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Abstract

LetA\ y be compact Hausdorff spaces and £, F be Banach spaces. Alinearmap T : C(X, E) -> C(Y, F)
is separating if Tf, Tg have disjoint cozeroes whenever / , g have disjoint cozeroes. We prove that a
biseparating linear bijection T (that is, T and T~l are separating) is a weighted composition operator
Tf = hf o<p. Here, h is a function from Y into the set of inveitible linear operators from E onto F, and
<p is a homeomorphism from Y onto X. We also show that T is bounded if and only if h{y) is a bounded
operator from E onto F for all y in Y. In this case, h is continuous with respect to the strong operator
topology.

2000 Mathematics subject classification: primary 47B33,47B38.

1. Introduction

Let X and Y be compact Hausdorff spaces, E and F be Banach spaces, and C(X, E)
and C(Y, F) be the Banach spaces of continuous £-valued and F-valued functions
defined on X and Y, respectively. In C(X, E), we wr i t e /g = 0 for \\f (jt)||||g(.x)|| =
0,foreveryx e X. A linear operator T : C(X, E) -*• C(Y, F) is said to be separating,
or (cozero) disjointness preserving, if Tf Tg = 0 whenever f g = 0. An inveitible T
is biseparating if both T and T~x are separating.

The notion of disjointness preserving operators seems to be used firstly in the 40's
(see for example [25,26]). Since then many authors have developed this concept in
different directions. Abramovich, for example, made many contributions in the context
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of Banach and vector lattices (see for example [4,5]). In the case of continuous scalar-
valued functions, separating linear maps were studied by Beckenstein and Narici in
[13-15] and further investigated in [10] and [19]. Separating linear bijections between
spaces of continuous functions are automatically continuous. Indeed, a bijective linear
operator T from C(X) onto C(Y) is separating if and only if T is an (automatically
bounded) weighted composition operator (see for example [17,19,21]). This can
be considered as a special case of the generalized Nakano's theorem obtained in
[5,6], which asserts that d-isomorphic Banach lattices are order isomorphic and the
d-isomorphism is continuous. We recall that a d-isomorphism T between Banach
lattices E and F is a disjointness preserving linear bijection, and disjointness of
elements x, y in a Banach lattice is defined by |JC| A \y\ = 0 . In this case, E and
F are said to be d-isomorphic. Moreover, the inverse of a d-isomorphism is again
a d-isomorphism, and positive d-isomorphisms are exactly lattice isomorphisms (see
for example [7]). In the context of vector-valued functions, however, a separating or
even a biseparating linear operator is not necessarily continuous (see Example 2.4).

In [23], Jerison got the first vector-valued version of the Banach-Stone Theorem:
If E is a strictly convex Banach space then every surjective isometry T from C{X, E)
onto C(Y, E) can be written as a weighted composition operator Tf = h • f o <p, that
is,

Tf (y) = h{y)(f (<p(y))), Vy e Y, V/ e C(X, E).

Here, <p is a homeomorphism from Y onto X and h is a continuous map from Y into
the space (B(E, E), SOT) of bounded linear operators from E into E equipped with
the strong operator topology (SOT). Moreover, h(y) is an isometry from E onto E
for all y in Y. The conclusion might not hold, however, if E is not strictly convex
(see [20]).

After Jerison [23], many authors worked on different variants of the vector-valued
Banach-Stone Theorem (see [12,16,18,20,22-24]). In particular, as an extension of
the representation theorem of Abramovich [1], Hernandez, Beckenstein and Narici
proved in [12] that if T is an isometric biseparating linear map from C(X, E) onto
C(Y, F) then T is a weighted composition operator Tf (y) — h{y)(f {<p{y))). In
the case that T is bounded but not necessarily invertible, T can still be written as
a weighted composition operator (see [16,18]). It is then possible to prove that
every bounded biseparating linear map provides a homeomorphism <p from Y onto X.
However, these methods might not apply to unbounded biseparating linear maps.

