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Abstract

We show that Church’s thesis, the axiom stating that all functions on the naturals are computable, does
not hold in the cubical assemblies model of cubical type theory. We show that nevertheless Church’s thesis
is consistent with univalent type theory by constructing a lex modality in cubical assemblies such that
Church’s thesis holds in the corresponding reflective subuniverse.
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1. Introduction

One of the main branches of constructive mathematics is that of recursive or ‘Russian’ construc-
tivism, where to justify the existence of mathematical objects, one must show how to compute
them. A rather extreme interpretation of this philosophy is the axiom of Church’s thesis, which
states that all functions from N to N are computable. Despite (or perhaps because of) its highly
non-classical nature, it has been well studied by logicians and turns out to be consistent with a
wide variety of formal theories for constructive mathematics. This is usually proved using realiz-
ability models based on computable functions, starting with Kleene’s model of Heyting arithmetic
(Kleene 1945), but with many later variants and generalisations. See, for example, Troelstra and
van Dalen (1988, Chapter 4, Section 4) for a standard reference.

When interpreting Church’s thesis in type theory, an additional complication is introduced.
Logical statements are usually interpreted in type theory using the propositions-as-types interpre-
tation. Applying this to Church’s thesis would give us the type below.

l_[ Z 1_[ Z T(e,x,2z) A U(z) =f(x)

f:N—>N eN x:N z:N

However, it is straightforward to use function extensionality to show that this type is empty.!
It is therefore impossible in any case to show that the above “untruncated” version of Church’s
thesis is consistent with univalence, since univalence implies function extensionality (Univalent
Foundations Program 2013, Theorem 4.9.4).

To have any hope of showing Church’s thesis is consistent with univalence, we need a dif-
ferent formulation. We will use the interpretation of logical statements advocated in Univalent
Foundations Program (2013, Section 3.7), and commonly used in homotopy type theory and
elsewhere. In this approach, one uses the higher inductive type of propositional truncation
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at disjunction and existential quantifiers, which ensures that the resulting type is always an
hproposition (i.e. that any two of its elements are equal). This yields the following version of
Church’s thesis, which is the one we will study here.

l_[ Z l_[ Z T(e,x,z) X U(z) = f(x)

fN->NIleN xN zN

It is well known that Church’s thesis holds in the internal logic of Hyland’s effective topos (see
for instance van Oosten 2008, Section 3.1 for a standard reference). Similar arguments show that
in fact it already holds in its simpler subcategory of assemblies, and even in cubical assemblies,
when they are viewed as regular locally cartesian closed categories and thereby, following Awodey
and Bauer (2004) or Maietti (2005) as models of extensional type theory with propositional trun-
cation. However, the interpretation of cubical type theory in cubical assemblies due to the second
author (Uemura 2019) is very different to the interpretation of extensional type theory. We draw
attention in particular to the fact that for extensional type theory hpropositions are implemented
as maps where in the internal logic each fibre has at most one element.> On the other hand in
the interpretation of cubical type theory, each fibre can have multiple elements as long as any
two elements are joined by a path, telling us to always treat them as “propositionally equal.” For
propositional truncation, we do not strictly identify elements by quotienting, but instead add new
paths. Our first result is that Church’s thesis is in fact false in the interpretation of cubical type
theory in cubical assemblies, even though it holds in the internal logic.

To show Church’s thesis is consistent with univalence, we will combine cubical assemblies with
the work of Rijke, Shulman and Spitters on lex modalities and X-closed reflective subuniverses in
Rijke et al. (2020). We will construct a lex modality where Church’s thesis is forced to hold, and
then use properties of cubical assemblies to show that the modality is non-trivial. Our model can
also be viewed as a kind of stack model akin to those used by Coquand, Ruch and Sattler for var-
ious independence and consistency results, including the independence of countable choice from
homotopy type theory (Coquand et al. 2021), although our formulation will be quite different to
theirs.

Mike Shulman has pointed out that the overall construction may be seen as analogous to an
existing result on exact completions. Menni (2001) showed that under certain conditions, the
ex/reg completion of a category is equivalent to a category of sheaves in the ex/lex completion, over
a topology generated by maps that are regular epimorphisms in the original category. The effective
topos is the ex/reg completion of assemblies, and so a category of sheaves in the ex/lex completion
of assemblies. Analogously, we think of cubical assemblies as an “co-exact completion” of assem-
blies. We view the lex modality as analogous to the topology in Menni’s construction. Since the
lex modality is generated by only some, rather than all, regular epimorphisms we obtain only an
approximation to the yet-to-be defined oo-effective topos.

