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A MINIMAX INEQUALITY WITH APPLICATIONS
TO EXISTENCE OF EQUILIBRIUM POINTS

KOK-KEONG TAN AND ZIAN-ZHI YUAN

A new minimax inequality is first proved. As a consequence, five equivalent fixed
point theorems are formulated. Next a theorem concerning the existence of max-
imal elements for an Lc-majorised correspondence is obtained. By the maximal
element theorem, existence theorems of equilibrium points for a non-compact one-
person game and for a non-compact qualitative game with Lc-majorised corre-
spondences are given. Using the latter result and employing an "approximation"
technique used by Tulcea, we deduce equilibrium existence theorems for a non-
compact generalised game with Lc correspondences in topological vector spaces
and in locally convex topological vector spaces. Our results generalise the corre-
sponding results due to Border, Borglin-Keiding, Chang, Ding-Kim-Tan, Ding-Tan,
Shafer-Sonnenschein, Shih-Tan, Toussaint, Tulcea and Yannelis-Prabhakar.

1. INTRODUCTION

In [22, 23], Tuclea proved some very general equilibrium existence theorems for
generalised games (abstract economies) with correspondences defined on a compact
strategy (choice) set of players (agents). These theorems generalised most known equi-
librium theorems on compact generalised games due to Borglin and Keiding [3], Shafer
and Sonnenschein [16], Toussaint [21] and Yannelis and Prabhakar [26].

In this paper, we shall first introduce the notions of correspondence of class Lc,
ic-majorant of <j> at x and Zc-majorised correspondences which generalise the cor-
responding definitions of Ding and Tan [7]. Next, a new minimax inequality is proved
which generalises the corresponding result of Shih and Tan [18]. As a consequence,
five equivalent fixed point theorems are formulated which generalise the corresponding
results of Ben-El-Mechaiekh, Deguire and Granas [1], Border [2], Ding and Tan [7, 8],
Mehta and Tarafdar [15], Shih and Tan [18] and Tarafdar [19]. An existence theorem
of maximal elements for an Xc-niajorised correspondence is obtained which generalises
the corresponding results of Borglin and Keiding [3], Ding and Tan [7], Toussaint [21],
Tulcea [22] and Yannelis and Prabhakar [26]. By applying earlier results, we prove
equilibrium existence theorems for a non-compact one-person game and for a non-
compact qualitative game with an infinite number of players and with Z/c-majorised
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correspondences. The latter result is applied to obtain an equilibrium existence theorem
for a non-compact generalised game with an infinite number of players and with Lc
correspondences. Finally, by employing an "approximation" technique used by Tulcea
[22], we also give some equilibrium existence theorems for a one-person game and for a
generalised game in locally convex spaces.

Now we give some notation. The set of all real numbers is denoted by R. Let A
be a subset of a topological space X. We shall denote by 2A the family of all subsets
of A, by F(A) the family of all non-empty finite subsets of A, by intx(A) the interior
of A in X and by clx(A) the closure of A in X. A is said to be compactly open
in X if for each non-empty compact subset C of X, A f~l C is open in C. If A is a
subset of a vector space, we shall denote by coA the convex hull of A. If id is a non-
empty subset of a topological vector space E and S, T : A —> 2B are correspondences,
then coT, T f~l S : A —> 2E are correspondences defined by (coT)(x) = coT(x) and
(Tfl S)(x) = T(x) fl S(x) for each x £ A, respectively. If X and Y are topological
spaces and T : X —» 2Y is a correspondence, the Graph of T, denoted by Graph T, is
the set {(x,y) £ X x Y : y £ T(x)} and the correspondence T : X —» 2Y is defined
by T(x) = {y £ Y : (x,y) £ c/^xyGraph T} (the set clXxY Graph T is called the
adherence of the graph of T), and clT : X -» 2 y is defined by clT(x) = clY(T(x)) for
each x 6 X. It is east to see that clT(x) C T{x) for each x 6 X.

Let X be a topological space, Y be a non-empty subset of a vector space E,

6 : X —* E be a. map and <j> : X —* 2Y be a correspondence. Then (1) <f> is said to be of
class Lgtc if (a) for each x E X, co<j>(x) C y and 0(x) £ co<j>{x) and (b) there exists
a correspondence if> : X —• 2 y such that for each a; £ X, tl>(x) C ^(a;) and for each
y £ y , ^~1(») is compactly open in X and {x £ X : <£(z) ^ 0} = {x £ X : j>(x) ̂  0};
(2) (4>x,i>x;Nx) is an Z^c-majorant of <j> at x if (j)x,tj>x • X —* 2Y and iVr is an
open neighbourhood of x in X such that (a) for each z £ iV ,̂ *$(z) C ^i(^) and
0(z) ^ co<f>x(z), (b) for each z £ X , V ' I W C <£a:(z) and co^s(z) C Y and (c) for
each y £ y , ^J1(y) is compactly open in X; (3) <f> is said to be Z^c-majorised if
for each x G. X with 4>{x) ^ 0, there exists an i^c-majorant (<j>z,il>xiNx) of ^ at x

such that for any non-empty finite subset A of the set {x £ X : <f>(x) ^ 0}, we have
{ ^ f l ^ : f l co*m{z) # 0} = {z £ H JV- : PI «>0.(*

It is clear that every correspondence of class Lg,c is -Le.c-majorised. We note
that our notions of the correspondence <f> being of class Lg,c and Z^c-majorised cor-
respondence generalise the notions of correspondence of class Lgtf and L^f-majorised
correspondences and Cg and £J-majorised correspondence respectively introduced by
Ding and Tan [7] and Ding, Kim and Tan in [8] which in turn generalise the notions
of <f> £ C(X, y, 8) and C-majorised correspondence respectively introduced by Tulcea
in [22]. In this paper, we shall deal mainly with either the case (I) X = Y and X is
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a non-empty convex subset of the topological vector space E and 0 = Ix, the identity
map on X, or the case (II) X = \[ Xi and 0 = TTJ : X —> Xj is the projection of X

onto Xj and Y = Xj is a non-empty convex subset of a topological vector space. In

both cases (I) and (II), we shall write Lc in place of Lgtc.

2. A N E W MINIMAX INEQUALITY

The proof of Lemma 1 of Fan in [10] actually produces the following slight im-

provement which is observed in [6, Lemma 3].

LEMMA 2 . 1 . Let X and Y be non-empty sets in a topological vector space E and
F: X -» 2Y be such that

(i) for each x£X, F(x) is closed in Y;

(ii) for each A £ F{X), co(A) C U *X*);

(iii) ihere exists an xo £ X such that F(xo) is compact.

Then fl F(x)^q>. ,

We remark here that even though all topological vector spaces are assumed to be
"Hausdorff" in [10], in proving Lemma 1 in [10], "Hausdorff" is never needed. The
above lemma differs from Lemma 1 of Fan [10] in the following ways: (a) E is not
assumed to be Hausdorff and (b) Y need not be the whole space E.

