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ULRICH IDEALS AND MODULES OVER
TWO-DIMENSIONAL RATIONAL SINGULARITIES

SHIRO GOTO, KAZUHO OZEKI, RYO TAKAHASHI,

KEI-ICHI WATANABE and KEN-ICHI YOSHIDA

Abstract. The main aim of this paper is to classify Ulrich ideals and Ulrich

modules over two-dimensional Gorenstein rational singularities (rational double

points) from a geometric point of view. To achieve this purpose, we introduce

the notion of (weakly) special Cohen–Macaulay modules with respect to ideals,

and study the relationship between those modules and Ulrich modules with

respect to good ideals.
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§1. Introduction

In the paper [GOTWY] we established the theory of Ulrich ideals and

modules with a generalized form. The classical concept of Ulrich modules,

or maximally generated maximal Cohen–Macaulay modules (MGMCM

modules), was introduced by [U, BHU]. In our language, MGMCM modules
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are just Ulrich modules with respect to the maximal ideal. For instance,

any indecomposable nonfree maximal Cohen–Macaulay module over a

hypersurface local ring of multiplicity (degree) 2 is an MGMCM module.

While they are very few MGMCM modules in general, our Ulrich modules

include many more members than MGMCM modules.

To state the main results, let us begin with the definition of Ulrich ideals

and modules. Let A be a Cohen–Macaulay local ring with maximal ideal

m and d= dimA> 0, and let I ⊂A be an m-primary ideal. For simplicity,

we assume that I contains a parameter ideal Q= (a1, a2, . . . , ad) of A as a

reduction, that is, Ir+1 =QIr for some integer r > 1.

Definition 1.1. We say that I is an Ulrich ideal of A if it satisfies the

following conditions:

(1) I2 =QI;

(2) I/I2 is a free A/I-module.

Let XA denote the set of all Ulrich ideals that are not parameter ideals.

For instance, (A,m) is a Cohen–Macaulay local ring of maximal embed-

ding dimension [Sa] if and only if m is an Ulrich ideal.

Definition 1.2. Let M be a nonzero finitely generated A-module, and

let I ⊂A be an m-primary ideal. Then we say that M is an Ulrich A-module

with respect to I, if the following conditions are satisfied:

(1) M is a maximal Cohen–Macaulay A-module;

(2) e0I(M) = `A(M/IM);

(3) M/IM is A/I-free.

Here, e0I(M) denotes the multiplicity of M with respect to I and `A(M/IM)

denotes the length of the A-module M/IM .

In [GOTWY], we proved that all higher syzygy modules SyziA(A/I) of

an Ulrich ideal I are Ulrich modules with respect to I. Moreover, if A is of

finite Cohen Macaulay (CM) representation type, then XA is a finite set.

Recall here that a Cohen–Macaulay local ring is said to be of finite CM-

representation type if there are only a finite number of isomorphism classes

of indecomposable maximal Cohen–Macaulay A-modules. Thus, we consider

the following natural question.
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Problem 1.3. Let (A,m) be a Cohen–Macaulay local ring of finite CM-

representation type.

(1) Classify all Ulrich ideals I of A.

(2) Classify all Ulrich A-modules with respect to a given m-primary ideal

I.

(3) Determine all m-primary ideals I so that there exists an Ulrich A-

module with respect to I.

In [GOTWY, Section 9], we gave an answer to the problem as above in the

case of a one-dimensional Gorenstein local ring of finite CM-representation

type by using techniques from representation theory of maximal Cohen–

Macaulay modules. We want to give a complete answer to the question as

above in the case of a two-dimensional Gorenstein local ring of finite CM-

representation type. It is well known that two-dimensional Gorenstein local

rings of finite CM-representation type (over an algebraically closed field of

characteristic 0) are two-dimensional Gorenstein rational singularities.

Let us explain the organization of the paper. In Section 3, we introduce

the notion of weakly special Cohen–Macaulay modules; let A be a Cohen–

Macaulay local domain, and let I ⊂A be an m-primary ideal. A maximal

Cohen–Macaulay A-module M is called a weakly special Cohen–Macaulay

A-module with respect to I if µA(M) = 2 · rankAM and M/IM is A/I-

free, where µA(M) denotes the cardinality of a minimal set of generators of

M ; see Definition 3.1. Then we prove that M is an Ulrich A-module with

respect to I and I is a good ideal (see Section 2) if and only if M is a weakly

special Cohen–Macaulay A-module with respect to I for a Gorenstein local

domain A and a nonparameter m-primary stable ideal I; see Theorem 3.2 for

details. As an application, we give a partial answer to the Problem 1.3(3).

This implies that I is an Ulrich ideal if and only if there exists an Ulrich

A-module with respect to I for any two-dimensional Gorenstein rational

singularity.

In Section 4, we modify the notion of special Cohen–Macaulay A-

modules introduced by Wunram [Wu1] (see also [Ito, IW]). Let A be a two-

dimensional rational singularity, and let M be a maximal Cohen–Macaulay

A-module without free summands. Then M is a special Cohen–Macaulay

A-module with respect to I if and only if Ext1A(M, A) = 0 and M/IM is

A/I-free; see Definition 4.5. Special Cohen–Macaulay A-modules are weakly
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special Cohen–MacaulayA-modules (but the converse is not true in general).

The main result in this section is the following theorem, which gives a

criterion for I (resp. Z) to be a special ideal (resp. a special cycle) in terms

of cycles.

Theorem 4.10. Let (A,m) be a two-dimensional complete local normal

domain with rational singularity having the minimal resolution of singular-

ities with the exceptional divisor E =
⋃r
i=1 Ej. Let Z =

∑r
j=1 ajEj 6= Z0 be

an anti-nef cycle on the minimal resolution X → SpecA, and put I = IZ .

Let Z0 =
∑r

j=1 njEj denote the fundamental cycle on X. Let Mi be an

indecomposable maximal Cohen–Macaulay A-module so that c1(M̃i)Ej =

δi,j, 1 6 i, j 6 r; see Theorem–Definition 4 for details. Then the following

conditions are equivalent for every i, 1 6 i6 r.

(1) Mi is a special Cohen–Macaulay A-module with respect to I.

(2) ai = ni · `A(A/I).

(3) There exist positive cycles 0< Ys 6 · · ·6 Y1 6 Z0 and anti-nef cycles

Z1, . . . , Zs so that Zk = Zk−1 + Yk for each k = 1, . . . , s and

Zk−1 · Yk = 0, pa(Yk) = 0 and coeffEiYk = ni

for every k = 1, 2, . . . , s,

where coeffEiW stands for the coefficient of Ei in a cycle W .

When this is the case, `A(A/I) = s+ 1 and every Ik := IZk
is a special ideal.

Moreover, for every k = 1, 2, . . . , s, we obtain that Supp(Yk) is connected,

Supp(Yk)⊂ ∪{Ej ⊂ Supp(Yk−1) | EjZk−1 = 0}, and Yk is the fundamental

cycle on Supp(Yk).

In Section 5, we give a complete list of Ulrich ideals and Ulrich modules

with respect to some ideal I for any two-dimensional Gorenstein rational

Cohen–Macaulay singularity. The main tools are the Riemann–Roch for-

mula, the McKay correspondence and results in Section 4. The following

theorem is the main result in this paper.

Theorem 1.4. Let A be a two-dimensional Gorenstein rational singu-

larity. Then the set XA of all nonparameter Ulrich ideals is given by the

following.
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(A2m) {(x, y, z), (x, y2, z), . . . , (x, ym, z)}.

(A2m+1) {(x, y, z), (x, y2, z), . . . , (x, ym+1, z)}.

(D2m) {(x, y, z), (x, y2, z), . . . , (x, ym−1, z),

(x+
√
−1ym−1, ym, z), (x−

√
−1ym−1, ym, z), (x2, y, z)}.

(D2m+1) {(x, y, z), (x, y2, z), . . . , (x, ym, z), (x2, y, z)}.

(E6) {(x, y, z), (x, y2, z)}.

(E7) {(x, y, z), (x, y2, z), (x, y3, z)}.

(E8) {(x, y, z), (x, y2, z)}.

In Section 6, we discuss Ulrich ideals of two-dimensional non-Gorenstein

rational singularities. We show that any Ulrich ideal is integrally closed

and is represented on the minimal resolution of singularities, and also is

a special ideal in the sense of Section 4. For instance, any non-Gorenstein

cyclic quotient singularity admits a unique Ulrich ideal, that is, the maximal

ideal (see also Section 7).

§2. Preliminaries

2.1 Ulrich ideals and modules

First we recall the notion of good ideals in a Gorenstein local ring.

Definition 2.1. (See [GIW].) Suppose that A is a Gorenstein local

ring. Let I ⊂A be a nonparameter m-primary ideal. If I2 =QI holds for

some minimal reduction Q of I, then I is called a stable ideal. If I is stable

and Q : I = I, then I is called a good ideal. An m-primary stable ideal I is

good if and only if e0I(A) = 2 · `A(A/I).

An Ulrich ideal in a Gorenstein local ring is always a good ideal.

Proposition 2.2. (See [GOTWY, Lemma 2.3, Corollary 2.6].) Let A

be a d-dimensional Cohen–Macaulay local ring, and let I ⊂A be a non-

parameter m-primary ideal. Then we have the following.

(1) Suppose that I is stable. Then e0I(A) 6 (µA(I)− d+ 1) · `A(A/I).

Equality holds if and only if I is an Ulrich ideal.

(2) Suppose that A is Gorenstein. Then the following conditions are

equivalent:
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(a) I is an Ulrich ideal;

(b) I is a good ideal and µA(I) = d+ 1;

(c) I is a good ideal and A/I is Gorenstein.

Let us give two typical examples of Ulrich ideals.

Example 2.3. It is well known that µA(m) 6 e0m(A) + dimA− 1 holds

true [Ab]. Equality holds if and only if the maximal ideal m is stable (see

[Sa]). Then A is said to have maximal embedding dimension. By 2.2(1), m

is an Ulrich ideal if and only if A has maximal embedding dimension.

Suppose that A is a two-dimensional hypersurface of degree 2. Then the

maximal ideal m is an Ulrich ideal. Moreover, a power mk is a good ideal

but not an Ulrich ideal for all k > 2.