In Section 2, we develop a new argument to prove that every biseparating linear
bijection T from C(X, E) onto C( Y, F) induces a homeomorphism cp from Y onto X.
As expected, 7 is a weighted composition operator

Tf (y) = h(y)(f (<p(y))), V/ e C(X, E), Vy e Y.

https://doi.org/10.1017/S1446788700003153 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003153


[3] Biseparating linear maps 103

Here, A 00 is an invertible linear map from E onto F for each y in Y. However, T
is not necessarily bounded (see Example 2.4). In fact, T is bounded if and only if
||/i001| < oo for all y in Y. In this case, A : Y -*• (fl(£\ F), SOT) is continuous and
imi =81^11*0011 <oo.

In the last section we discuss when the inverse T~x of a disjointness preserving
linear bijection T : C(X, E) -> C(Y, F) is disjointness preserving. It is known that
T~l is disjointness preserving when E = F is the scalar field (see for example [11]).
However, this is not the case even for finite dimensional E and F (see Example 3.1;
see also [2-4]). We will present a new condition, so-called {support) containment
preserving property of T, which is originally due to Abramovich and Kitover [3].
We prove that T~l preserves disjointness if T preserves containment. In particular,
T preserves both disjointness and containment if and only if it is so for T~l which
happens if and only if T and T~r are both weighted composition operators. This can
be considered as the vector-valued version of the results in [3].

We would like to express our deep thanks to Yuri Abramovich and the referee for
several improvements and corrections.

2. Biseparating linear maps are weighted composition operators

In the following, we always assume X and Y are compact Hausdorff spaces, E and
F are Banach spaces, and B(E, F) is the space of bounded linear operators from E
into F equipped with the strong operator topology. For each x in X, let

Ix = {f e C(X, E) : f vanishes in a neighbourhood of JC}.

Note that the linear manifold Ix is not in general closed. But it is dense in the closed
linear subspace Mx = {/ € C(X, E) : f (x) = 0}. Moreover, it is somehow 'prime'
in the sense that/ e Ix whenever/g = 0 and g(x) ^ 0. In fact, HgOOII > 0 for all
y in a neighbourhood V of x and this forces/ to vanish in V.

We start by observing that a biseparating linear bijection T preserves Ix 's.

LEMMA 2.1. Let T : C{X, E) -> C(Y, F) be a biseparating linear bijection. Then
for each x in X there is a unique y in Y such that TIX = lr Moreover, this defines a
bijection <pfrvm Y onto X by <p(y) = x.

PROOF. For each x in X, denote by ker T(IX) the set f l /e / / 7 / )~ ' (° ) - W e first

claim that ker T(IX) is non-empty. Suppose on the contrary that for each y in Y,
there were an fy in Ix with Tfy(y) ^ 0. Thus, an open neighbourhood Uy of y
exists such that Tfy is nonvanishing in Ur Since Y = {JyeY Uy and Y is compact,
Y = t/^Uf/j.jU- • •Uf/y, forsomeyj, y2,... ,yn in Y. Let V be an open neighbourhood
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of x such that/ , , | v = 0 for all / = 1, 2 , . . . , n. Let g e C(X, E) such that g(x) ^ 0
and g vanishes outside V. Then fyig = 0, and thus TfyiTg = 0 since T preserves
disjointness. This forces Tg\ul = 0 for all i — 1, 2 , . . . , n. Therefore, Tg = 0 and
hence g = 0 by the injectivity of T, a contradiction. We thus prove that ker T(IX) ^ 0.