THEOREM 2 . 2 . Let X be a non-empty convex subset of a topological vector

space and ^ , ^ : X x X - » R U {—oo, oo} be such that

(a) (j>{x,y) ̂  rl>(x,y) for each (x,y) £ X x X;

(b) for each fixed x £ X, y —* <f>(x,y) is a lower semi-continuous function of

y on each non-empty compact subset C of X;

(c) for each A € F(X) and for each y G co(A), mintp{x,y) ^ 0;
z£A

(d) tAere exist a non-empty closed and compact subset K of X and xo £ X

such that ijf{xo,y) > 0 for all y e X\K.
Then there exists y G K such that <f>(x,y) ^ 0 for all x G X.

PROOF: For each x £ X, let K(x) = {y £ K : <j>(x,y) s% 0} . We shall show that
the family {K(x) : x £ X} has the finite intersection property. Indeed, let {asi, • • • , z n }
be any finite subset of X. Set C — co{xi, x%, • • • , xn}, then C is non-empty and compact.
Define F : C -> 2C by F(x) = {y £ C : r(>(x,y) ^ 0} for all x £ C. Then we

m

have (i) if {zi,Z2,--- ,zm} is any finite subset of C, then co{z\,--- ,zm} C U F[zi).
t=i

For if this were false, there exist {z\,-• • ,zm} C C and z G co{z\,--- ,zm} with
m

z & U F(zi) s o ^ a t rp(zi,z) > 0 for all i = 1,- • • ,m which contradicts (c). (ii)
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F(x0) C K by (d) so that clcF(x0) C clc(K) = K and clcF(x0) is compact. By

Lemma 2.1, fi c/c(F(x)) ^ 0. Take any y G fl cM-F(a0), t h e n 17 ^ c/ci^zo) C K
C C

n

and y e fl clc{F(xi)). But for each i = 1, • • • , n , c/c(.F(s;,)) = c/x{y e C : V>(*i,y) <

0} C c/c{2/ G C : ^(aw.y) < 0} = {y G C : <t>(xi,y) < 0} by (a) and (b). It follows that

<£(*»,17) ^ 0 for all i = 1, • • • ,n . So that y G fl #(*<)•

Hence the family {K(x) : x G X } has the finite intersection property. By (b) again,
each K(x) is a closed subset of K. Therefore f| K(x) ^ 0. Take any y G f] K(x),

then y G X and 4>(x,y) ^ 0 for all x G A". D

The following are equivalent formulations of Theorem 2.2.

THEOREM 2.2 . (First Geometric Form) Let X be a. non-empty convex subset of
a topological vector space and B,D C X x X be such that

(a) B C D;

(b) /or each fixed x £ X and for each non-empty compact subset C of X, the

set {y G C : {x,y) G B} is open in C;

(c) for each A G F(X) and for each y G co(A), there exists x G A such that

(d) tiere exist a non-empty closed and compact subset K of X and Xo G X

such that (xo,y) eDforallyeX\K.

Then there exists y£K such that {x G X : (x,y) G B} = 0.

THEOREM 2.2 . (Second Geometric Form) Let X be a non-empty convex subset

of a topological vector space and M, N C X x X be such that

(a) N C M;

(b) for each fixed x G X and for each non-empty compact subset C ofX, the

set {yGC: (x,y) G M} is closed in C;

(c) for each A G ̂ F(X) and for each y G co(A), there exists x £ A such that

(x,y)€N;

(d) there exist a non-empty closed and compact subset K of X and XQ G X

such that (xo,y) g N for all y eX\K.

Then there exists y G K such that X x {y} C M.

THEOREM 2.2 . (Maximal Element Version) Let X be a non-empty convex sub-

set of a topological vector space and P,Q : X —> 1X be such that

(a) for each x£X, P(z) C Q(x);

(b) for each x G X, P~1(x) is compactly open in X;

(c) for each A G ̂ (X) and for each y G co(A), there exists x G A such that
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(d) there exist a non-empty closed and compact subset K of X and XQ G X

such that X\K cQ-^xo).

Then there exists yeK such that P(y) = 0.

SKETCH OF PROOFS:

(1) Theorem 2.2 = > Theorem 2.2*: Let <f>,tj> : X X X -> R be the characteristic
function of B, D respectively. U

(2) Theorem 2.2' =$> Theorem 2.2: Define B = {{x,y) G X X X : <f>(x,y) > 0}
and D = {(x,y)eXxX :^{x,y)>0}. D

(3) Theorem 2.2* => Theorem2.l": Let B = X x X\M and D = X x X\N. D

(4) Theorem 2.2" =>• Theorem 2.2': Let M = X x X\B and N = X x X\D. D

(5) Theorem 2.2" ==> Theorem 2.l" ' : Let JV = {(s.j/) G X x X : x g Q(y)} and
M = {{x,y) £XxX :x<£P{y)}. D

(6) Theorem 2.2'" = > Theorem 2.2": Define P, Q : X -+ 2 X by P(y) = {x e X :

(x,y) g M}, and Q(y) = {x £ X : (x,y) & N} for each y £ X respectively. D

Theorem 2.2' (respectively, Theorem 2.2") generalises Theorem 3 (respectively,

Theorem 4) of Shih and Tan [17].

LEMMA 2 . 3 . Let X be a non-empty convex subset of a topological vector space

and <£,V> : X x X -> R U {-oo,+oo} be such that

(i) rj>(x,x) ^ 0 for each x G X;

(ii) for each y G X, the set {x £ X : i{>(x,y) > 0} is convex.

Then for each A G F{X) and for each y G co(A), min^>(x,j/) ^ 0.

PROOF: Suppose the conclusion were false, then there exist A G F{X) and y G
co(A) such that mini{>(x,y) > 0. It follows that A C {x G X : if>(x,y) > 0} so that

y G co(A) C {x £ X : ij)(x,y) > 0} by (ii), so that i>(y,y) > 0 which contradicts (i).
Therefore the conclusion must hold. D

In view of Lemma 2.3, Theorem 2.2 implies the following

THEOREM 2 . 4 . Let X be a non-empty convex subset of a topological vector

space and ^ : X x X - » R U {—oo, +00} be such that

(a) <f>{x,y) ^ tj)(x,y) for each (x,y) G X x X and rl>(x,x) ^ 0 for each

x£X;

(b) for each fixed x G X, y >-* <j>(x,y) is a iower semicontinuous function of

y on each non-empty compact subset C of X;

(c) for each fixed y G X, the set {x G X : ij>{x,y) > 0} is convex;
(d) there exist a non-empty closed and compact subset K of X and a point

x0 G X such that ^(xo,y) > 0 for all y G X \ K.
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Then there exists y£K such that <f>(x,y) ^ 0 for all x £ X.