Example 2.4. Let A= k[[x0, x1, . . . , xd]]/(x
n0
0 + · · ·+ xnd

d ) be a diag-

onal hypersurface. Suppose that n0 = 2m is even. Then (xm0 , x
k1
1 , . . . , x

kd
d )

is an Ulrich ideal for every 1 6 ki 6 bni
2 c (i= 1, 2, . . . , d).

The following theorem gives a relationship between Ulrich ideals and

Ulrich modules with respect to ideals.

Theorem 2.5. (Cf. [GOTWY, Theorem 4.1].) Let A be a Cohen–

Macaulay local ring of dimension d. Then the following conditions are

equivalent:

(1) I is a nonparameter Ulrich ideal;

(2) SyziA(A/I) is an Ulrich A-module with respect to I for all i> d.

Note that there exists a non-Ulrich ideal I so that SyziA(A/I) is an Ulrich

A-module with respect to I (see, e.g., Examples 3.7, 3.8).

On the other hand, we can construct new Ulrich modules from a given

Ulrich module by the following theorem.

Theorem 2.6. (See also [GOTWY, Lemma 4.2, Theorem 5.1].)

Suppose that A is a Cohen–Macaulay local ring of dimension d which

admits a canonical module KA. Assume that I is an Ulrich ideal with

µ(I)> d and M is an Ulrich A-module with respect to I. Then:

(1) Syz1A(M) is an Ulrich A-module with respect to I;

(2) M∨ = HomA(M, KA) is an Ulrich A-module with respect to I.
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2.2 Two-dimensional rational singularities

Throughout this subsection, let A be a two-dimensional complete normal

local domain with unique maximal ideal m containing an algebraically closed

field k of characteristic 0, unless otherwise specified. (Many results in this

paper hold true if k is an algebraically closed field of positive characteristic.

For simplicity, we assume that k has characteristic 0.) Moreover, assume that

A has a rational singularity, that is, there exists a resolution of singularities

ϕ :X → SpecA with H1(X,OX) = 0 (see [Li1, Li2]). A typical example of

rational singularities is a quotient singularity. Moreover, (two-dimensional)

Gorenstein rational singularities are called rational double points, which are

hypersurfaces of degree 2.

Positive cycles, anti-nef cycles. In what follows, let ϕ :X → SpecA be

a resolution of singularities with E = ϕ−1(m) the exceptional divisor. Let

E =
⋃r
i=1 Ei be the decomposition into irreducible components of E. In

the set C =
∑r

i=1 ZEi of cycles supported on E, we define a partial order

6 as follows: for Z, Z ′ ∈ C, Z 6 Z ′ if every coefficient of Ei in Z ′ − Z is

nonnegative. A cycle Z =
∑r

i=1 aiEi is called positive, denoted by Z > 0, if

0 6 Z and Z 6= 0.

On the other hand, a positive cycle Z =
∑

i=1 aiEi is said to be anti-nef

if ZEi 6 0 for every i= 1, . . . , r, where ZY denotes the intersection number

of Z and Y .

Virtual genus. Since the intersection matrix [EiEj ]16i,j6r is negative

definite, there exists the unique Q-divisor KX , the canonical divisor, so

that the equation

pa(Ei) :=
E2
i + KXEi

2
+ 1 = 0

holds for every i= 1, . . . , r. If E2
i = KXEi =−1, then Ei ∼= P1 is called a

(−1)-curve. We say that X is a minimal resolution if X contains no (−1)-

curve. Such a resolution is unique up to isomorphism. Moreover, for any

positive cycle Y > 0, we put

pa(Y ) =
Y 2 +KXY

2
+ 1,

which is called the virtual genus of Y . One can easily see that

pa(Y + Y ′) = pa(Y ) + pa(Y
′) + Y Y ′ − 1.
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Furthermore, it is well known that if A is a rational singularity then pa(Z) 6
0 holds true for every positive cycle Z [Ar, Proposition 1].

Dual graph. In what follows, assume that ϕ :X → SpecA is the minimal

resolution of singularities with ϕ−1(m) =
⋃r
i=1 Ei. Then the dual graph Γ of

ϕ is a simple graph with the vertex set {Ei}ri=1 and the edge defined by the

following:

the edge Ei − Ej exists (resp. does not exist) if and only if

EiEj = 1 (resp. EiEj = 0).

For instance, we have the following example:

Γ =
E2

g
E3

g
E4

g
E5

g
E6

gE1

g

(E1E4 = E2E3 = E3E4 = E4E5 = E5E6 = 1, EiEj = 0 (others).)

Let Y =
∑r

j=1 ajEj be a positive cycle on X. Then we put Supp(Y ) =

∪{Ei | ai > 0}, the support of Y . Such a set is called connected if the induced

subgraph is connected. Note that if Y is positive and pa(Y ) = 0 then Y is

connected.

Integrally closed ideal. Let I be an m-primary ideal of A. An element

z ∈A is said to be integral over I if an equation

zn + c1z
n−1 + · · ·+ cn = 0

holds for some positive integer n and ci ∈ Ii for each i= 1, 2, . . . , n. The set

of all elements z that are integral over I forms an ideal containing I. This

ideal is called the integral closure of I denoted by I. An ideal I is said to

be integrally closed if I = I.

Now suppose that I is integrally closed. Then I is said to be represented

on X if there exists an anti-nef cycle Z with support in E so that IOX =

OX(−Z) and I = H0(X,OX(−Z)). Then we denote such an ideal I by I =

IZ . The product of two integrally closed ideals of A is also integrally closed

[Li1, Theorem 7.1]. There is a one-to-one correspondence between the set of

integrally closed m-primary ideals of A that are represented on X and the

set of anti-nef cycles Z =
∑r

i=1 aiEi on X (see, e.g., [Li1, Section 18]).

Good ideal. Now we recall the notion of good ideals of rational singulari-

ties.
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Definition 2.7. Let I be an m-primary ideal of A. Then I is called

good if I is represented on the minimal resolution of singularities.

Notice that this definition is different from that of Definition 2.1.

However, for any m-primary ideal I of a two-dimensional Gorenstein rational

singularity, I is good in the sense of Definition 2.1 if and only if it is good

in the sense of Definition 2.7 (see also [GIW, Theorem 7.8] or [WY]).

Notice that (1), (2) can be easily seen from the definition.

Lemma 2.8. (Cf. [GIW, Section 7].) Let A be a two-dimensional (not

necessarily Gorenstein) rational singularity, and let ϕ :X → SpecA denote

the minimal resolution of singularities. Then we have the following.

(1) The minimum element (say, Z0) among all non-zero anti-nef cycles on

X exists. This cycle Z0 is called the fundamental cycle on X which cor-

responds to the maximal ideal m. In particular, m = H0(X,OX(−Z0))

is a good ideal.

(2) If I = H0(X,OX(−Z)) and J = H0(X,OX(−Z ′)) are good ideals of A,

then IJ = H0(X,OX(−(Z + Z ′))) is also a good ideal.

(3) Suppose that Z is an anti-nef cycle on X. If I = H0(X,OX(−Z)), then

e0I(A) =−Z2.

The colength `A(A/I) can also be determined by the anti-nef cycle Z (see

the Riemann–Roch formula (Lemma 4.12)).

§3. Weakly special Cohen–Macaulay modules over Gorenstein

local domains

Throughout this section, let A be a Gorenstein local domain, and let

I ⊂A be a nonparameter m-primary ideal, unless otherwise specified. In

this section, we introduce the notion of weakly special Cohen–Macaulay

modules, which are closely related to Ulrich modules.

Definition 3.1. (Weakly special CM module, ideal) Let A be a

Cohen–Macaulay local domain, and let M be a maximal Cohen–Macaulay

A-module. If M satisfies µA(M) = 2 · rankAM and M/IM is A/I-free, then

M is called a weakly special Cohen–Macaulay A-module with respect to I.

Suppose that I ⊂A is a stable ideal. If there exists a weakly special

Cohen–Macaulay A-module with respect to I, then I is called a weakly

special ideal of A.
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Now suppose that A is a Gorenstein local ring. Let I ⊂A be a stable m-

primary ideal with minimal reduction Q. Then as I ⊆Q : I, we have I/Q⊆
(Q : I)/Q∼=KA/I . Hence,

e0I(A) = `A(A/Q) 6 `A(A/I) + `(KA/I) = 2 · `A(A/I),

where the last equality follows from the Matlis duality theorem. Note that

equality holds if and only if I is a good ideal.

The following theorem is the main result in this section.

Theorem 3.2. Suppose that A is a Gorenstein local domain and I is

a stable ideal of A. Let M be a maximal Cohen–Macaulay A-module. Then

the following condition are equivalent:

(1) M is an Ulrich A-module with respect to I, and I is a good ideal;

(2) M is a weakly special Cohen–Macaulay A-module with respect to I.

Proof of Theorem 3.2. We may assume that M/IM is A/I-free. Thus,

`A(M/IM) = µA(M) · `A(A/I).

(1) =⇒ (2): By assumption we have

`A(M/IM) = e0I(M) = e0I(A) · rankAM = 2 · `A(A/I) · rankAM,

where the second equality follows from the associativity formula of multi-

plicities (e.g. [Ma, Theorem 14.8]). It follows from the above two equalities

that µA(M) = 2 · rankAM . Thus, M is a weakly special Cohen–Macaulay

A-module with respect to I.

(2) =⇒ (1): Since M is a maximal Cohen–Macaulay A-module, we have

`A(M/IM) 6 e0I(M).

On the other hand, by the observation and the equality described above, we

get

`A(M/IM)=µA(M) · `A(A/I) = 2 · rankAM · `A(A/I)

>e0I(A) · rankAM = e0I(M).

Therefore, `A(M/IM) = e0I(M) and e0I(A) = 2 · `A(A/I). That is, M is an

Ulrich A-module with respect to I and I is a good ideal.
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Corollary 3.3. Suppose that A is a Gorenstein local domain. If I is

an Ulrich ideal, then it is a weakly special ideal.

Proof. If I is an Ulrich ideal, then it is a good ideal by Proposition 2.2,

and M = SyzdimA
A (A/I) is an Ulrich A-module with respect to I by

Theorem 2.5. By Theorem 3.2, M is a weakly special Cohen–Macaulay A-

module with respect to I. Hence, I is a weakly special ideal, as required.

Proposition 3.4. Suppose that A is a hypersurface local domain. Then

I ⊂A is an Ulrich ideal if and only if it is a weakly special ideal.