Let y e ker T(/x). For each / e / „ we want to show that Tf e ly. If there
exists a g in C(X, E) such that Tg(y) ^ 0 and fg = 0, then we are done by the
disjointness preserving property of T. Suppose there were no such g; that is, for any
g in C(X, E) vanishing outside V = f - ' (0) , we have Tg(y) = 0. Let W C V be a
compact neighbourhood of x and k e C(X) such that k\ w = 1 and & vanishes outside
V. Then for any g in C(X, E), g = kg + (1 - *)#. Since (1 - ik)| w = 0, we have
(1 - k)g e Ix. This implies 7((1 - k)g)(y) = 0 as y 6 ker 7 ( / , ) . On the other hand,
&g vanishes outside V. Hence T(kg){y) = 0 by the above assumption. It follows that
Tg(y) - Tkg(y) + 7((1 - k)g)(y) = 0 for all g in C(X, E). This conflicts with the
surjectivity of T. Therefore, TIX c ly.

Similarly, T~\Iy) c Ix, for some x' in X since 7 " ' is also separating. It follows
that lx c T~x{Iy) C /^,. Consequently, * = ^ ' and T(/^) = / r The bijectivity of <p
is also clear now. D

THEOREM 2.2. Two compact Hausdorff spaces X and Y are homeomorphic when-

ever there is a biseparating linear bijection T from C(X, E) onto C(Y, F).

PROOF. We show that the bijection <p given in Lemma 2.1 is a homeomorphism. It
suffices to verify the continuity of <p since Y is compact and X is Hausdorff. Suppose,
by the compactness of X, that there exists a net ly>,}k in Y converging to y but
(p{yx) —> x / <p(y), and we want to derive a contradiction.

Let Ux and Uv^) be disjoint open neighbourhoods of x and (p(y), respectively. Now
for any / in C(X, E) vanishing outside Uv(y), we shall show that Tf (y) = 0. In fact,
<p{yx) belongs to Ux for large k. Since / \Ux = 0 and Ux is also a neighbourhood of
Viyx), we h a v e / e Iv(yk). By Lemma 2.1, 7 / e / n and in particular Tf (yk) = 0 for
large X. This implies Tf (y) = 0 by the continuity of Tf.

Let & e C(X) be such that fc| v — 1 and A: vanishes outside Uv(y), where V c Uv{y)
is a compact neighbourhood of <p(y). Then g = kg + (1 - k)g for every ^ in C(X, E).
Since ik̂  vanishes outside Uv(y), we have T(kg)(y) = 0. On the other hand, we have
(1 - k)g e lvW since (1 - k)\v = 0. By Lemma 2.1, 7((1 - k)g) e Iy and thus
T((l - k)g)(y) = 0. It follows that Tg(y) = T(kg)(y) + 7((1 - k)g)(y) = 0. This
is a contradiction since T is onto. Hence <p is a homeomorphism. •

THEOREM 2.3. .Every biseparating linear bijection T : C(X, E) ->• C(Y, F) is a

weighted composition operator

(1) Tf (y) = h(y)(f (<p(y))), V/ e C(X, E), Vy e K
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Here <p is a homeomorphismfrom Y onto X and h(y) is an invertible linear map from
E onto F for each y in Y. Moreover, T is bounded if and only if h(y) is bounded
for all y in Y. In this case, h is a continuous map from Y into (B(E, F), SOT), and
\\T\\=snpy€Y \\h(y)\\.

PROOF. By Theorem 2.2, we have a homeomorphism <p from Y onto X such that
T(IX) = Iy where <p(y) = x.

CLAIM. TMX C My.

If the claim is verified, then TMX = My by the same argument for T~x. It follows
that ker 8X = ker8y o 7, where 8X and 8y are point evaluations at x and y, respectively.
Consequently, there is an invertible linear operator h(y) from E onto F such that
8y o T = h(y) o 8X. Equivalently, Tf (y) = h(y)(f (<p(y))) for a l l / in C(X, E) and
yin Y.