COROLLARY 2 . 5 . Let X be a non-empty convex subset of a topological vector
space and <f>,rj) : X y. X —• R U {—oo, +00} be such that

(a) </>(x,y) ^ ij>(x,y) for each (x,y) £ X x X;

(b) for each fixed x £ X, y 1—* <j>(x,y) is a lower semicontinuous function of

y on C for each non-empty compact subset C ofX;

(c) for each fixed y £ X, the set {x G X : rj>(x,y) > sup T/>(X,X)} is convex;
xex

(d) there exist a non-empty closed and compact subset K of X and a point
x0 G X such that ip(x0, y) > sup ij>(x,x) for all y G X \K.

x€X

Then there exists y G K such that <f>{x,y) ^ sup i/>(x,x) for all x £ X.
xex

Theorem 2.4 improves Theorem 1 of Shih and Tan [18] in the following ways: (1)
the given topological vector space need not be Husdorff, (2) for each x G X, y i-» (f>(x,y)
is lower semicontinuous on each compact subset of X instead of on X and (3) y G K
instead of y G X. When X is a compact convex set, by taking K = X, Corollary 2.5
is essentially Yen's generalisation [27, Theorem 1, p.479] of Fan's minimax inequality
[11, Theorem 1, p.103].

The following are fixed point versions of Theorem 2.4:

THEOREM 2 . 4 ' . Let X be a non-empty convex subset of a topological vector
space and P, Q : X -> 2X be such that

(a) for each x £ X, P(x) C Q(x);

(b) for each x G X, P~1(x) is compactly open in X;
(c) for each y £ X, Q(y) is convex;

(d) there exists a non-empty closed and compact subset K of X and XQ G X

such that X\K C Q-^xo);

(e) for each y £ K, P(y) ^ 9.

Then there exists a point x G X such that x £ Q(x).

THEOREM 2 . 4 " . Let X be a non-empty convex subset of a topological vector
space and P, Q : X -> 2X be such that

(a) for each x G X, P(x) C Q{x);
(b) for each x £ X, P~1[x) is compactly open in X;
(c) there exist a non-empty closed and compact subset K of X and XQ G X

such that X \ K C {coQ)~1(x0);

(d) for each y&K, P(y)^Q.

Then there exists x G X such that x G coQ(x).

THEOREM 2 . 4 ' " • Let X be a non-empty convex subset of a topological vector
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space and P, Q : X —> 2X be such that

(a) for each z £ X , P(x) C Q(x);

(b) for each x G X, P—1(x) is compactly open in X;
(c) there exist a non-empty closed and compact subset K of X and XQ G X

such that X \ K C Q ' ^ z o ) ;
(d) for each y G K, P{y) ^ 0.

Then there exists x £ X such that x G coQ(x).

THEOREM 2 . 4 " " . Let X be a non-empty convex subset of a topological vector

space and Q : X —• 2 be such that

(1) for each y £ X, Q~1(y) contains a subset Oy ( which may be empty) of
X which is compactly open in X;

(2) there exist a non-empty closed and compact subset K of X and a point

x0 G X such that x0 G coQ(y) for all y G X \K and K C \J Oy.
vex

Then there exists a point x £ X such that x £ co(Q(x)).

THEOREM 2 . 4 ' " " . Let X be a non-empty convex subset of a topological vector
space and Q : X —> 2X be such that

(1) for each x £ X, Q(x) is convex;

(2) for each y £ X, Q-1(y) contains a subset Oy (which may be empty) of

X which is compactly open in X;

(3) there exist a non-empty closed and compact subset K of X and a point

x0 £ X such that x0 £ Q{y) forallyeX\K and K C \J Oy.
vex

Then there exists a point x £ X such that x £ Q{x).

SKETCH OF P R O O F S :

(1) Theorem 2.4 => Theorem 2.4': Define <j>,ij> : X x X -> R by

[ 1 , i

I o, i

HxeQ(y),

if xiQ(y).

(2) Theorem 2.4' =J> Theorem 2.4: Define P,Q : X -> 2X by P(y) = {x £ X :
<}>{x,y) > 0} and Q(y) = {x £ X : rf>(x,y) > 0} for each y £ X respectively. D

(3) Theorem 2.4' <!=> Theorem 2.4" <=> Theorem 2.4'" is obvious. D

(4) Theorem 2.4" = ^ Theorem 2.4"": Define P : X -> 2X by P(x) = {y £ X :

x £ Oy} for each x £ X. U

(5) Theorem 2.4"" = > Theorem 2.4": For each y £ X, let Oy = P - 1 ( y ) . D

(6) Theorem 2.4"" <=> Theorem2.4"'": Obvious. D
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Theorem 2.4"" generalises Theorem 1 of Browder [4] and of Tarafdar [19] in several
aspects. Theorem 2.4"" also improves Theorems 2, 3 and 4 of Metha-Tarafdar in [15]
which are due to Ben-El-Mechaiekh, Deguire and Granas [1] and Border [2]. Theorem
2.4'"" generalises Theorem 1 of Yannelis [25] in the following ways: (1) the convex set
X need not be closed, (2) the given topological vector space need not be Hausdorff and
(3) for each y £ X, the set Q-1{y) need not be open in X.

A subset of a topological space X is called a k-test set if its intersection with each
non-empty compact set C in X is closed in C. A topological space X is called a k-space
if each k-test set is closed (or equivalently, a subset B of X is open in X if and only if B
is compactly open in X, for example see Wilansky, [24, p.142] or Dugundji [9, p.248]).
In Theorem 2.4', for each y £ X, the set P~1(y) is required to be compactly open in
X, while in Border [2], Browder [4], Ding and Tan [6], Ben-El-Mechaiekh, Deguire and
Granas [1], Metha-Tarafar [15], Tarafdar [19], Yannelis [25], the set P - 1(y) is required
to be open in X. This generalisation would be vacuous if every topological vector space
is a k-space. However, this is not the case: the topological vector space R.11 is not a k-
space (for example, see Kelley [13, p.240] or Wilansky [24, p.143]). Therefore Theorem
2.4' is a true generalisation of Theorem 2 of Ding and Tan [7].

3. EXISTENCE OF MAXIMAL ELEMENTS

LEMMA 3 . 1 . Let X be a regular topological vector space and Y be a non-empty
subset of a vector space E. Let 6 : X —» E and P : X —* 2 be L$yc-niajorised. If
each open subset of X containing the set B = {x £ X : P(x) ^ 0} is paracompact,
then there exists a correspondence <j> : X —> 2 of class Lgtc such that P(x) C <f>(x)
for each x £ X.