Proof. It suffices to prove the “if” part. Now suppose that I is a weakly

special ideal. Take a weakly special Cohen–Macaulay A-module M with

respect to I. By Theorem 3.2, M is an Ulrich A-module with respect to I.

Since A is a hypersurface and M is a maximal Cohen–Macaulay A-module

without free summands, we have a minimal free presentation Aµ→Aµ→
M → 0, which induces an exact sequence

(A/Q)µ→ (A/Q)µ
f−→M/QM → 0.

As M/QM =M/IM is A/I-free, we have M/QM ∼= (A/I)µ. It is easy to

observe that the kernel of f is isomorphic to (I/Q)µ. Hence, there is a sur-

jection (A/Q)µ→ (I/Q)µ, which shows µA(I/Q) 6 1. Thus, µA(I) = d+ 1,

and hence Proposition 2.2 implies that I is an Ulrich ideal.

The following corollary gives a partial answer to Problem 1.3.

Corollary 3.5. Suppose that A is a hypersurface local domain, and

I ⊂A is a good ideal. If there exists an Ulrich A-module with respect to I,

then I is an Ulrich ideal.

Proof. The assertion follows from Theorem 3.2 and Proposition 3.4.

Question 3.6. Let A be a Gorenstein local domain, and let I ⊂A be a

stable ideal. Suppose that there exists an Ulrich A-module M with respect

to I. Is then I an Ulrich ideal (especially, a good ideal)?

The next example shows that we cannot remove the assumption that I

is stable in Question 3.6.

Example 3.7. Let k be a field, and let e> 3 be an integer. Set A=

k[[te, te+1]] and M = (te, te+1)e−1. Then A is a hypersurface local domain

and M is an Ulrich A-module with respect to m = (te, te+1), the maximal

ideal of A. However, m is not stable.
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The next example shows that we cannot relax the assumption that A is

a local domain in Question 3.6.

Example 3.8. Let k be a field, and let a, e be integers with 2a > e >

a> 2. Set A= k[[t]]/(te), and I = (ta). Then I2 = 0 but I 6= 0 : I = (te−a).

Hence, I is stable but not good. Then te−aA∼=A/I is an Ulrich A-module

with respect to I.

§4. Special Cohen–Macaulay modules over two-dimensional

rational singularities

Throughout this section, let (A,m) be a two-dimensional complete normal

local domain with an algebraically closed residue field k of characteristic

zero. Let ϕ :X → SpecA be the minimal resolution of singularities, with

E = ϕ−1(m) the exceptional divisor. Let E =
⋃r
j=1 Ej be the decomposition

into irreducible components of E. Let I ⊂A be an m-primary ideal, and

let Q be a minimal reduction of I. For every maximal Cohen–Macaulay

A-module M , we put M̃ = ϕ∗(M)/torsion.

First, we recall the notion of special Cohen–Macaulay modules.

Theorem–Definition. [Special McKay correspondence due to Wun-

ram] Assume that A is a rational singularity, and let ϕ :X → SpecA be as

above. For every i, there exists a unique indecomposable maximal Cohen–

Macaulay A-module Mi (up to isomorphism) with H1(M̃i
∨

) = 0, so that

c1(M̃i)Ej = δij

for every 1 6 i, j 6 r and rankAMi = ni, where c1(M̃) denotes the first

Chern class of M̃ and Z0 =
∑r

j=1 njEj denotes the fundamental cycle on

X.

Based upon this theorem, we define a (nontrivial) special Cohen–

Macaulay A-module, which has been defined in more general settings.

Definition 4.1. (Special CM module) Suppose that A is a two-

dimensional rational singularity. Let M be a maximal Cohen–Macaulay

A-module. Then M is called a special Cohen–Macaulay A-module if M is

isomorphic to a finite direct sum of M1, . . . , Mr.

Remark 4.2. Let KA denote the canonical module of A. A maximal

Cohen–Macaulay A-module M is said to be a special Cohen–Macaulay A-

module if M ⊗A KA/torsion is Cohen–Macaulay. This condition is equiva-

lent to Ext1A(M, A) = 0 (see [IW]). In particular, any free A-module or any
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maximal Cohen–Macaulay module over a Gorenstein local domain A is a

special Cohen–Macaulay A-module in this sense. However, in this paper,

we use the notion of special Cohen–Macaulay modules for two-dimensional

rational singularities only.

Iyama and Wemyss [IW] proved the following characterization of special

Cohen–Macaulay modules.

Proposition 4.3. (Cf. [IW, Theorem 3.6].) Suppose that A is a two-

dimensional rational singularity. Let M be a maximal Cohen–Macaulay A-

module without free summands. Then M is a special Cohen–Macaulay A-

module if and only if Syz1A(M)∼=M∗, where M∗ = HomA(M, A).

Remark 4.4. Suppose that A is a Gorenstein rational singularity, that

is, A is a rational double point. Then any maximal Cohen–Macaulay A-

module is a finite direct sum of free modules and special Cohen–Macaulay

A-modules.

As in the case of Ulrich modules, we define a special CM module with

respect to an Ulrich ideal I.

Definition 4.5. (Special CM module with respect to I) Suppose that

A is a two-dimensional rational singularity with unique maximal ideal m,

and let I ⊂A be an m-primary ideal. A finitely generated A-module M is

called a special Cohen–Macaulay A-module with respect to I if the following

conditions are satisfied:

(1) M is a special Cohen–Macaulay A-module, that is, Syz1A(M)∼=M∗;

(2) M/IM is A/I-free.

Any special Cohen–Macaulay A-module is a weakly special Cohen–

Macaulay A-module in the sense of 2.1, but we believe that the converse is

not true in general.

Lemma 4.6. Suppose that A is a two-dimensional rational singularity.

Let M be a maximal Cohen–Macaulay A-module. Then:

(1) if M is a special Cohen–Macaulay A-module with respect to I, then it

is a weakly special Cohen–Macaulay A-module with respect to I;

(2) when rankAM = 1, the converse of (1) holds true.
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Proof. (1) Suppose that M is a special Cohen–Macaulay A-module. Then

we have the following exact sequence:

0→M∗→An→M → 0,

where n= µA(M). This yields µA(M) = rankAM + rankAM
∗ =

2 · rankAM .

(2) Take an ideal J ⊂A that is isomorphic to M . Then htJ = 1 and A/J

is Cohen–Macaulay. It suffices to show that Syz1A(J)∼= J∗.

As µA(J) = 2 · rankA J = 2, we can write J = (x, y). Then

Syz1A(J)∼=
{[

α
β

]
∈A2

∣∣∣∣ αx+ βy = 0

}
∼= (x) : y ∼= J∗.

Hence, M ∼= J is a special Cohen–Macaulay A-module with respect to I.

[Wu1, Example 1] is a weakly special Cohen–Macaulay R-module of rank

2 which is not special. After submitting the previous version of this paper,

Yusuke Nakajima and the anonymous referee showed us such a concrete

example [Na, Example 3.6, Example A.5]. See the example below.

Remark 4.7. Let k be an algebraically closed field of characteristic 0,

and let G be the group

G=

〈(
i 0
0 −i

)
,

(
0 i
i 0

)
,

(
ξ6 0
0 ξ6

)〉
= D5,2 ⊂GL(2, k),

where i (resp. ξ6) is a primitive fourth (resp. sixth) root of unity (see [Ri]).

Let S = k[[s, t]] be the formal power series ring over k, and let A= SG be

the invariant subring of S. Then the AR quiver of A (see, e.g., [Y]) is the

following (see, e.g., [IW, Example 4.6] and [Na, Example 3.6]).

A

M10

M10

M10

@
@
@RH
Hj

�
�*

�
�
��

M22

�
�
��

��
�*

H
HHj@
@
@R

M01

M10

M31

M41

@
@@RH
Hj

�
�*

�
�
��

M20

�
�
��

��
�*

H
HHj@
@
@R

M02

M12

M32

M42

@
@@RH
Hj

�
�*

�
�
��

M21

�
�
��

��
�*

H
HHj@
@
@R

A

M10

M10

M10

Then all indecomposable special Cohen–Macaulay modules of A are M02,

M11, M31 and M41 (see [IW, Example 4.6]). In particular, M2,2 is an

indecomposable maximal Cohen–Macaulay A-module which is not special.
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On the other hand, µA(M22) = 4 and rankAM22 = 2 by [Na, Example A.5].

Hence, M22 is weakly special but not special (with respect to m).

Next, we introduce the notion of special ideals.

Definition 4.8. (Special ideal) An m-primary ideal I ⊂A is called a

special ideal if it is a good ideal (cf. Definition 2.7) and there exists a special

Cohen–Macaulay A-module M (equivalently, Mj for some j) with respect

to I. When this is the case, such a cycle Z is called a special cycle.

In the rest of this section, we give a characterization of special ideals in

terms of cycles. Before doing that, we need the following lemma, which also

plays an important role in Section 6.

Let Z =
∑r

i=1 aiEi and W =
∑r

i=1 biEi be anti-nef cycles on X. Put

inf(Z, W ) =
∑r

i=1 inf(ai, bi)Ei, then one can easily see that inf(Z, W ) is

also an anti-nef cycle on X.

Lemma 4.9. Assume that Z 6= Z0 is an anti-nef cycle on X. Then we can

find the following anti-nef cycles Z1, . . . , Zs and positive cycles Y1, . . . , Ys
so that 0< Ys 6 Ys−1 6 · · ·6 Y1 6 Z0:

(4.9.1)



Z = Zs = Zs−1 + Ys,
Zs−1 = Zs−2 + Ys−1,

...
Z2 = Z1 + Y2,
Z1 = Z0 + Y1,

where Z0 denotes the fundamental cycle on X.

Proof. We can take an integer s> 1 such that Z 66 sZ0 and Z 6 (s+

1)Z0. Put Zk = inf(Z, (k + 1)Z0) for every k = 1, . . . , s. Then Z1, . . . , Zs
are anti-nef cycles. In particular, Z0 6 Z1 6 Z2 6 · · ·6 Zs = Z. Moreover,

if we put Yk = Zk − Zk−1 for every k = 1, . . . , s, then we can obtain the

required sequence.

Under the notation as in Lemma 4.9, we put Ik = IZk
=H0(X,OX(−Zk))

for every k = 0, 1, . . . , s. Then each Ik is a good ideal and

I = Is ⊂ Is−1 ⊂ · · · ⊂ I1 ⊂ I0 = m.