Suppose T is bounded. For any e in E, let / 6 C(X, E) such that/ (x) — e, Vx e
X. Since ||h(y)e\\ = \\h(y)(f (<p(y)))\\ = ||7/0011 < II7/|| < | | 7 | | | | / | | - ||7||||e||,
we conclude that || A (y) || < ||7"|| forally in Y. On the other hand, assume ||/i(y)|| < oo
for all y in Y. Let {y^h be a net converging to y in K. Then \\h(yk)e — /i(y)e|| =
\\h(yk)(f(<p(yk))) - h(y)(f (<p(y)))\\ = \\Tf(yk) - 7/O0II -»- 0 as 7/ € C(K, F).
Thus h is continuous on K. Moreover, supy€Y\\h(y)e\\ — sup>e), | |7/(y)| | < oo.
Therefore, sup^,, ||/i(y)|| < oo by the Principle of Uniform Boundedness. Finally,
for any gin C(X, £) andy in F, wehave ||7^(y)|| = \\h(yHg(<p(y)))\\ < \\h(y)\\\\g\\.
Hence | |7 | |<sup> e , \\h(y)\\.

To verify the claim, suppose on the contrary f e Mx but Tf (y) ^ 0 . If * belongs
to the interior of/ "' (0), then/ e lx and thus Tf (y) = 0. Therefore, we may assume
there is a net {xk}k in X converging to x and/ (xk) is never zero. Let y* be in Y such
that <p(y{) = xk. Clearly, yk converges to y and we may assume there is a constant e
such that || Tf (yk)\\ > e > 0 for all k. For n = 1, 2, . . . , set

- { " X : 2n + l
and

1

Then at least one of the unions V = IJ^li >̂ anc* W = U^li ^« contains a subnet
of [xk)k. Without loss of generality, we assume that all xk belong to V. Let Vn be
an open set containing the closure Vn of Vn such that V'n n Vm — 0 if n ^ m. Let gn

in C(X, E) be of norm at most l/2/i such that gn agrees with / on Vn and vanishes
outside V'n for each n. Then gngm = 0 for all m ^ n. Let g(u>) = J^^, *j2ngn{w),
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for every w € X. Since for each w in X at most one term in the above sum is nonzero
and||V2ngn|| < 1/V2n, the convergence is uniform and thus g e C(X, E). Note that
for each n, g agrees with *j2nf on each open set Vn. Moreover, each xk belongs to a
unique Vn(X) and n(X) —> oo as X —> oo. Therefore, g — s/2n(X)f e IXk. This implies
T(g - j2MX)f) e Iyk and thus \\Tg(yk)\\ = J2MX)\\Tf (y,)\\ > j2MX)e -* oo
as X —> oo. But the limit should be the finite number || Tg(y)\\, a contradiction. This
completes the proof. •

In the following example, we see that the invertible linear operator h{y) in (1) can
be unbounded.

EXAMPLE 2.4. Let X = {0} and V be an unbounded linear functional of c0 such
that i/f((l, 0, 0, •••)) = 1- Define an unbounded linearbijection H from c0 onto c0 by

REMARK. Recently, Araujo has discussed related problems in [8,9]. For example,
he proved independently that two completely regular spaces X and Y have homeomor-
phic realcompactifications vX and v Y whenever there is a biseparating linear maps
from the space Q,(X, E) of bounded continuous vector-valued functions defined on
X onto the space Cb(Y, F) of such defined on Y, where E and F are Banach spaces.
This will give similar results to those in this section. However, the approach in [8,9]
is somewhat different from our methods and it has stronger topological flavour, while
the current paper emphasizes the algebraic aspects of the problem. In particular, we
consider the zero preserving property of a linear biseparation (Lemma 2.1) whilst
Araujo and some other authors utilize notions of supporting functionals and peak
points. In this sense, we provide not only new results but also new techniques, which
we think are useful additions to the literature.

3. Containment and disjointness preserving operators

For the results of the preceding section we had to assume that T is biseparating,
namely that both T and T~l are separating. It is known that the inverse of a separating

/ / ( A ) = (Ai -|- ^ ( A ) , A2, A3, ' • ' ) , VA = ( A J , A2, A3, ' • ' ) £ Co-
!