As part of our proof, we will give a generalisation of the Coquand-Huber-Mortberg (Coquand
et al. 2018) construction of higher inductive types to arbitrary Orton-Pitts models. This will be
used to define the higher inductive types of propositional truncation and nullification, which play
an essential role in our proof.

2. Models of Type Theories

In this article, we use models of different kinds of type theories: extensional dependent type theory
and intensional dependent type theory (with the univalence axiom). All of them are based on the
notion of a category with families (Dybjer 1996).

Definition 1. Let € be a category. A cwt-structure over ¢ is a pair (T, E) of presheaves T : €°P —
SetandE: ([, T)Op — Set such that, for any object T € € and element X € T(I"), the presheaf
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(€/T)P>(f: A—T)> E(A,X-f) € Set

is representable. The representing object for this presheaf is denoted by x(X) :{X} — T or x(X):
I'.X — I'. A category with families, cwf in short, is a triple & = (C?, T¢,E?) such that C¢ is a
category with a terminal object and (T¢,E) isa cwf-structure over Ce.

In general, a model & of a type theory consists of a category with families (C¢, T¢, E®) and
algebraic operations on the presheaves T¢ and E. An object I' of C% is called a context. An
element X of T¢(I) is called a type and written I' ¢ X. An element a of E4 (T, X) is called an
element of type X and written I' g a: X. The subscript of ¢ is omitted when the model & is
clear from the context. An algebraic operation on those presheaves is expressed by the schema

T # ... Tk 7,
TEA( s> Fn)

where T'F _#; and T'FA(_71,..., #,) are either of the form I'.Xj..... XY or of the
formI'.X;..... XnbEb:Ywith THX;),...,(CXq..... Xm—1F Xim). In this schema, we always
assume that the operation A(_#1, ..., #,) is stable under reindexing: if f : A — T is a morphism

in(C‘gg,thenwehaveA(/l,...,jn) f=ACA fs s Fnf).

Example 2. Let & be a cwf. We say & supports dependent product types if it has operations

'-X rXFY I'FX TXFY TXFb:Y
TT1(X, Y) THAX,Y,b) : TI(X,Y)

such that the map E(I'.X, Y) 3 b+~ A(X, Y, b) € E(T", I[1(X, Y)) is bijective.

We omit explicit definitions of other well-known type constructors such as dependent sum
types, extensional and intensional identity types, inductive types, higher inductive types and
universes.

For a model & of a type theory, we denote by [ — ¢ the interpretation of the type theory in
the model &’

Definition 3. By a model of univalent type theory, we mean a cwf that supports dependent product
types, dependent sum types, intensional identity types, unit type, finite coproducts, natural numbers,
propositional truncation and a countable chain

%()3%12%22...

of univalent universes.

2.1 Internal languages

Formally we will work with models of type theories, but we will construct types and terms of those
models in a syntactic way using their internal languages. Let & = (C, T¢,E, ... ) be a model
of a type theory. For a context I € C* and a type I' - X, we introduce a variable x and write (I, x :
X) for the context I'.X. For another type I - Y, the weakening I', x : X |- Y is interpreted as the
reindexing ' X Y - x(X). For an element I' -a: X and a type I', x : X - Y(x), the substitution
I' - Y(a) is interpreted as the reindexing I' - Y - g, where a: I' — I".X is the section of ' X — T
corresponding to the element I' - a: X. All type and term constructors of the type theory are
soundly interpreted in & in a natural way. Note that types and terms built in the internal language
are stable under reindexing.
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2.2 W-types with reductions

We will later use W-types with reductions to construct higher inductive types. So that we can
use them internally in type theory we give below a new, split formulation. This is based on the
non-dependent special case of the version in Swan (2018).

Let & = (C%,T¢,E?, ... ) be a model of a type theory with dependent product types, depen-
dent sum types and extensional identity types. A polynomial with reductions over a context I' € C*
consists of the following data:

o atype I' =Y of constructors;

e atypeI',y: Y X(y) of arities;

o atype ', y: Y F R(y) together with an element I', y : Y, r : R(y) I k(y, r) : X(y) which we refer
to as the reductions.

An algebra for a polynomial with reductions (Y, X, R, k) over I' € C¢ is a type I' - W together
with an element I, y: Y, o : X(y) > Wk s(y,a) : W such that I', y: Y, o : X(y) = W, r:R(y) -
s(y, &) = ae(k(y, r)). Algebras for (Y, X, R, k) form a category in the obvious way and we refer to
the initial algebra (if it exists) as the W-type with reductions for the polynomial with reductions.