The following theorem is the main theorem in this section, which gives a

criterion for I = IZ to be a special ideal in terms of cycles.
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Theorem 4.10. Let Z =
∑r

j=1 ajEj 6= Z0 be an anti-nef cycle on the

minimal resolution X → SpecA, and put I = IZ . Let Z0 =
∑r

j=1 njEj
denote the fundamental cycle on X. Suppose that 1 6 i6 r. Then the

following conditions are equivalent:

(1) Mi is a special Cohen–Macaulay A-module with respect to I;

(2) ai = ni · `A(A/I);

(3) there exist positive cycles 0< Ys 6 · · ·6 Y1 6 Z0 and anti-nef cycles

Z1, . . . , Zs so that Zk = Zk−1 + Yk for each k = 1, . . . , s and

Zk−1 · Yk = 0, pa(Yk) = 0 and coeffEiYk = ni

for every k = 1, 2, . . . , s,

where coeffEiW stands for the coefficient of Ei in a cycle W .

When this is the case, `A(A/I) = s+ 1 and every Ik := IZk
is a special ideal.

Moreover, for every k = 1, 2, . . . , s, we obtain that Supp(Yk) is given as one

of the connected components of ∪{Ej ⊂ Supp(Yk−1) | EjZk−1 = 0}, and Yk
is the fundamental cycle on Supp(Yk).

Remark 4.11. Y + Z is not necessarily anti-nef even if Y is the

fundamental cycle on X that satisfies pa(Y ) = 0 and Y Z = 0.

Let us begin the proof of Theorem 4.10. The following formula is one of

the main tools in this paper.

Lemma 4.12. (Kato’s Riemann–Roch formula; [Ka, WY]) Let Z be an

anti-nef cycle on the minimal resolution of singularities X, and put IZ =

H0(X,OX(−Z)). Then for any maximal Cohen–Macaulay A-module M , we

have

`A(M/IZM) = rankAM · `A(A/IZ) + c1(M̃)Z.

In particular,

`A(A/IZ) =−Z
2 +KXZ

2
= 1− pa(Z).

The next lemma easily follows from Lemma 4.12.

Lemma 4.13. Under the notation as in Theorem 4.10, we have

`A(A/Ik) = `A(A/Ik−1)− YkZk−1 + 1− pa(Yk).
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Proof. By Lemma 4.12, we have

`A(A/Ik)=1− pa(Zk) = 1− pa(Zk−1 + Yk)

=1− pa(Zk−1)− pa(Yk)− YkZk−1 + 1

=`A(A/Ik−1)− YkZk−1 + 1− pa(Yk),

as required.

The following lemma is a key lemma in the proof of the theorem.

Lemma 4.14. Under the notation as in Theorem 4.10, we have

(1) ai 6 ni · `A(A/I);

(2) equality holds in (1) if and only if Mi is a special Cohen–Macaulay

A-module with respect to I.

Proof. By Kato’s Riemann–Roch formula, we have

`A(Mi/IMi) = rankAMi · `A(A/I) + c1(M̃i) · Z = ni · `A(A/I) + ai.

On the other hand, µA(Mi) = 2ni because Mi is a special Cohen–Macaulay

A-module (with respect to m). Hence,

`A(Mi/IMi) 6 µA(Mi) · `A(A/I) = 2ni · `A(A/I).

Therefore, ai 6 ni · `A(A/I) and equality holds true if and only if Mi/IMi

is A/I-free, which means that Mi is a special Cohen–Macaulay A-module

with respect to I.

Proof of Theorem 4.10. (1) ⇐⇒ (2) follows from Lemma 4.14.

(2) =⇒ (3): Choose anti-nef cycles Z1, . . . , Zs and positive cycles

Y1, . . . , Ys that satisfy the condition of Lemma 4.9. For these Yis and Zis,

we use induction on s. By Lemma 4.13, we have

ni · `A(A/I)− coeffEiZ

= ni {`A(A/Is−1)− YsZs−1 + 1− pa(Ys)} − coeffEiZs−1 − coeffEiYs

= {ni · `A(A/Is−1)− coeffEiZs−1}+ ni(−YsZs−1) + ni(−pa(Ys))

+ {ni − coeffEiYs} .

By the induction hypothesis, ni · `A(A/Is−1)− coeffEiZs−1 > 0. Since Zs−1
is anti-nef, −YsZs−1 > 0. As A is rational, −pa(Ys) > 0. By the choice of Ys,
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ni − coeffEiYs > 0. Hence, we obtain the required inequality, and equality

holds if and only if

ni · `A(A/Is−1) = coeffEiZs−1,

YsZs−1 = pa(Ys) = 0 and ni = coeffEiYs.

Therefore, the assertion follows from the induction hypothesis. We can prove

the converse (3) =⇒ (2) similarly.

Now suppose that one of (1), (2), (3) holds. The induction hypothesis

implies that Is−1 is a special ideal with `(A/Is−1) = s, Supp(Yk) is con-

nected, Supp(Yk)⊂ ∪{Ej | EjZk−1 = 0} and Yk is the fundamental cycle on

Supp(Yk) for every k = 1, . . . , s− 1. Then it follows from Lemma 4.13 that

`(A/Is) = `(A/Is−1) + 1 = s+ 1. As YsZs−1 = 0, it follows that Supp(Ys)⊂
∪{Ej | EjZs−1 = 0}. Moreover, since pa(Ys) = 0, Ys must be connected.

Let us show that Ys is the fundamental cycle on Supp(Ys). For each

Ej ⊂ Supp(Ys), YsEj = YsEj + Zs−1Ej = ZsEj 6 0. Hence, Ys is anti-nef on

Supp(Ys). If Ys is not the fundamental cycle on Supp(Ys), then there exist an

Ej ⊂ Supp(Ys) and an anti-nef cycle Y ′s on Supp(Ys) so that Ys = Y ′s + Ej .

Then

0 = pa(Ys) = pa(Y
′
s ) + pa(Ej) + Y ′sEj − 1 6 pa(Y

′
s )− 1 6−1.

This is a contradiction.

§5. Ulrich ideals and modules over rational double points

The goal of this section is to classify Ulrich ideals of any two-dimensional

Gorenstein rational singularity (rational double point) A, and to determine

all of the Ulrich A-modules with respect to those ideals.

First, we recall the definition of rational double points.

Definition 5.1. (Rational double point) Let A be a two-dimensional

complete Noetherian local ring with unique maximal ideal m containing an

algebraically closed field k. Then A is said to be a rational double point if

it is isomorphic to the hypersurface k[[x, y, z]]/(f), where f is one of the

following polynomials:

(An) z2 + x2 + yn+1 (n> 1),
(Dn) z2 + x2y + yn−1 (n> 4),
(E6) z2 + x3 + y4,
(E7) z2 + x3 + xy3,
(E8) z2 + x3 + y5.
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By flat base change, it is known that A is a two-dimensional local

Gorenstein rational singularity (of characteristic 0) if and only if the m-adic

completion Â is a rational double point in the above sense [Vi, Remarks

p.1].

The following theorem is the first main result in this section. In the latter

half of this section, we give the complete classification of Ulrich ideals and

modules as an application of the theorem.

Theorem 5.2. (See also Theorem 3.2.) Assume that A is a rational

double point of dimension 2, and let I ⊂A be a nonparameter m-primary

ideal. Suppose that M is a maximal Cohen–Macaulay A-module. Then the

following conditions are equivalent:

(1) M is an Ulrich A-module with respect to I;

(2) M is a special Cohen–Macaulay A-module with respect to I;

(3) M is a weakly special Cohen–Macaulay A-module with respect to I;

(4) M/IM is A/I-free and M has no free summands.

When this is the case, I is an Ulrich ideal and M∗ ∼= Syz1A(M) is also an

Ulrich A-module with respect to I.

In what follows, we prove Theorem 5.2. We need several lemmas.

Although the following lemma can be proved in a similar method to the

proof of Theorem 3.2, we do not need to assume that I is stable here.

Lemma 5.3. Assume that A is a rational double point of dimension 2,

and let I ⊂A be an m-primary ideal. Then e0I(A) 6 2 · `A(A/I) holds true

and equality holds if and only if I is a good ideal.

Proof. The lemma is well known, but we give a proof here for the

convenience of the reader. Let I denote the integral closure of I. Take a

minimal reduction Q of I. Then since Q is also a minimal reduction of I

and I
2

=QI, we have

I ⊂ I ⊂Q : I ⊂Q : I.

The Matlis duality theorem implies that

e0I(A)=`A(A/Q) = `A(A/I) + `A(I/Q) 6 `A(A/I) + `A(Q : I/Q)

=2 · `A(A/I),

and equality holds if and only if I =Q : I, that is, I is a good ideal.
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Almost all of the maximal Cohen–Macaulay A-modules over a hypersur-

face of multiplicity 2 can be regarded as Ulrich modules in the classical sense.

Lemma 5.4. (Cf. [HKuh, Corollary 1.4].) Let A be a hypersurface local

domain of e0m(A) = 2. Then every maximal Cohen–Macaulay A-module

without free summands satisfies µA(M) = e0m(M) = 2 · rankAM , that is, M

is an Ulrich A-module with respect to m.

Any two-dimensional rational double point A can be regarded as an

invariant subring BG, where B = k[[s, t]] is a formal power series ring over

k, and G is a finite subgroup of SL(2, k). Thus, we can apply the so-

called McKay correspondence, which is a special case of “special McKay

correspondence” (see Section 4).

Lemma 5.5. (McKay correspondence) Let A=BG as above. Then we

have the following.

(1) The ring A is of finite CM-representation type. Let {Mi}ri=0 be the set

of isomorphism classes of indecomposable maximal Cohen–Macaulay A-

modules, where M0 =A. Then B ∼=
⊕r

i=0 M
⊕ni
i , where ni = rankAMi.

(2) The fundamental cycle is given by Z0 =
∑r

j=1 njEj, so that if we

choose indices suitably, then c1(M̃i)Ej = δij for 1 6 i, j 6 r, where c1(∗)
denotes the Chern class, and M̃i = ϕ∗(Mi)/torsion. In particular, Mi

is a special Cohen–Macaulay A-module (with respect to m) for every

i= 1, 2, . . . , r.