PROOF: Since P is Z^c-majorised, for each x £ B, let Nx be an open neighbour-
hood of x in X and ij)xi<l>x : X —* 2Y be such that (1) for each z £ Nx, P(z) C <f>x(z)
and 6(z) £ co(<f>x(z)); (2) for each z £ X, i>x(z) C (j>x(z) and co(<f>x(z)) C Y; (3)
for each y £ Y, V'^1(y) is compactly open in X and (4) for each finite subset A of
B , {z £ n ** •• n co{4>x{z)) ? 0} = {z £ n *. •• n «#*(*) ) ^ 0}. since

i£A xEA z£A x€A

X is regular, for each x £ B there exists an open neighbourhood Gx of x in X such
that clxGx C Nx. Let G — \J Gx, then G is an open subset of X which contains

B = {x £ X : P{x) ^ 0} so that G is paracompact by assumption. By Theorem
VIII.1.4 of Dugundji [9, p.162], the open covering {Gx} of G has an open precise
neighbourhood-finite refinement {G'x}. Given any x £ B, we define rp'x,</>',.: G -* 2Y

by

f cotj>x(z), if z £ G D clxG'x, f co<f>x(z), if z £ G n clxG'x,
vAz) — S <PAz) = \

' {Y, if z £ G \ clxG'x, 'K [Y, itz£G\ clxGx,
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then we have

(i) by (2), for each z G G, # ( * ) C # ( * ) ,
(ii) by (4), {z G G : # ( z ) ^ 0} = {z G G : # ( z ) ^ 0} and

(iii) for each y E F, ( ^ i ) " 1 ^ ) = {z G G : y G # ( z ) } = {z G G D c/xG'x : y G
# ( * ) } U {z E G \ clxG'x : y G # ( * ) } = {z G G n c/^G', : y G eo*.(*)} U
{z G G \ c i x (? i : y G r } = [(G n cZjrG'J n M " 1 ^ ) ) ] U (G \ cfrG'.) =

It follows that for each non-empty compact subset C of X, (V^)" (j/) CI C =

fGn(coV J ! )~ 1 (y)nG^ U ( ( G \ c ! x G ' J n C ) is open in C by (3) and Lemma 5.1 of

Yannelis and Prabhakar in [26]. Now define il>,<f> : X —> by

{ J
I 0, if z G X \ G; I 0, if z G X \ G.

Let z G X be given, Clearly (2) implies ^(z) C <A(z) and co<f>(z) CY. If z £ X\G,
then <j>{z) = 0 so that 6{z) £ co<f>(z); if z G G, then z G GncZjtG^. for some x e B so
that ^'j.(z) = co<px(z) and hence ^(z) C co<f>x(z). As 0(z) ^ co^^z) by (1) we must
have 9(z) £ co<j>{z). Therefore 0(z) £ co<f>(z) for all z G X. Now we show that for each
y G Y, ip~1(y) is compactly open in X. Indeed, let y G Y be such that tp~1(y) ^ 0 and
C be a compact subset of X; fix an arbitrary u G ip~1(y)<lC — {z G X : y G rp(z)}DC =
{z G G : j / G V"(z)} •"• G. Since {G'r} is a neighbourhood-finite refinement, there exists
an open neighbourhood Mu of u in G such that {x E B : Mu PI G'r ^ 0} — {xi, • • • ,xn}.
Note that for each x £ B with z £ { x i , - - , «n} , 0 = Mu D G'x = Mu n ci^Gi so

that V'(z) = Y for all z G Mt t . Thus we have V(z) - fl V-U^) = fl 1>'x.(z) for all
*6B t=l *

z G Mt t . It follows that V " 1 ^ ) = {z G X : y G 1>{z)} = {z G G : y G f| V-U^)} =>

{z G Mu : y G fl ^(«)} = {z E Mtt : y G f| ^.(z)} = Mu n {z G G : y G

PI # , » } = Mu n [ fl (^.)"1(»)]. But Mi = Mu n [ fl K J - ^ y ) ] n G is an open
t'=l i=l i=l
neighbourhood of u in C such that M'u C V'~1(j/) •"• G since (V"!;) (l/) is compactly
open in X. This shows that for each y G Y, '0~1(y) is compactly open in X. Next
we claim {z G X : <£(z) ^ 0} = {z G X : V(«) 7̂  0}- Indeed, for each w G X
with ^(to) 7̂  0, we must have w & G. Since {G1,.} is neighbourhood-finite, the set
{x G J5 : w G cZjtG'J is finite, say, = M , - • • ,a:^} so that if JC ^ {zi ,- • • , a ; ^ } , then

m
.̂ and <f>'x(w) = i>'x(w) = Y. Thus we have <f>(w) = f) (j>'x[w) = Q co<j>x,{w)

B i '

and V(w) = fl *l>'x(w) = D c°4>x'Xw)- S i n c e w G Pi rfjfG,< C n Nx>.y it follows
»=1 • t = l * t = l '
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from (4) that il>{w) ^ 0. Hence {z £ X : <j>{z) £ 0} C {z £ X : V(*) + 0}.
Conversely, (2) implies that {z £ X : i>{z) ^ 0} C {z G X : <f>(z) ^ 0}. Therefore
{z 6 X : ij>(z) ^ 9} = {z e X : <j>(z) ^ 0}. This shows that <f> is class of L$lC. To
complete the proof, it remains to show that P(z) C 4>{.z) f°r each z £ X. Indeed, let
z £ X with P(z) ^ 0. Note then z £ G. For each x £ B, if z G G \ clxG'x, then
^U*) = Y D P(z) and if z G G f~l clxG'x, we have z G cljcG^ C clxGx C JV* so that
by (1), P(z) C <£*(z) C &.(*)• J t follows that P(z) C ^ ( z ) f o r e a c h x E B so that

noc n ̂ '.w = ̂ w- D
Lemma 3.1 generahses Lemma 2 of Ding and Tan [7] which in turn generalises

Lemma 2 of Ding, Kim and Tan [8] and Proposition 1 of Tuleca [22].

THEOREM 3 . 2 . Let X be a non-empty convex subset of a topological vector
space and Q : X —» 2X be of class LjXtc- Suppose that there exist a non-empty
closed and compact subset K of X and a point XQ G X such that xo G coQ(y) for all
y G X\K. Then there exists a point x£K such that Q(x) = 0.

PROOF: If the conclusion were false, then for each x G K, Q[x) ^ 0. Since
Q is of class LiXtc, let P : X —• 2X be a correspondence such that (a) for each
x G X, P{x) C Q{x), (b) for each y G X, p~1(y) is compactly open in X and (c)
{x £ X : p(x) =£ 0} = {x G X : Q(x) ^ 0 } . By Theorem 2.4", there exists a point
x £ X such that x £ coQ(x) which contradicts that Q is of class LIXIC- Therefore
the conclusion must hold. U

THEOREM 3 . 3 . Let X be a non-empty pa.ra.compa.ct convex subset of a topolog-
ical vector space and P : X —> 2X be LjXtc-majorised. Suppose that there exist a
non-empty closed and compact subset K ofX and a point XQ £ X such that xo £ coP(y)
for each y £ X \ K. Then there exists a point x £ K such that P{x) — 0.

