y+ 1), for y= ln εl/ ln β; here µ> 0 is the parameter of the distribution,
Γ (y) is the Gamma function.
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