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. (1) =⇒ (2): Since M is an Ulrich A-module with

respect to I, it has no free summands because no free module is an Ulrich

A-module with respect to I. Thus, M is an Ulrich A-module with respect

to m by Lemma 5.4, and it is also a special Cohen–Macaulay A-module

with respect to m by Lemma 5.5. Hence, M is a special Cohen–Macaulay

A-module with respect to I because M/IM is A/I-free.

(2) =⇒ (3): See Lemma 4.6.

(3) =⇒ (4): Trivial.

(4) =⇒ (1): By Lemma 5.4, M is a weakly special Cohen–Macaulay A-

module with respect to I. Note that e0I(A) 6 2 · `A(A/I) by Lemma 5.3. By

a similar argument to the proof of Theorem 3.2, we have

`A(M/IM) = e0I(M) and e0I(A) = 2 · `A(A/I),

whence M is an Ulrich A-module with respect to I, and I is a good ideal.
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Since A is a hypersurface local domain, Proposition 3.4 implies that I

is an Ulrich ideal. In particular, A/I is Gorenstein. Thus, application of

Theorem 2.6 yields that M∗ ∼= Syz1A(M) is also an Ulrich A-module with

respect to I.

The corollary below follows from Proposition 3.4 and Theorem 5.2.

Corollary 5.6. Assume that A is a rational double point of dimension

2. Let I be an m-primary ideal. Then the following conditions are equivalent:

(1) I is an Ulrich ideal;

(2) I is a special ideal;

(3) I is a weakly special ideal;

(4) there exists an Ulrich A-module with respect to I.

In the rest of this section, we classify all Ulrich ideals and Ulrich modules

over rational double points of dimension 2 using the results in the previous

section.

Let {Mi}ri=0 be the set of indecomposable maximal Cohen–Macaulay A-

modules, so that M0 =A and c1(M̃i)Ej = δij for all 1 6 i, j 6 r.

Now suppose that M is an Ulrich A-module with respect to I. Then M

is a finite direct sum of M1, . . . , Mr:

M ∼=M⊕k11 ⊕ · · · ⊕M⊕krr ,

because M has no free summands. Whenever ki > 0, Mi must be an Ulrich

A-module with respect to I. Hence, it suffices to characterize all Mi that

are Ulrich A-modules with respect to I. On the other hand, Theorem 5.2

implies that I is an Ulrich ideal, whence I is a special ideal. Thus, those

ideals I (or cycles Z) are determined by Theorem 4.10. Moreover, it is not

difficult to determine all Mi that are Ulrich A-modules with respect to IZ
by Theorem 5.2.

Let I be a good ideal of A, and let Z be an anti-nef cycle on the minimal

resolution X such that IOX =OX(−Z) and I = H0(X,OX(−Z)), that is,

I = IZ . Then we call Z an Ulrich cycle if I is an Ulrich ideal. Note that by

Corollary 5.6, Z is an Ulrich cycle if and only if it is a special cycle.

Now let us illustrate the main theorem by the following example. Let

Z = 2E1 + 3E2 + 4E3 + 3E4 + 2E5 + 2E6 be the cycle of the rational double

point A= k[[x, y, z]]/(x3 + y4 + z2), and put I = H0(X,OX(−Z)). Then
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since Z is an anti-nef cycle on the minimal resolution X → SpecA with

support in E =
⋃6
i=1 Ei, Z can be described as follows.

Z =
2

E1

g 3

E2

g 4

E3

g 3

E4

g 2

E5

g
2

E6

g

Furthermore, by Theorem 4.10(2), Mi is an Ulrich A-module with respect to

I if and only if i= 1 or 5, because Z0 = E1 + 2E2 + 3E3 + 2E4 + E5 + 2E6

and `A(A/I) = 2. In other words, any Ulrich A-module with respect to I is

given by M ∼=M⊕a1 ⊕M⊕b5 for some integers a, b> 0. We can describe this

by the following picture.

Z =
2

E1

w 3

E2

g 4

E3

g 3

E4

g 2

E5

w
2

E6

g

We are now ready to state the main theorem in this section.

Theorem 5.7. Let A be a two-dimensional rational double point. Let ϕ :

X → SpecA be the minimal resolution of singularities with E = ϕ−1(m) =⋃r
i=1 Ei, the exceptional divisor on X. Then all Ulrich cycles Zk of A and

all indecomposable Ulrich A-modules with respect to Ik = H0(X,OX(−Zk))
are given by the following.

• (An) x2 + yn+1 + z2

When n= 2m, the complete list of all Ulrich cycles is given by the

following:

Zk =
1g 2g · · ·

kg k + 1w k + 1w · · ·
k + 1w k + 1w kg · · ·

2g 1g︸ ︷︷ ︸
n − 2k

for k = 0, 1, . . . , m− 1(= n
2 − 1). Then `A(A/Ik) = k + 1 for each k =

0, 1, . . . , m− 1.

When n= 2m+ 1, the complete list of all Ulrich cycles is given by the

following:

Zk =
1g 2g · · ·

kg k + 1w k + 1w · · ·
k + 1w k + 1w kg · · ·

2g 1g︸ ︷︷ ︸
n − 2k

for k = 0, 1, . . . , m(= n−1
2 ). Then `A(A/Ik) = k + 1 for each k =

0, 1, . . . , m.
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• (Dn) x2y + yn−1 + z2 (n> 4)

When n= 2m, the complete list of all Ulrich cycles is given by the

following:

Zk =
1g 2g 3g · · ·

2k + 2w · · ·
2k + 2w��

@@

w
w

k + 1

k + 1︸ ︷︷ ︸
n − 2k − 3

for k = 0, 1, . . . , m− 2(= n−4
2 ).

Zm−1 =
1g 2g 3g · · ·

2m − 3g 2m − 2g��
@@

g
w

m

m − 1

Z ′m−1 =
1g 2g 3g · · ·

2m − 3g 2m − 2g��
@@

w
g

m − 1

m

Z ′2 =
2w 2g 2g · · ·

2g 2 g��
@@

g
g

1

1

Then `A(A/Ik) = k + 1 for each k = 0, 1, . . . , m− 2, `A(A/Im−1) =

`A(A/I ′m−1) =m and `A(A/I ′2) = 2, where m= n
2 .

When n= 2m+ 1, the complete list of all Ulrich cycles is given by the

following:

Zk =
1g 2g 3g · · ·

2k + 2w · · ·
2k + 2w��

@@

w
w

k + 1

k + 1︸ ︷︷ ︸
n − 2k − 3

for k = 0, 1, . . . , m− 2(= n−5
2 ).

Zm−1 =
1g 2g 3g · · · g 2m − 2g 2m − 1g��

@@

w
w

m

m

Z ′2 =
2w 2g 2g · · ·

2g 2 g��
@@

g
g

1

1

Then `A(A/Ik) = k + 1 for each k = 0, 1, . . . , m− 1, and `A(A/I ′2) = 2.
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• (E6) x
3 + y4 + z2

The Ulrich cycles of A are the following Z0 and Z1 with `A(A/Ik) = k + 1

for each k = 0, 1:

Z0 =
1w 2w 3 w 2w 1w

2 w

Z1 =
2w 3g 4 g 3g 2w

2 g

• (E7) x
3 + xy3 + z2

The Ulrich cycles of A are the following Z0, Z1 and Z2 with `A(A/Ik) =

k + 1 for each k = 0, 1, 2:

Z0 =
2w 3w 4 w 3w 2w 1w

2 w

Z1 =
2g 4g 6 g 5g 4w 2w

3 g

Z2 =
2g 4g 6 g 5g 4g 3w

3 g

• (E8) x
3 + y5 + z2

The Ulrich cycles of A are the following Z0 and Z1 with `A(A/Ik) = k + 1

for each k = 0, 1:

Z0 =
2w 4w 6 w 5w 4w 3w 2w

3 w

Z1 =
4w 7g 10 g 8g 6g 4g 2g

5 g
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In our previous paper [GOTWY, Section 9], we gave a complete list of

the nonparameter Ulrich ideals for one-dimensional simple singularities. We

can also do this for two-dimensional simple singularities (rational double

points).

Corollary 5.8. With the same notation as in Theorem 5.7, the set XA
is equal to the following.

(A2m) {(x, y, z), (x, y2, z), . . . , (x, ym, z)}.

(A2m+1) {(x, y, z), (x, y2, z), . . . , (x, ym+1, z)}.

(D2m) {(x, y, z), (x, y2, z), . . . , (x, ym−1, z),
(x+

√
−1ym−1, ym, z), (x−

√
−1ym−1, ym, z), (x2, y, z)}.

(D2m+1) {(x, y, z), (x, y2, z), . . . , (x, ym, z), (x2, y, z)}.

(E6) {(x, y, z), (x, y2, z)}.

(E7) {(x, y, z), (x, y2, z), (x, y3, z)}.

(E8) {(x, y, z), (x, y2, z)}.

Proof. One can easily see that any ideal I appearing in the corollary

has the form I =Q+ (z), where Q is a parameter ideal of A and I2 =QI,

`A(A/Q) = 2 · `A(A/I) and µ(I) = 3. Hence, those ideals I are Ulrich.

On the other hand, Theorem 5.7 implies that ]XA =m (resp. m+ 1, m+

2, m+ 1, 2, 3, 2) if A is a rational double point of type (A2m) (resp. (A2m+1),

(D2m), (D2m+1), (E6), (E7), (E8)). Hence, the set as above coincides with

XA, respectively.

Proof of Theorem 5.7. We first consider the cases (E6), (E7), (E8).

The case (E6): f = x3 + y4 + z2. The fundamental cycle Z0 on the

minimal resolution is given by

Z0 =
1

E1

g 2

E2

g 3

E3

g 2

E4

g 1

E5

g
2 E6g

Now suppose that Z0 + Y is a special cycle for some positive cycle Y 6 Z0.

Since ∪{E | EZ0 = 0}=
⋃5
i=1 Ei is connected, we haveY = Y1 :=

∑5
i=1 Ei in
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Theorem 4.10(3). Conversely, if we put

Z1 = Z0 + Y1 =
2

E1

g 3

E2

g 4

E3

g 3

E4

g 2

E5

g
2 E6g

.

then Z1 is anti-nef and p(Y1) = 0 because Y1 can be regarded as the

fundamental cycle on the dual graph (of the minimal resolution) of type

(A5). Hence, Z1 is a special cycle and M is an Ulrich A-module with

respect to IZ1 if and only if it is a finite direct sum of M1 and M5, because

coeffEiY1 = ni(= 1)⇐⇒ i= 1, 5 (see Theorem 4.10).