PROOF: Suppose that the conclusion does not hold, then P{x) ^ 0 for all x £ X
and hence the set {x £ X : P{x) ^ 0} = X is paracompact. By Lemma 3.1, there exists
a correspondence <j>: X —> 2 of class LjXtc such that for each x £ X, P{x) C <j>(x).
Note that x0 £ coP(y) C co<j>(y) for all y £ X \ K. By Theorem 3.2, there exists a
point x £ K such that 4>{x) = 0 so that P(x) = 0 which is a contradiction. Therefore,
there exists a point x £ K, such that P(x) — %. D

Theorem 3 generalises Theorem 5 of Ding and Tan [7] which in turn generalises
Corollary 1 of Borglin and Keiding [3], Theorem 2.2 of Toussaint [21], Theorem 2 of
Tulcea [22] and Corollary 5.1 of Yannelis and Prabhakar [26].

4. EQUILIBRIUM EXISTENCE THEOREMS IN TOPOLOGICAL VECTOR SPACES

Let I be a (possibly infinite) set of agents. For each i £ I, let its choice or strategy
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set X,- be a non-empty subset of a topological vector space. Let X = \\ X{. For

each i £ / , let Pi : X —> 2X' be a correspondence. Following the notion of Gale and
Mas-Colell in [12], the collection F = (Xi,Pi)ieI will be called a qualitative game. A
point x £ X is said to be an equilibrium of the game F if Pi(x) — 0 for all i £ J .
For each * £ J . let Ai be subset of Xi. Then for each fixed k £ I, we define

[I Aj <g> Ak = {x = (xi)i€l : Xi £ At for all i £ 7}.
iei,

A generalised game (abstract economy) is a family of quadruples F =
{Xi\ Ai,Bi\Pi)i€I where / is a (finite or infinite) set of players (agents) such that
for each i G / , Xi is a non-empty subset of a topological vector space and Ai,Bi : X =
Yl Xj —» 2X' are constraint correspondences and Pi : X —> 2X' is a preference corre-

spondence. When I — {1, • • • , N} where N is a positive integer, F = (Xi; Ai, Bi\ ^t),-6/
is also called an JV-person game. An equilibrium of F is a point x £ X such that
for each t £ I, £i = 7Tj(z) G Bi(x) and Ai(x) fl Pi(x) = 0. We remark that when
Bi(x) = clx{Bi(x) (which is the case when Bi has a closed graph in X x X,; in par-
ticular, when clBi is upper semicontinuous with closed values), our definition of an
equilibrium point coincides with that of Ding, Kim and Tan [8]; and if in addition,
Ai — Bi for each t G / , our definition of an equilibrium point coincides with the stan-
dard definition; for example in Borglin and Keiding [3], Tulcea [22] and Yannelis and
Prabhakar [26].

As an application of Theorem 3.2, we have the folowing existence theorem of an
equilibrium point for a one-person game.

THEOREM 4 . 1 . Let X be a non-empty convex subset of a topological vector
space. Let A,B,P : X -> 2X be such that

(i) for each x G X, A(x) is non-empty and co(A(x)) C B(x);
(ii) for each y G X, A~l(y) is compactly open in X;
(iii) AH P is of class Lc;
(iv) there exist a non-empty closed and compact subset K of X and a point

x0 G X such that x0 G co(A(y) n P(y)) for all y G X \ K.

Then there exists a point x G K such that x G i?(z) and A(x) D P{x) - 0.

PROOF: Let M = {x e X : x £ B(z )} , then M is open in X. Define <f>: X -> 2X

by
j A(x)nP(x), iix^M,

<p(x) = <
\ A{x), itxeM.

Since A (~\ P is of class Lc, for each x £ X, x £ co(A(x) D P(x)) and there exists a
correspondence fi : X -> 2X such that (a) for each x £ X , 0(x) C A(x) H P(x), (b)
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for each y G X , /3~1(y) is compactly open in X and (c) {x G X : /3(x) ^ 0} — {x G
X : A(x) n P(z) ^ 0}. Now define t), : X -» 2X by

J /3(z), if z g M,

\ A(x), if z G M.

Then clearly for each z G X , V>(z) C <£(*) and {x G X : i/>(x) ^ 0} = {z G X : c£(z) ^
0}. If y G X , then it is easy to see il>~1(y) = (M U/3-1(y)) n J4—1 (y) and is compactly
open in X by (ii) and (b). Finally, if z G M, then z ^ B(x), it follows from (i) that
x ^ coA{x) = co<f>(x), and if x ^ M , then z £ co(A(z) D P(x)) = co<f>(x) by (i). This
shows that <j> is of class Lc • By (iv), zo G co^(y) for all y G X \ K. Hence <f> satisfies
all hypotheses of Theorem 3.2.Thus there exists a point z G K such that <f>{x) = 0;
since for each x £ X, A(x) ^ ill, we must have z G B{x) and A(x) D P(z) = 0. U

As an application of Theorem 3.3, we have the following

THEOREM 4 . 2 . Let T = (Xi,Pi)ieI be a qualitative game such that X - \[ Xi

is paracompact. Suppose the following conditions are satisfied:

(a) X,- is a non-empty convex subset of a topological vector space for each

t e / ;
(b) Pi : X —» 2X' is Lc-majorised for each i G I;

(c) U {z G X : Pi(x) £ 0} = U tn<jc{z G X : /^(z) ^ 0} ;

(d) there exist a non-empty closed and compact subset K of X and a point

x0 = (as?)t.€/ G X such that z? G coPj(y) for all i e I and all y e X\K.

Then F has an equilibrium point in K.

PROOF: For each z G X , let I(x) = {i G / : Pi(z) ^ 0}. Define a correspondence
P : X -> 2^ by

n <W ()
P(x) = I <e/(-)

[0, if/(z) = 0,
where P/(z) = [ ] x i ® pi(x) f o r e a c h x£X. Then for each z G X , P(x) ^ 0 if and

only if I(x) ^ 0. We shall show that P is £c-majorised. For each x E X with P(x) ^ 0,

by (c) let i(z) G J be such that z G in<x{* G X : Pi(x){z) ^ 0} and by (b) let N{x)

be an open neighbourhood of z in X and ^i(z),^j(z) : -^ —» 2 X ' be correspondences

such that (i) for each z G N(x), P^x){z) C <j>i(x)(z) and z,-(s) ^ co^i(I)(z); (ii) for each

z G X, V'iCaoW C &(*)(*); (ni) for each y G X,(a.), ^ ) ( y ) is compactly open in X; (iv)

for each finite subset { z i , . . . , z n } of {z G X : P(x) ^ 0} with *(zi) = ••• = *(zn),

{̂  G n N(Xj) : n c < ( }(*) ^ 0} = {2 G fi JV^) : f| co<f>i( Jz) ± 0}.
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Without loss of generality we may assume that N(x) C intx{z €E X : P,-(,.)(z) ^ 0}
so that Pj(z)(z) ^ 0 and hence i(x) G I(z) for all z G N(x). Let x € X be such

that P(z) ^ 0; define # ( l ) , ^ ( l ) : X -» 2 * by #•<,,(*) = fl * , • «
ie/()

and 4>'-tx\(z) = \\ Xj <S) co<f>ifx\(z) for each x G X, then we have: (a ' ) for each

z G N(x), by (i), P{z) = PI <=<(*) C eoJ$.j(*) = n * j ® <=oPi(x)(z) C
i€/(z) i6/,