3. Orton-Pitts Construction

Assumption 4. Let & be a model of dependent type theory that supports dependent product
types, dependent sum types, extensional identity types, unit type, finite colimits, natural numbers,
propositional truncation and a countable chain of universes. We further assume that every context
I' € C¢ is isomorphic to 1.X for some type X over the terminal object 1. Suppose the following:

o & hasatype 11 equipped with two constants 0 and 1 and two binary operators M and Lj;

o & has types 1 =F and ¢ : F I [¢] such that ¢ : F,x: [¢], y: [p] - x=y. An element of I is
called a cofibrant proposition. We often omit [ — ] and regard an element ¢ : F itself as a
type;

o Tand F satisfy axy—axg given by Orton and Pitts (2018);

« F satisfies propositional extensionality: ]_[%wﬂg (e yv)=(p=1v);

« the exponential functor ( —)!': C* — C* has a right adjoint;

o & has W-types with reductions for those polynomials with reductions where R is of the
form [¢] for an element I', y: Y I- ¢ : IF, and they are stable under reindexing. We say & has
cofibrant W-types with reductions.

Note that the axioms in Orton and Pitts (2018) are written in the internal language of an ele-
mentary topos, but they are easily translated into dependent type theory with I and IF as above. We
require propositional extensionality which trivially holds when F is a subobject of the subobject
classifier of an elementary topos. -

Under these assumptions, following Orton and Pitts, we will build a model & of univalent type
theory as follows:

« the base category C% is that of & ;
« the types I' - z X are the types I - ¢ X equipped with a ‘fibration structure’;
« the elements I' -z a : X are the elements I" ¢ a : X of the underlying type X in &

By the construction given in Orton and Pitts (2018), this model & supports dependent product
types, dependent sum types, identity types, unit type, finite coproducts and natural numbers. For
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a countable chain of univalent universes, use the right adjoint to ( — )L as in Licata et al. (2018).
It remains to show that & supports propositional truncation, which will be proved in Section 3.1
using cofibrant W-types with reductions. We call a model of univalent type theory of the form &
an Orton-Pitts model.

3.1 Higher inductive types in Orton-Pitts models

We are still working with a model & of type theory that satisfies Assumption 4. We will show
how to construct higher inductive types in &. Our techniques are fairly general, although we will
focus on the higher inductive types (HITs) that we will need for the main theorem. The techniques
developed by Coquand, Huber and Mortberg in Coquand et al. (2018) are already very close to
working in arbitrary Orton-Pitts models. The main exception is that the underlying objects for
the HITs are given by certain initial algebras, which are constructed directly for cubical sets. This
definition does not quite work for cubical assemblies for two reasons. Firstly we are using a differ-
ent cube category, and secondly we are working internally in assemblies. Rather than proving the
same results again for cubical assemblies, we will use a more general approach based on W-types
with reductions that covers both cases. The first author already showed in Swan (2018, Section
4) that (non-split) W-types with locally decidable reductions can be constructed in any category
of presheaf assemblies and we will see later how to ensure that we get in fact split W-types with
reductions in presheaf assemblies.

Finally, we will also make some minor adjustments related to the fact that we do not assume
the interval object has reversals.

When we construct higher inductive types, we will use formulations based on Path types,
following Coquand, Huber and Mértberg. Technically these formulations can only be stated in
cubical type theory, and not in intensional type theory in general. However, it is straightforward
to derive versions based on Id types using the equivalence of Path and Id types, which are then
valid in &. We note that although computation rules hold definitionally for both point and path
constructors for the Path type versions, after translating to Id types, the definitional equality only
holds for point constructors. However, neither definitional equality will be needed for our end
result.

We will review a key idea in the techniques developed by Coquand et al. (2018) for constructing
higher inductive types. We first recall the Orton-Pitts definition of Kan composition.

Definition 5 (Orton-Pitts). Suppose we are given a type I' o A. A Kan composition operator
is an operation that takes as input € € {0,1}, y :1—-T and u:[],; (i=¢)V ¢) — A(p(i)) and
returns an element a : A(p(1 — ¢)) together with a proof that for p: ¢, a=u(l — &, p).

We now recall the Coquand-Huber-Mortberg definitions of homogeneous Kan composition
and transport. In order to apply their techniques to arbitrary Orton-Pitts models, we will make
the following minor adjustment. They work in a setting where the interval type has an involution
operation, allowing them to use a ‘one directional” definition of Kan composition. That is, instead
of the definition above, which takes a direction argument ¢ € {0, 1}, they only consider the simpler
definition with ¢ fixed as 0, where the other direction can be derived using the involution operator,
if necessary. In the more general setting of an arbitrary Orton-Pitts model, we need to follow the
Orton-Pitts definition of Kan composition, and similarly define homogenous composition and
transport so that they take a direction as input.