Suppose that Z2 = Z1 + Y is a special cycle for some positive cycle

Y 6 Y1. As ∪{E ⊂ Supp(Y1) | EZ1 = 0}= E2 ∪ E3 ∪ E4 is connected, we

have that Y = E2 + E3 + E4 as the fundamental cycle on Supp(Y ) = E2 ∪
E3 ∪ E4. However, Z2 = Z1 + Y = 2E1 + 4E2 + 5E3 + 4E4 + 2E5 + 2E6 is

not anti-nef because Z2E6 = 1. Therefore, the special cycles of (E6) are

Z0 and Z1.

The case (E7): f = x3 + xy3 + z2. The fundamental cycle Z0 on the

minimal resolution is given by

Z0 =
2

E1

g 3

E2

g 4

E3

g 3

E4

g 2

E5

g 1

E6

g
2 E7g

Since ∪{E | EZ0 = 0}=
⋃7
i=2 Ei is isomorphic to the dual graph of (D6),

if Z1 = Z0 + Y is a special cycle for some positive cycle Y 6 Z0, then we

have

Y =
1

E2

g 2

E3

g 2

E4

g 2

E5

g 1

E6

g
1 E7g

:= Y1.

Conversely, one can easily see that the following Z1 is a special cycle by

Theorem 4.10.

Z1 = Z0 + Y1 =
2

E1

g 4

E2

g 6

E3

g 5

E4

g 4

E5

g 2

E6

g
3 E7g
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Note that ∪{E ⊂ Supp(Y1) | EZ1 = 0} admits two connected components:

E2

g
E3

g
E4

g
E6

g
E7g

The fundamental cycles Y2 of their components are E2 + 2E3 + E4 + E5 and

E6, respectively. Note that Z1 + E6 is anti-nef but Z1 + (E2 + 2E3 + E4 +

E5) is not anti-nef. Therefore, we are done.

The case (E8): x
3 + y5 + z2. The fundamental cycle Z0 on the minimal

resolution is given by

Z0 =
2

E1

g 4

E2

g 6

E3

g 5

E4

g 4

E5

g 3

E6

g 2

E7

g
3 E8g

Suppose that Z0 + Y is a special cycle for some positive cycle Y 6 Z0.

As ∪{E | EZ0 = 0}=
⋃
i 6=7 Ei is connected and the corresponding graph is

isomorphic to the dual graph of (E7), we have

Y =
2

E1

g 3

E2

g 4

E3

g 3

E4

g 2

E5

g 1

E6

g
2 E8g

:= Y1

Conversely, if we put

Z1 = Z0 + Y1 =
4

E1

g 7

E2

g 10

E3

g 8

E4

g 6

E5

g 4

E6

g 2

E7

g
5 E8g

then Z1 is a special cycle by Theorem 4.10.

Now suppose that Z1 + Y is a special cycle for some positive cycle

Y 6 Y1. Since ∪{E ⊂ Supp(Y1) | EZ1 = 0}= E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6 ∪ E8

is connected, we have Y = E2 + 2E3 + 2E4 + 2E5 + E6 + E8. However,

Z1 + Y is not anti-nef.

We next consider the case (An).

The case (A2m): f = x2 + y2m+1 + z2. The fundamental cycle Z0 on the

minimal resolution is given by

Z0 =
1

E1

g 1

E2

g 1

E3

g · · ·
1

En−2

g 1

En−1

g 1

En

g
That is, Z0 =

∑n
i=1 Ei.
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Now suppose that Z0 + Y is a special cycle for some positive cycle Y 6
Z0. Since ∪{E | EZ0 = 0}=

⋃n−1
i=2 Ei is connected, Y = Y1, where Y1 is the

fundamental cycle on
⋃n−1
i=2 Ei; that is, Y1 =

∑n−1
i=2 Ei. Conversely,

Z1 = Z0 + Y1 =
1

E1

g 2

E2

g 2

E3

g · · ·
2

En−2

g 2

En−1

g 1

En

g
is a special cycle by Theorem 4.10. Similarly, if we put Yk =

∑2m−k
i=k+1 Ei for

every k = 1, 2, . . . , m− 1, then we have:

(a) 0< Ym−1 < Ym−2 < · · · Y2 < Y1 6 Z0;

(b) pa(Yk) = 0 and YkZk−1 = 0 for every k = 1, . . . , m− 1;

(c) Zk = Zk−1 + Yk is anti-nef for every k = 1, . . . , m− 1;

(d) coeffEiYk = ni if and only if k + 1 6 i6 2m− k.

This produces a sequence of Ulrich ideals:

IZm−1 ⊂ IZm−2 ⊂ · · · ⊂ IZ1 = m.

We can determine Ulrich ideals in the case of (A2m+1) similarly.

Finally, we consider the case (Dn): f = x2 + xyn−3 + z2.

The case (D2m): f = x2 + xy2m−3 + z2. The fundamental cycle Z0 on the

minimal resolution of singularities is given by

Z0 =
1

E1

g 2

E2

g 2

E3

g · · ·
2

E2m−3

g 2

E2m−2

g��
@@

g
g

1

E2m−1

1

E2m

That is, Z0 = E1 + 2
∑2m−2

i=2 Ei + E2m−1 + E2m.

Now suppose that Z0 + Y is a special cycle on X for some positive cycle

Y 6 Z0. Since ∪{E | EZ0 = 0} has two connected components, we have that

Y = E1 or Y = Y1:

Y1 =
1

E3

g 2

E4

g · · ·
2

E2m−3

g 2

E2m−2

g��
@@

g
g

1

E2m−1

1

E2m

Conversely,

Z ′1 = Z0 + E1 =
2

E1

g 2

E2

g 2

E3

g · · ·
2

E2m−3

g 2

E2m−2

g��
@@

g
g

1

E2m−1

1

E2m
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and

Z1 = Z0 + Y1 =
1

E1

g 2

E2

g 3

E3

g 4

E4

g · · ·
4

E2m−3

g 4

E2m−2

g��
@@

g
g

2

E2m−1

2

E2m

are special cycles by Theorem 4.10.

Suppose that Z1 + Y is a special cycle for some positive cycle Y 6 Y1.

Since ∪{E ⊂ Supp(Y1) | EZ1 = 0} has two connected components, we have

Y = E3 or Y = Y2, where

Y2 =
1

E5

g 2

E6

g · · ·
2

E2m−3

g 2

E2m−2

g��
@@

g
g

1

E2m−1

1

E2m

Then Z1 + E3 is not anti-nef, but

Z2 =
1

E1

g 2

E2

g 3

E3

g 4

E4

g · · ·
6

E2m−3

g 6

E2m−2

g��
@@

g
g

2

E2m−1

2

E2m

is a special cycle. Similarly, if we put

Yk = E2k+1 + 2
2m−2∑
i=2k+2

Ei + E2m−1 + E2m, Zk = Zk−1 + Yk,

for each k = 1, 2, . . . , m− 2, then we have a sequence of positive cycles

0< Ym−2 < Ym−3 < · · ·< Y1 6 Z0.

By Theorem 4.10, Z0, Z1, . . . , Zm−2 are special cycles. Note that

∪{E ⊂ Supp(Ym−2) | EZm−2 = 0}= E2m−3 ∪ E2m−1 ∪ E2m

and

Zm−2 =
1

E1

g 2

E2

g 3

E3

g · · ·
2m − 3

E2m−3

g 2m − 2

E2m−2

g��
@@

g
g
m − 1

E2m−1

m − 1

E2m

By a similar argument to that above, we obtain two minimal special

cycles:

Zm−1 =
1

E1

g 2

E2

g 3

E3

g · · ·
2m − 3

E2m−3

g 2m − 2

E2m−2

g��
@@

g
g
m

E2m−1

m − 1

E2m
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Z ′m−1 =
1

E1

g 2

E2

g 3

E3

g · · ·
2m − 3

E2m−3

g 2m − 2

E2m−2

g��
@@

g
g
m − 1

E2m−1

m

E2m

The case (D2m+1). The fundamental cycle Z0 on the minimal resolution

is given by

Z0 =
1

E1

g 2

E2

g 2

E3

g · · ·
2

E2m−2

g 2

E2m−1

g��
@@

g
g

1

E2m

1

E2m+1

If we put

Yk = E2k+1 + 2
2m−1∑
i=2k+2

Ei + E2m + E2m+1,

Zk = Zk−1 + Yk =

2k+1∑
i=1

iEi + (2k + 2)

2m−1∑
i=2k+2

Ei + (k + 1)(E2m + E2m+1),

for each k = 1, . . . , m− 2, then 0< Ym−2 < · · ·< Y2 < Y1 6 Z0 are positive

cycles and Z0, Z1, . . . , Zm−2 are special cycles.

Now suppose that Zm−2 + Y is a special cycle for some positive cycle

Y 6 Ym−2. Since

∪{E ⊂ Supp(Ym−2) | EZm−2 = 0}= E2m−1 ∪ E2m ∪ E2m+1

is connected, we have that Y = E2m+1 + E2m + E2m+1.

Set Ym−1 = E2m+1 + E2m + E2m+1. Conversely, Zm−1 = Zm−2 + Ym−1 is

a special cycle by Theorem 4.10. Note that Zm−1 is the minimal one among

those special cycles.

§6. Ulrich ideals of non-Gorenstein rational singularities

In this section, we study Ulrich ideals of two-dimensional non-Gorenstein

rational singularities. Notice that the maximal ideal m is always an Ulrich

ideal of such a local ring.

We first show that any Ulrich ideal of a two-dimensional rational

singularity is a good ideal. In order to obtain a characterzation of Ulrich

ideals, we need the following definition.

Throughout this section, let (A,m) be a two-dimensional non-Gorenstein

rational singularity, and let ϕ :X → SpecA be the minimal resolution of

singularities.
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Definition 6.1. Let ϕ̃ : X̃ → SpecA be a resolution of singularities of

SpecA. Decompose ϕ̃ as ϕ̃= ϕ ◦ π, where π : X̃ →X. Let π∗Z0 denote the

pull-back of the fundamental cycle Z0 on the minimal resoluition to X̃. Then

for any anti-nef cycle Z on X̃, we put

U(Z) = (ϕ∗Z0 · Z)(pa(Z)− 1) + Z2,

where pa(Z) denotes the virtual genus of Z (see the remark below).