Set h(0) = H and define the biseparating linear bijection T : C(X, c0) -> C(X, c0) "•
by

77 (0) = h(O)((f (0))), V/ e C(X, co).

Then T is an unbounded weighted composition operator. Note that q> : X -> X with
= 0 is a homeomorphism.
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linear bijection between Banach lattices (in particular, C(X)'s) always preserves
disjointness (see for example [2, Theorem 1]). Recently, Abramovich and Kitover
[2,4] showed that T~l need not be separating in the general vector lattice setting.

EXAMPLE 3.1 ([12]). Let X = {0} and E = R2 with sup norm, and let Y = {1, 2}
and F = K with its usual norm. Define T : C(X, E) -» C(Y, F) by T (g) = g with
g(l) = a and g(2) = b. Then the surjective linear isometry T is separating, but its
inverse T~x is not.

Recall that for an / in C(X, E), the cozero off is coz(f) = {x e X : / (x) ^ 0}
and the support supp(/) of/ is the closure of coz(/) in X. The following definition
modifies the one given by Abramovich [3].

DEFINITION 3.2. A linear map T : C(X, E) -*• C{Y, F) is said to be {support)
containment preserving if supp(/) C supp(g) implies supp(7y) c supp(7"g).

For any injective map T : C(X, E) - • C(Y, F) we denote by T~x the inverse
operator defined on ran T, the range space of T.

LEMMA 3.3. LetT : C(X, E) -> C(Y, F) be a linear injection. If T is containment
preserving, then T~x is disjointness preserving.

PROOF. Suppose, on the contrary, that there exist / and g in C(X, E) such that
Tf Tg = 0 but ||/(x)||||g(;c)|| ^ 0 for some x in X. Then we can find an open
neighbourhood V of x such that V c coz(/) D coz(g). Let h e C(X, E) such
that h(x) ^ 0 and h\Vc = 0. It is clear that supp(/i) c supp(/) n supp(g). Since
T preserves containment, we have supp(77z) c supp(7/) n supp(Tg). On the
other hand, Tf Tg = 0 implies coz(Tf) n coz(Tg) = 0. It follows that coz(Th) c
supp(7y") c y\coz(7g). Sincecoz(TZi) is open, it forces that coz(77i)nsupp(rg) —
0. Therefore, Th = 0 and hence-/i = 0 by the injectivity of T, a contradiction. We
thus prove that T'1 is disjointness preserving. •

Combining Theorem 2.3 and Lemma 3.3, we will have the following

COROLLARY 3.4. Let T : C(X, E) -»• C(Y, F) be a linear bijection. Then the
following statements are equivalent

(a) T preserves disjointness and containment;
(b) T and T'1 preserve disjointness;
(c) T and T~l preserve containment;
(d) T and T~l are weighted composition operators.
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PROOF. We need only to prove (b) implies (a). Suppose supp(/) c supp(g), we
want to show that supp(77) c supp(7g). Suppose on the contrary that there exists y
in Y such that y e supp(7/) \ supp(Tg)- Thus, there exists an open neighbourhood
V of y such that V n supp(Tg) = 0. Choose y' e V n coz(Tf) and let h e C(Y, F)
such that h(y') ^ 0 and h\Vc — 0. Since T is surjective, say Tk = h for some k in
C(X, £). Then TkTg = 0, and thus kg = 0 since T~l preserves disjointness. This
forces kf = 0, because supp(/) c supp(g). Therefore, hTf = TkTf = 0. But
IIh(y')|| II7/ OOH ^ 0, a contradiction. •

In Example 3.1, the surjective isometry T preserves disjointness but not containment
while its inverse T"1 preserves containment but not disjointness. Moreover, T is a
weighted composition operator but T~l is not.
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