I ] Xj ® co<t>i(x)(z) = # ( l ) ( z ) and 2i(a!) £ «>#, }(z); (b ' ) for each z G X , by

(«), ^ ( , ) (* ) C «%>(*); (c ' ) for each y € X , ( ^ . ^ " ' ( y ) - ( c o ^ ) ) " 1 (yi(,)) is

compactly open in X by (iii) and Lemma 5.1 in [26]; (d ' ) for any finite subset A of

{a; G X : P{x) ^ 0}, let U{7(x) : x G ^4} = { i i , . . . ,**} where »i,--- , u are all

distinct and for each t = I , - - ,k let J44 = { i 6 4 : t(z) = i t } . Note that for each

z G x, n «<(,)(*) = n n ^ ® ̂ .wt^ = n n ^- ® ( n e^-)(*)).
i ( )

so tha t for each z G f] N(x), if Q ccnjj^, Jz) = 0 , then there exists TO G { I , - - - ,fc}
x£A z£A

such that P| ca0j(,.)(z) = 0; it follows from (iv) that Q co^t-(s)(z) = 0. Thus

n «>*:•(.)(*) = n n ^ ® w ^ ) ( ^ = n n -̂ ® ( n «^.-(-)(«)) = 0.

fact together with (b ' ) , we conclude that

{z G f | J\r(*) : f l c*4>i(x)(z) ? 0} = {z G f | iV(x) : f | cc<Ai(l;)(z) ^ 0}.
x€A

This shows that P is Zc-majorised. Moreover, by assumption, there exist a non-empty
closed and compact subset K of X and x° = ( « i ) i e / G X such that x° G coPj(y) for
all i G / and for all y G X \ iif so that x° G coP^y) for all » G / and for all y G X \ K

and hence i ° G f| coP-(y) = P(y) for all y G X \ A". By Theorem 3.3, there exists

an x € X such that P (z ) = 0. This implies that / ( z ) = 0 and therefore P<(z) = 0 for

alliG/. D

Theorem 4.2 improves Theorem 7 of Ding and Tan [7]. In Theorem 4.2, if X<

is compact for each i G / , then X = JJ X< is also compact. By letting K = X,

the condition (4) of Theorem 4.2 is satisfied trivially. Hence Theorem 4.2 generalises
Theorem 2.4 of Toussaint in [21] and Proposition 3 of Tulcea in [22] in several aspects
which in turn generalise the fixed point theorem of Gale and Mas-Colell [12].
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As an application of Theorem 4.2, we shall deduce the following equilibrium exis-
tence theorem for a non-compact generalised game with an infinite number of players.

THEOREM 4 . 3 . Let T — (Xi;Ai,Bi;Pi)ieI be a generalised game such that

X = Yl X\ JS paracompact. Suppose thai the following conditions are satisfied:
»£/

(i) for each i £ / , Xi is a non-empty convex subset of a topological vector
space;

(ii) for each i £ / and for each x £ X, Ai(x) is non-empty, coAi(x) C Bi(x);
(iii) for each i £ I and for each y £ Xi, A^(y) is compacly open in X;

(iv) for each i £ / , Ai C\ Pi is of class Lc;

(v) for each i £ / , Ei = {x £ X : Ai(x) n P<(x) ^ 0} is open in X;
(vi) there exist a non-empty closed and compact subset K of X and x° =

(z°)i6/ e X sucn thsit x°i G con(Ai(y) n pi(y)) for all i € I and for all
y<EX\K.

Then T has an equilibrium in K.

PROOF: For each i £ / , let Fi = {x £ X : Xi £ B~i(x)}, then Fi is open in X. If
i £ / , define the map Q{ : X -> 2Xi by

f (AinPi)(x)t itxtFi,
Qi(x) = i

\ Ai(x), if x £ Ft.

We shall prove that the qualitative game F = (X,-, Q;) i 6 / satisfies all hypotheses of
Theorem 4.2. Let i £ / be arbitrarily fixed. Since Ai PI P,- is of class Lc» for each
a; £ X, x 0 co(^4j(a;) fl P{(x)) and there exists a correspondence f3i : X —> 2X' such
that (a) for each x £ X, /3i(x) C ^ ( r ) H Pi(x), (b) for each j / £ Xit /3^(y) is
compactly open in X and (c) {x £ X : #(x) ^ 0} = {a; £ X : A{(x) D Pi(x) / 0}.
Define V>» = X -» 2X- by

Then for each s £ X, i>i{x) C <?i(x) and {x e X : V>i(s) ^ 0} = {x £ X : Qi(x) ± 0}.
If t/ £ X, then ^(y) — [•FtU t̂~

1(y)]Di4,"1(y) is compactly open in X. Therefore Qj is
of class Lc • We also note that for each i G / , {x £ X : Qi(x) ^ 0} = {x £ F; : Q,-(a:) ^
0}U{x £ X \ F i : Qi(x) £ 0} = Fin[(X\Fi)]n{x £ X : A ^ j n P ^ ) ^ 0} = ^ U F <
is open in X by (ii) and (v). Therefore we have that (J {x £ X : Qi(x) ^ 0} =

U m t x { ^ £ X ; Q i ( x ) ^ 0 } .

Finally, by (vi) there exist a non-empty closed and compact subset K of X and

x° = (x?)i g / in X such that x? £ coQi(x°) for all i £ / and for all y £ X \ K. By
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Theorem 4.2, there exists an x £ K such that Qi(x) — 0 for all t £ / ; by (ii) this
implies that for each i £ I, we must have xi £ Bi(x) and Ai(x) f~l Pi(x) = 0. D

In theorem 4.3, if Xi is compact for each i £ I, then X — Yl X* is al80 compact

and hence it is paracompact. Letting K = X, the assumption (vi) is satisfied trivially.

As an immediate consequence of Theorem 4.3, we have the following result:

COROLLARY 4 . 4 . Let T - (Xi; At; Ba Pi)ieI be a generalised game such that
X = Yl Xi is paracompact. Suppose that the following conditions are satisfied:

ie/
(i) for eaci t £ I, Xi is a non-empty convex subset of a topological vector

space;
(ii) for each i £ I and for each x £ X Ai(x) is non-empty and coAi(x) C

Bi(x);
(iii) for each i £ I and for each y £ Xi, A^'1(y) and Pi'1(y) are open in X;
(iv) for each i £ I and for each x £ X, a;,- ^ coPi(x);
(v) there exist a non-empty closed and compact subset K of X and x° =

(x°i)i€l £ X such that x\ £ co(Ai(y) D Pi(y)) for each i£l and for all
y£X\K.

Then T has an equilibrium in K.