Theorem 6.2. Let (A,m) be a two-dimensional rational singularity. Let

I be an m-primary ideal with µA(I)> 2. Then the following conditions are

equivalent:

(1) I is an Ulrich ideal;

(2) e0I(A) = (µ(I)− 1) · `A(A/I);

(3) I is an integrally closed ideal represented on the minimal resolu-

tion of singularities ϕ :X → SpecA such that IOX =OX(−Z), I =

H0(X,OX(−Z)) and U(Z) = 0.

Proof. (1)⇐⇒ (2) follows from [GOTWY, Lemma 2.3].

(3) =⇒ (2): Any integrally closed ideal I in a two-dimensional rational

singularity is stable. Moreover, U(Z) = 0 means that e0I(A) = (µ(I)− 1) ·
`A(A/I). Thus, the assertion immediately follows from this.

(2) =⇒ (3): Since I is an Ulrich ideal by (1), we have that I =Q : I for any

minimal reduction Q of I by [GOTWY, Corollary 2.6]. Then as I
2

=QI,

we get I ⊆ I ⊆Q : I ⊆Q : I. Hence, I = I is integrally closed.

Let ϕ̃ : X̃ → SpecA be a resolution of singularities so that I =

H0(X̃,O
X̃

(−Z)) and IO
X̃

=O
X̃

(−Z) is invertible for some anti-nef cycle

Z on X̃. Then (2) implies that U(Z) = 0.

Now suppose that I is not represented on the minimal resolution of

singularities ϕ :X → SpecA. Then there exists a contraction ψ : X̃ →X ′

of a (−1)-curve E on X̃ such that I is not represented on X ′. Consider the

following commutative diagram:

X̃ - X

@@R
X ′
���ψ

π

π′

Then we may assume that Z = ψ∗Z ′ + nE for some anti-nef cycle Z ′ on X ′

and an integer n> 1. Note that π∗Z0 · E = ψ∗Z ′ · E = 0 (see, e.g., [GIW,

Fact 7.7]). Then

https://doi.org/10.1017/nmj.2015.1 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2015.1


100 S. GOTO, K. OZEKI, R. TAKAHASHI, K.-I. WATANABE AND K.-I. YOSHIDA

U(Z)− U(Z ′)=
(
π∗Z0 · (ψ∗Z ′+nE)

)
(pa(ψ

∗Z ′)+pa(nE) + ψ∗Z ′ · nE−2)

+ (ψ∗Z ′ + nE)2 − (π∗Z0 · ψ∗Z ′)
(
pa(ψ

∗Z ′)− 1
)
− (ψ∗Z ′)2

=(π∗Z0 · ψ∗Z ′)(pa(nE)− 1) + (nE)2

=
(
(π′)∗Z0 · Z ′ + 2

) (nE)2

2
+
n(KX · E)

2

(
(π′)∗Z0 · Z ′

)
.

Since (π′)∗Z0 · Z ′ 6−2 and E2 =KX · E =−1, we get U(Z)> U(Z ′) > 0.

This is a contradiction.

In what follows, we always assume that ϕ :X → SpecA is the min-

imal resolution of singularities, IOX =OX(−Z) is invertible and I =

H0(X,OX(−Z)) for some anti-nef cycle Z onX. Let ϕ−1(m) =
⋃
i Ei denote

the exceptional divisor on X with the irreducible components {Ei}16i6r. Let

Z0 (resp. K) denote the fundamental cycle (resp. the canonical divisor) on

X. Notice that Z0E 6 0 and KE =−E2 − 2 for all exceptional curves E.

The next target is to characterize Ulrich cycles in terms of dual graphs.

In order to do that, we recall the sequence of anti-nef cycles introduced in

Lemma 4.9. Assume that Z 6= Z0 is an anti-nef cycle on X. Then we can

find the following anti-nef cycles Z1, . . . , Zs and positive cycles Y1, . . . , Ys,

so that 0< Ys 6 Ys−1 6 · · ·6 Y1 6 Z0:

(6.2.2)



Z = Zs = Zs−1 + Ys,
Zs−1 = Zs−2 + Ys−1,

...
Z2 = Z1 + Y2,
Z1 = Z0 + Y1.

The following lemma plays a key role in the proof of the main theorem

in this section.

Lemma 6.3. Let Z, Z ′ be anti-nef cycles on X with Z ′ = Z + Y , where

Y is a positive cycle. Then we have the following.

(1) U(Z ′)− U(Z) = (Y Z0)
{

(pa(Z)− 1) + (pa(Y )− 1)
}

+ (Y Z)(Z ′Z0 + 2)

+(pa(Y )− 1)(ZZ0 + 2)−KY .

(2) Assume that 0 6= Y 6 Z0 and e= e0m(A) > 3. Then U(Z ′) > U(Z) holds

true, and equality holds if and only if Y Z = Y Z0 = pa(Y ) = (Z −
Z0)Z0 =K(Z0 − Y ) = 0.
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Proof. (1) Since pa(Z + Y ) = pa(Z) + pa(Y ) + Y Z − 1 by definition, we

have

U(Z ′)− U(Z)=(ZZ0 + Y Z0)(pa(Z)− 1 + pa(Y )− 1 + Y Z)

+ (Z2 + 2Y Z + Y 2)− (ZZ0)(pa(Z)− 1)− Z2

=(Y Z0)
{

(pa(Z)− 1) + (pa(Y )− 1)
}

+ (Y Z)(ZZ0 + Y Z0 + 2) + (pa(Y )− 1)(ZZ0) + Y 2

=(Y Z0)
{

(pa(Z)− 1) + (pa(Y )− 1)
}

+ (Y Z)(Z ′Z0 + 2)

+ (pa(Y )− 1)(ZZ0 + 2)−KY,

where the last equality follows from 2(pa(Y )− 1) =KY + Y 2.

(2) Assume that Y 6 Z0. As X → SpecA is the minimal resolution, we

have that KY 6KZ0 because KE > 0 for all curves E on X. Since Z0 is

anti-nef and Z − Z0, Y are positive, we get

Z ′Z0 + 2 = (Z − Z0)Z0 + Y Z0 + (Z2
0 + 2) 6 Z2

0 + 2 =−e+ 2< 0.

Moreover, pa(Z0) = 0 implies that

(pa(Y )− 1)(ZZ0 + 2)−KY

= pa(Y )(ZZ0 + 2)− (Z − Z0)Z0 −K(Y − Z0) > 0,

and equality holds if and only if pa(Y ) = (Z − Z0)Z0 =K(Y − Z0) = 0.

Note that Y Z0, Y Z 6 0 and pa(Z)− 1 + pa(Y )− 1< 0. Hence, U(Z ′) >
U(Z), and equality holds if and only if Y Z0 = Y Z = 0 and pa(Y ) = (Z −
Z0)Z0 =K(Y − Z0) = 0.

The main result in this section is the following theorem, which enables us

to determine all Ulrich ideals of a two-dimensional (non-Gorenstein) rational

singularity. For a positive cycle Z on X, we write Z =
∑

E ZEE, where ZE
is a nonnegative integer.

Theorem 6.4. Let (A,m) be a two-dimensional rational singularity

with e= e0m(A) > 3, and let ϕ :X → SpecA be the minimal resolution of

singularities. Set Z0 =
∑

E nEE, the fundamental cycle on X. Let Z be an

anti-nef cycle on X with IOX =OX(−Z) and I = H0(X,OX(−Z)). Then

the following conditions are equivalent:

(1) I is an Ulrich ideal, that is, Z is an Ulrich cycle on X;
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(2) there exist a sequence of anti-nef cycles Z1, . . . , Zs and a sequence of

positive cycles 0< Ys 6 · · ·6 Y1 6 Z0 for some s> 1 so that

(6.4.3)


Z = Zs = Zs−1 + Ys,
Zs−1 = Zs−2 + Ys−1,

...
Z1 = Z0 + Y1,

and YkZk−1 = pa(Yk) =K(Z0 − Yk) = 0 for every k = 1, . . . , s.

When this is the case, the following conditions are satisfied.

(a) {E | E2 6−3} is contained in Supp(Y1).

(b) Supp(Yk) is given as one of the connected components of {E | EZk−1 =

0} in {E | EZ0 = 0}.
(c) Yk is the fundamental cycle on Supp(Yk).

(d) coeffEZ0 = coeffEYk for every E with E2 6−3.

If, in addition, we put Ik = H0(X,OX(−Zk)), then Ik is an Ulrich ideal,

so that

m = I0 ⊇ I1 ⊇ · · · ⊇ Is = I and `A(A/I) = s+ 1.

Proof. Take a sequence as in (2).

(1) =⇒ (2): Lemma 6.3 implies that

0 = U(Z) = U(Zs) > U(Zs−1) > · · ·> U(Z1) > U(Z0) = 0.

Hence, all Zk are Ulrich cycles and

YkZk−1 = YkZ0 = pa(Yk) = (Zk − Z0)Z0 =K(Z0 − Yk) = 0

for every k = 1, . . . , s. By a similar argument to that in the proof of

Theorem 4.10, we have `A(A/I) = s+ 1.

If E2 6−3, then KE =−E2 − 2> 0. Thus, K(Z0 − Y1) = 0 implies that

coeffEZ0 = coeffEY1 for every E with E2 6−3. In particular, Supp(Yk)⊇
{E | E2 6−3}. On the other hand, YkZ0 = 0 implies that Supp(Yi)⊆ {E |
EZ0 = 0} because Z0 is an anti-nef cycle.

Now suppose (2). Fix i with 1 6 k 6 r. Since Zk−1 is anti-nef and

YkZk−1 = 0, a similar argument to the above yields that {E | E2 6−3} ⊆
Supp(Yk)⊆ {E | EZk−1 = 0}.

As pa(Yk) = 0, Supp(Yk) is connected. Moreover, Supp(Yk) is one of the

connected components of {E | EZk−1 = 0}. Indeed, if there exists a curve
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E /∈ Supp(Yk) such that EE′ > 0 for some E′ ∈ Supp(Yk), then EZk−1 < 0

since EYk > 1 and EZk−1 + EYk = EZk 6 0.

Claim. Yk is the fundamental cycle on Supp(Yk).