PROOF: Since {x £ X : (At D Pi)(x) ± 0} = (J (Ar\y) n P^iv)) . by (iii), the
X

conditions (iii) and (v), all hypotheses of Theorem 4.3 are satisfied. By Theorem 4.3
the conclusion follows. D

Corollary 4.4 generalises Theorem 2.5 of Toussaint in [21], Corollary 2 of Tulcea
in [22] (also Corollary 2 in [23]) and Theorem 6.1 of Yannelis and Prabhakar in [26] to
non-compact generalised games.

5. APPROXIMATION METHOD

In this section, we shall employ the "approximation" technique used by Tulcea
[22]. As an application of Theorem 3.2, we have the following existence theorem of
"approximate" equilibrium point for a one-person game:

THEOREM 5 . 1 . Let X be a non-empty convex subset of a topological vector
space. Let A,B,P : X -> 2X be such that

(i) A is lower semicontinuous such that for each x £ X, A(x) is non-empty
and coA(x) C B(x);

(ii) Af) P is of class Lc;

(iii) tiiere exist a non-empty closed and compact subset K of X and XQ £ X
such that for each y £ X \ K, x0 £ co(A(y) D P(y)).
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Then for each open convex neighbourhood V of zero in E, the one person game
{X;A,B\r]P) has an equilibrium point in K, that is, there exists a point xy £ K
such that xv € ~B^{xv) and A(xv) D P{xv) = 0, where Bv{x) = {B(x) + V) D X for
each x £ X .

PROOF: Let V be an open convex neighbourhood of zero in E. Define the corre-
spondence AV,BV : X -> 2X by Av{x) = (A(x) + V)nX, Bv{x) = (B{x) + V) n X
for each x £ X. Then Av has an open graph in X X X by (i) and Lemma 4.1
of Chang [5] (or see [22, p.7]) such that for each x £ X, Av(x) C Bv{x). Let
Fv = {x £ X : x £ B~v~{x)}, then F is open in X. Define * v : X -> 2X by

• (

A(x)nP(x), iixiFv,

Av{x), ifxeFv.

By (ii), since A(~\ P is of class Lc, for each x £ X, x £ co(A(x) fl P{x)) and there
exists a correspondence /? : X —> 2X such that (a") for each x £ X, (i{x) C .A(a;)nP(:c),
(b) for each y £ X, /?~1(y) is compactly open in X and (c) {x £ X : /3(x) ^ 0} = {a; £
X; A(x) n P(x) ^ 0}. Define *v : X -» 2X by

\ Av, if

Then clearly for each x £ X, *v(s) C *v(z) and {z £ X : $v(a;) ^ 0} = {x £ A" :
#v(as) 7̂  0}- If y £ X , then it is easy to see ^ ( y ) = {x £ Fv : y £ iv(as)} U {x £
X \ Fv : 2/ £ /3(x)} = [Fv U P'1^)] fl Av

J(y) is compactly open in X by (c) and
the fact that Ay has an open graph. Therefore \Pv is of class Lc • Finally by (iii),
there exist a non-empty closed and compact subset K of X and xo £ X such that
x0 £ co(A(y) f) P(y)) C co(*v(l/)) for all y £ X \ K. Then by Theorem 3.2, there
exists x £ K such that ^v(*) = 0- Since for each x £ X, A(x) ^ 0, we must have
that x £ By(i) and A(x) D -P(x) = 0; that is, the one person game (X; A, By; P) has
an equilibrium point in K. D

As an application of Theorem 4.2, we have the following existence theorem of an
"approximate" equilibrium point for an abstract economy:

THEOREM 5 . 2 . Let Q = (Xi; Ai,Bt; Pi)ieI be an abstract economy such that
X = Yi Xi is paracompact. Suppose the following conditions are satisfied:

iei

(a) for each i £ I, Xj is a non-empty convex subset of a topological vector
space Ei;

(b) for each i £ I, Ai : X —* 2X' is lower semicontinuous such that for each
x £ X, Ai(x) is non-empty and coA^x) C Bi(x);

https://doi.org/10.1017/S0004972700015318 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015318


[17] A minimax inequality 499

(c) for each t G / , Aid Pi is of class Lc;
(d) for each i e I, the set E{ - {x G X; (At l~l Pi)(x) ^ 0} is open in X;
(e) there exist a non-empty closed and compact subset K of X and x° G X

such that for each y G X \ K, x? G co(Ai(y) D Pi(y)) for all i G / .

Then given any V = J~J Vi where for each i £ I, Vi is an open convex neighbourhood
i6/

of zero in Ei, there exists a point x\r = (xv{)ieI G K such that xy{ G Bv-^v) and

Ai(xv) n Pi{xv) = 0 for each i G / .

PROOF: Let V = JJ Vi be given where for each i G / , V< is an open convex

neighbourhood of zero in Ei. Fix any t G / , define the maps -AVJ, J?vi : -^ —* %Xi hy
ylv.(x) = {coAi(x) + Vi) D -X"i and B v ^ ) = (-Bj(x) + Vi) fl X< for each x £ X. Then
Av, has an open graph in X x X; by (b) and Lemma 4.1 of Chang [5] (or see [22, p.7]),
so that coAv{ • X —> 2jr« has an open graph which in turn implies A\rt is also lower
semicontinuous. Let Fvt — {x G X : ZJ ^ 5 ^ ( 1 ) } , then FVJ is open in X. Define the
map QVi : X -» 2*« by

We shall show that the qualitative game T = (Xi,£?v;) i g / satisfies the hypotheses of
Theorem 4.2. First for each i G / , the set {x G X : Qv,(x) ^ 0} = FVi U {x G X \ Fi :

{Ai n POC*) ^ 0 } = JVi U [(FvJ D E{] = FVi U £!* is open in X by (d).

Given any i £ I, since AiHPi is of class Lc, for each x G X, x $ co( Ai(x) l~l -P^1))
and there exists a correspondence /3j : X —+ 2Jf* such that (a) for each x G X, Pi(x) C
i4j(x) n Pi{x), (b) for each j / G X, /3t

r l(y) is compactly open in X and (c) {x G X :

Pi(x) £ 0} = {x G X : Ai(x) n P;(x) ^ 0}. Define $ v . : X -» 2^ ' by

\ Av;., ilxEFVi,

then clearly for each x G X, *vj(*) C <?v;(x) and {x G X : $v,(x) 7̂  0} = {x G X :

Qvi(x) ^ 0}. If y G X, then it is easy to see * ^ ( y ) = {x G Fv, : y G AVi(x)} U {x G

X \ FVi : y G ft(x)} = [FVi U/S"1^)] D ^ ^ ( y ) is compactly open in X by (b) and the

fact that Avi has an open graph. Therefore, Qvt is of class Lc • Together with (e),

the qualitative game T = (Xi,Qv,)i€l satisfies all the hypotheses of Theorem 4.2, so

that by Theorem 4.2, there exists a point xy = (xv;) t€ / G K such that QvS?v) = 0

for all i G / . For each i E I, since Ai(x) is non-empty, we must have xvt G By^xv)

and Aiixv) D Pi(xv) = 0. D
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LEMMA 5 . 3 . Let X be a topological space, Y be a non-empty subset of & topo-

logical vector space E, B be a base for the zero neighbourhoods in E and B : X —> 2Y.