Take E ∈ Supp(Yk). As YkZk−1 = 0, we have EZk−1 = 0. If EYk > 0, then

EYk = EZk 6 0. This is a contradiction. Hence, EYk 6 0. Namely, Yk is anti-

nef. Moreover, if Yk is not the fundamental cycle on Supp(Yk), then we know

that pa(Yk) 6−1. This contradicts the assumption pa(Yk) = 0. Hence, Yk
must be the fundamental cycle on Supp(Yk).

To see (2) =⇒ (1), we notice that (c) implies that pa(Yk) = 0. Condi-

tion (b) means that YkZk−1 = 0. Hence, YkZ0 = 0. Note that the equali-

ties YkZ0 = Yk−1Z0 = · · ·= Y1Z0 = 0 yield (Zk − Z0)Z0 = 0. Condition (d)

implies that K(Z0 − Yk) = 0. Therefore, U(Z) = U(Zr) = · · ·= U(Z1) =

U(Z0) = 0, as required.

The following assertion does not hold true without the assumption that

A is rational (see [GOTWY, Example 2.2]).

Corollary 6.5. Let A be a two-dimensional rational singularity. If I

is an Ulrich ideal of A, then I is a special ideal and A/I is Gorenstein.

Proof. Denote by m the maximal ideal of R. We may assume that A is

not Gorenstein, that is, e= e0m(A) > 3. Then by Theorem 6.4, we can find a

sequence of Ulrich cycles Z1, . . . , Zs and positive cycles 0< Y1 6 · · ·6 Ys 6
Z0 satisfying all conditions in Theorem 6.4, so that

(6.5.4)


Z = Zs = Zs−1 + Ys,
Zs−1 = Zs−2 + Ys−1,

...
Z1 = Z0 + Y1.

Then Z 6 (s+ 1)Z0 and Z 66 sZ0. In particular, ms 6⊆ I and ms+1 ⊆ I.

Moreover, I is a special ideal by Theorem 4.10. We have only to show the

following claim.

Claim. There exists a minimal set of generators {u1, . . . , up, t} such that

I = (u1, . . . , up, t
s+1).

Set Is−1 = H0(X,OX(−Zs−1)). Then Is−1 is also an Ulrich ideal. There-

fore, we may assume that we can write Is−1 = (u1, . . . , up, t
s) for some

minimal set of generators of m. Since m(u1, . . . , up)⊆ I and ms 6⊆ I, we
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have that ts /∈ I. Hence, by `A(Is−1/I) = 1, we can choose an element ai ∈A
such that ui − aits ∈ I for every i. By replacing ui with ui − aits, we may

assume that I ′ = (u1, . . . , up, t
s+1)⊆ I. As `A(Is−1/I

′) = 1 and I 6= Is−1, we

can conclude that I = I ′, as required.

§7. Examples

Throughout this section, let k be an algebraically closed field of charac-

teristic 0. Let XA denote the set of nonparameter Ulrich ideals of A.

Example 7.1. Let A= k[[x, y, z]]/(x2 + y4 + z2)∼= k[[s4, st, t4]] be a

two-dimensional rational double point of type (A4). Theorem 5.7 implies

that XA = {m, I1}, where m = (x, y, z) = (s4, st, t4) and I1 = (x, y2, z) =

(s4, s2t2, t4).

The corresponding anti-nef cycle to m (resp. I1) on the minimal resolution

is

Z0 =
1

E1

g 1

E2

g 1

E3

g (
resp. Z1 =

1

E1

g 2

E2

g 1

E3

g).
Moreover, if we put

M0 =A, M1 =As+At3, M2 =As2 +At2 and M3 =As3 +At,

then they are representatives of indecomposable maximal Cohen–Macaulay

A-modules, and thus any maximal Cohen–Macaulay A-module can be

written as

A⊕k ⊕M⊕k11 ⊕M⊕k22 ⊕M⊕k33 .

Note that Syz2A(A/m)∼=M1 ⊕M3 and Syz2A(A/I1)∼=M⊕22 . Moreover, The-

orem 5.7 says that any Ulrich A-module with respect to m (resp. I1) can be

written as

M⊕k11 ⊕M⊕k22 ⊕M⊕k33

(
resp. M⊕k22

)
.

In general, there exists an Ulrich A-module with respect to I, but not a

direct summand of SyziA(A/I), which contradicts Example 7.1.

Example 7.2. Let A= k[[x, y, z]]/(x3 + y5 + z2) be a rational double

point of type (E8). By Theorem 5.7 and Corollary 5.8, the set of Ulrich
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ideals is XA = {m, I}, where I = (x, y2, z) with `A(A/I) = 2.

Z1 =
4

E1

w 7

E2

g 10

E3

g 8

E4

g 6

E5

g 4

E6

g 2

E7

g
5 E8g

Let Mi denote the indecomposable maximal Cohen–Macaulay A-module

corresponding to Ei (up to equivalence) via the McKay correspondence for

every i= 1, . . . , 8. Then we have Syz2A(A/I)∼=M1. Indeed, since Syz2A(A/I)

is an Ulrich A-module with respect to I, it is isomorphic to M⊕k1 for some

k > 1. Then k = 1 because rank Syz2A(A/I) = rankM1 = 2.

Next we see that Syz2A(A/m)∼=M7. Set Ω = Syz2A(A/m). As rankA Ω = 2,

we have Ω∼=M1 or Ω∼=M7. It follows from [GOTWY, Corollary 7.7] that

Ω∼=M7.

Similarly, one can easily see that SyziA(A/m)∼=M7 and SyziA(A/I)∼=M1

for every i> 2. Hence, M2 cannot be written as a direct summand of

SyziA(A/J) for any Ulrich ideal J .

Two-dimensional rational double points (An) (Gorenstein quotient sin-

gularities) admit a sequence of Ulrich ideals of length m= dn2 e:

(x, ym, z)⊂ · · · ⊂ (x, y2, z)⊂ (x, y, z).

However, the following example shows that each two-dimensional non-

Gorenstein cyclic quotient singularity has a unique Ulrich ideal (that is,

the maximal ideal m).

Example 7.3. (Cyclic quotient singularity) Let A be a two-dimensional

cyclic quotient singularity of type 1
n(1, q), where q and n are integers with

1< q < n, (q, n) = 1. Namely, A is the invariant subring of the cyclic group

generated by

g =

[
εn 0
0 εqn

]
,

where εn denotes the primitive nth root of 1 ∈ k.

Now suppose that A is not Gorenstein, that is, q + 1 is not divided

by n. Then there exists an exceptional curve Ei so that b :=−E2
i > 3.

In particular, KEi = b− 2 > 1. Let Γ be the dual graph of the minimal
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resolution of singularities X → SpecA.
1

E1

m · · · m1

Ei−1

m−b

Ei

1 m1
Ei+1

· · · m1
Er

It is well known that m is an Ulrich ideal. Now suppose that there exists

an Ulrich ideal other than m. Then we can take Y1 satisfying the conditions

(a), (b) in Theorem 6.4. In particular, Z0Y1 = 0, K(Z0 − Y1) = 0 and 0<

Y1 6 Z0. Set Y1 =
∑

j∈J Ej for some non-empty subset J of {1, . . . , r}.
If i ∈ J , then Z0Ei = 0 because Z0Y1 = 0. On the other hand,

Z0Ei 6 E2
i + 2 = 2− b6−1. This is a contradiction. Hence, i /∈ J . Then

Ei ⊂ Supp(Z0 − Y1). This implies that KEi = 0 because K(Z0 − Y1) = 0,

which contradicts the choice of Ei. Hence, the maximal ideal is the only

Ulrich ideal of A.

Remark 7.4. Let A be a cyclic quotient singularity as above. Then one

can obtain many examples of special cycles in general by a similar argument

to the proof of Theorem 5.7.

Example 7.5. (Rational triple points) Let a> b> c> 2. If we set A=

k[[T, sT a, s−1T b, (s+ 1)−1T c]], then it is a two-dimensional rational singu-

larity with e0m(A) = 3 and

A∼=k[[t, x, y, z]]/(xy − ta+b, xz − ta+c + zta, yz − ytc + ztb)

∼=k[[t, x, y, z]]

/
I2

(
x tb tc − z
ta y z

)
.

See [Wah, 3.6] and the dual graph of the minimal resolution X → SpecA

below.

Put Ik = (tk, x, y, z). Then Ik is an Ulrich ideal of colength k for every k

with 1 6 k 6 c. In fact, if we put Qk = (tk, x+ y + z), then Ik =Qk + (x, y)

and I2k =QkIk. Furthermore, we have e0Ik(A) = `A(A/Qk) = 3k = (µ(I)−
1) · `A(A/I). Hence, Ik is an Ulrich ideal.

g
E′b

· · · g
E′1

−3
m

E0

g
E′′1

· · · g
E′′c

g
E1

...

g
Ea
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Let a= b= c= 3. Now consider the corresponding cycles.

Z0 = g1 1g −3

1 m 1g 1g
1 g
1 g

Z1 = g1 2g −3

2 m 2g 1g
2 g
1 g

Z2 = g1 2g −3

3 m 2g 1g
2 g
1 g

Note that all special cycles are Ulrich cycles.

Example 7.6. Let A= k[[s7, s4t, st2, t7]]. Then A is a two-dimensional

cyclic quotient singularity, which is an invariant subring of a cyclic group

generated by

g =

(
ε7

ε37

)
.

Since
7

3
= 3− 1

2− 1/2
, the dual graph can be written as the following form

(e.g. [Ri]):

−3

E1

m
E2

m
E3

m
If we put Na = 〈sitj | i+ 3j ≡ a(mod 3)〉 for a= 0, 1, . . . , 6, then {Na}6a=0

forms a representative of isomorphism classes of indecomposable maximal

Cohen–Macaulay A-modules. Then M1 =N3 =As+At5, M2 =N2 =As2 +

At3 and M3 =N1 =As3 +At are indecomposable special Cohen–Macaulay

A-modules. On the other hand, N4 =As4 +Ast+At6, N5 =As5 +As2t+

At4, N6 =As6 +As3t+At2 are indecomposable Ulrich A-modules with

respect to the maximal ideal m. See also [Wu2].
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All special cycles are Z0 = E1 + E2 + E3 and Z1 = E1 + 2E2 + E3. (Note

that Z1 is not an Ulrich cycle (see Example 7.3).) Any special Cohen–

Macaulay module with respect to IZ1 is of the form M⊕k2 .

However, we do not have the complete list of Ulrich modules with respect

to some ideal.
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