For each V £ B, let Bv : X -+ 2 y be defined by Bv(x) = (B(x) + V)nY for each

x £ X. IfxeX and y £ Y are such that y £ f| ~B^(x), then y £ ~B(x).
V€B

PROOF: Suppose y £ B{x), then (x,y) £ clxXY GraphB. Let U be an open

neighbourhood of x in X and V £ B be such that

(*) (U x(y + V)) 0 Graphs = 0.

Choose W £ B such that W -W CV. Since y £ B~^(x) by assumption, (x,y) £

cZxxr G r a p h s so that (U X (y + W)) H GraphB^ + 0- Take any x € U and

W! £ W with (x,y + wi) £ Graph£w so that y + wi £ Bw(x) = (B(x) + W)C\Y.

Let z £ B(x) and w? £ W be such that y + W\ — z + W2 £ Y. It follows that

z = y + w1-w2£y + W-WCy + V so that (y + V)nB(x) ^ 0 where i£[f. This

contradicts (•). Thus we must have y £ B(x). D

We shall now obtain the following equilibrium existence theorem of a generalised

game in locally convex topological vector spaces:

THEOREM 5 . 4 . Let G - (Xi;Ai,Bi;Pi)ieI be an abstract economy such that

X = \\ Xi is paracompact. Suppose the following conditions are satisfied:
i€l

(a) for each i £ I, Xi is a non-empty convex subset of a locally convex

Hausdorff topological vector space Ei;

(b) for each i £ I, Ai : X —> 2X' is lower semicontinuous and Bi : X —» 2X'

such that for each x £ X, A,(z) is non-empty and coAi(x) C Bi(x);

(c) for each i £ I, Ai C\ Pi is of class Lc',

(d) for each i £ I, the set Ei = {x £ X; (Ai D Pi){x) ^ 0} is open in X;

(e) there exist a non-empty compact subset K of X and x° £ X such that

x°t £ co(Ai{y) n Pi{y)) for all i £ I and for all y £ X \K.

Then there exists an x = (^t).e/ € K such that xi £ Bi(x) and Ai(x) (1 P%(x) = 0 for

each i £ I.

PROOF: For each i £ I, let Bi be the collection of all open convex neighbourhoods

of zero in Ei and B = JJBi. Given any V £ B, let V = l\Vi where Vi £ Bi for
t'6/ 16/

each i £ I. By Theorem 5.2, there exists a xy £ K such that xy{ £ Bv{{xv) and

Ai(xv) n Pi(xv) = 0 for each i £ I, where BVi(x) = (Bi(x) + Vi) D Xi for each

x £ X. It follows that the set Qv = {x € K : z,- £ B~^(x) and Ai(x) D P,(z) = 0} is a

non-empty closed and hence compact subset of K by condition (d).

Now we want to prove (Qv)ves ^las ̂ e ^r"*e intersection property. Let
{V*i, • • • , Vn} be any finite subset of B. For each » = 1, • • • ,n, let Vi = Yi V*

ji
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Vij £ Bi for each j £ I; let V = II ( f\ Vij) . then Qv ^ 0. Clearly Qv C (\ Qv{
j€I \i=l J t=l

n

so that f| Qv; ^ 0- Therefore the family {Qv : V £ B} has the finite intersection
i=i

property. Since K is compact, f] Qv ^ 0. Now take any x E f] Qv, then for each
V€B V€B

i 6 / , xi £ i fy(z) for each Vi E Bi and ;!,•(£) n Pj(z) = 0. By Lemma 5.3, for each
iei, xi eTTi(x). D

COROLLARY 5 . 5 . Let Q = (Xi\ Ai,Bi) Pi)i^j be an abstract economy such that
X = Y\ Xi is pa.ra.compa.ct. Suppose the following conditions are satisfied:

i€I

(a) for each i £ I, Xi is a non-empty convex subset of a locally convex
Hausdorff topological vector space;

(b) for each i £ I, Ai : X —> 2Xi has an open graph (respectively, is lower
semicontinuous) and Bi : X —» 2Xi is such that for each x € X, Ai(x) is
non-empty and coAi(x) C Sj (x) ;

(c) for each i 6 / , Pi : X —» 2 • is lower semicontinuous (respectively, has
an open graph);

(d) for each i £ I, Ai PI Pi is of class Lc ]
(e) there exist a non-empty closed compact subset K of X and x° £ X such

that x°i £ co(Ai(y) n P<(y)) for all i £ / and all y £ X \ K.

Then Q has an equilibrium point in K, that is, there exists a point x £ X such that

for each i £ / , Xi £ B~(x) and Ai(x) fl Pi(x) = 0.

PROOF: Since Ai has an open graph (respectively, is lower semicontinuous) and P,

is lower semicontinuous (respectively, has an open graph), the map Ai fl Pi : X —» 2Xi

is also lower semicontinuous by Lemma 4.2 of [25], so that the set Ex — {x £ X :

Ai(x) fl Pi(x) ^ 0} is an open subset of X. Therefore all conditions of Theorem 5.4 are
satisfied so that Q has an equilibrium point in K. 0

By Corolary 5.5, we have the following:

COROLLARY 5 . 6 . Let Q — (X<; Ai,Bi; P«)<6/ ^ e a n a ^ s ' r a c * economy. Suppose
the following conditions are satisfied:

(a) for each i £ / , Xi is a non-empty compact convex subset of a locally

convex Hausdorff topological vector space;

(b) for each i £ / , Ai : X := Y[ X, —> 2X' has an open graph (respectively,

is lower semicontinuous) and Bi : X —» 2X' is such that for each x £ X,
Ai(x) is non-empty and coAi(x) C Bi(x);

(c) for each i £ I, Pi : X —* 2Xi is lower semicontinuous (respectively, has
an open graph);
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(d) for each i £ I, Ai H Pi is of class Lc •

Then Q has an equilibrium point in X, that is, there exists a point x £ X such that
for each i £ / , xt £ ~B~i{x) and Ai(x) n P;(z) = 0.

Corollary 5.6 (and hence also Corollary 5.5 and Theorem 5.4) generalises Corollary
3 of Borglin and Keiding [3, p.315], Theorem 4.1 of Chang [5, p.247] and Theorem of
Shafer and Sonnenschein [16, p.374] in several aspects.

Finally, we pose the following:

QUESTION. In Theorems 4.3, 5.2 and 5.4 and Corollary 5.5, can the condition "for each
i £ I, Ai D P; is of class Lc" be replaced by the weaker condition "for each i £ I,
Ai D Pi is Zc-majorised"?
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