Definition 6 (Coquand-Huber-Mortberg). Suppose we are given a type I' =g A. A homoge-

neous Kan composition operator is an operation in context I' that takes as input € € {0, 1} and
u:[l;p (i=¢)Ve)— Aandreturns a: A such that for p: ¢, a=u(l — ¢, p).
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Definition 7 (Coquand-Huber-Mértberg). Given a type I' - A, a transport operator is an
operation that takes as input ¢ €{0,1}, a path y :1— T such that ¢ — Hi,j:]l y (i) =y (j), and
ug : A(y (€)) and returns uy : A(y (1 — &)) such that ¢ — ug = uj.

We can now see the key lemma used in the construction of higher inductive types.

Lemma 8 (Coquand-Huber-Mortberg). Given both a homogeneous Kan composition operator
and a transport operator on a type I' o A we can construct a Kan composition operator on I ¢ A.

Proof. This appears as Coquand et al. (2018, Lemma 2.5). We simply observe that given a trans-
port operator for both directions ¢ € {0, 1} we can produce also a Kan composition operator
for both directions, by applying the Coquand-Huber-Mortberg argument twice, once for each
direction. ]

We can also think of types with homogeneous Kan composition as ‘locally fibrant.” We show
below how to use W-types with reductions to construct local fibrant replacements, i.e. how to
freely add homogeneous Kan composition to arbitrary types.

Definition 9. Given a type I' ¢ A, we define the local fibrant replacement of A, LFR(A) to be the
W-type with reductions defined as follows.

o When a: A, we add an element inc(a) to LFR(A).

o« When ¢:F, e€{0,1} and u:) ,;((i=¢)Ve) — LFR(A), we add an element
hcomp(g, €, u) to LFR(A).

o If p: ¢ and € and u are as above then hcomp(g, &, u) reduces to u(1 — ¢, p).

Formally, we define the constructors Y to be the coproduct A + (F x 2). We take the arity X(inl(a))
to be the empty type for a: A and X(inr(,¢)) to be Y . @ V (i=¢) for (p,¢):F x 2. We take
the reductions R(inl(a)) to be L for a: A and R(inr(p, €)) to be ¢ together with the map p: ¢+
Q—e&p):d e Vii=e).

Theorem. The model & supports suspensions.

Proof. Suppose we are given a type I' -z X. We first construct the naive suspension, Susp,(X) as
the pushout below.

Xx2 — 2

L

X x I —— Suspy(X)
We next take the local fibrant replacement, to get LFR(Susp,(X)). This is then an initial
Susp(X) algebra, as defined by Coquand et al. (2018, Section 2.2) and so we can then proceed

with the same proof as they do there, observing that their argument produces by symmetry a
transport operator in both directions.

Theorem. The model & supports propositional truncation.

Proof. Suppose we are given a type I' -z A. We first define the underlying object of ||A|| to be the
W-type with reductions defined as follows.
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e When a: A, we add an element inc(a) to ||A].

e Wheng:F,ec{0,1}andu:) ,; ((i=¢)V¢) — [A], we add an element hcomp(g, ¢, u)
to [|A]l.

« If p: ¢ and ¢ and u are as above, then hcomp(g, €, 1) reduces to u(1 — ¢, p).

Ifx,y: ||All and i : I, then ||A|| contains an element of the form sq(x, y, 7).

o If x, y, i are as above and i = 0, then sq(x, y, i) reduces to x.

o If x, y, i are as above and i = 1, then sq(x, y, i) reduces to y.

Formally, we define this by taking the coproduct of two polynomials with reductions. The first
is the one we used before for LFR. The second has constructors Y :=1, with the arity defined
by X (i) := 2, and reductions R(i) := (i=0) V (i = 1) together with the map p: (i=0) vV (i=1)+F
k(p) : 2 defined by k(p) =0ifp:i=0and k(p) =1ifp:i=1.

The remainder of the proof is the same as the syntactic description of propositional truncation
by Coquand et al. (2018, Section 3.3.4). O

We now construct a new higher inductive type, which is a simplified version of the higher
inductive type ZF defined by Rijke et al. (2020, Section 2.2). Given families of types I' -z A and

T, a: Atz B(a) we will construct a higher inductive type %3 defined as follows.

o« Whena: A andf : B(a) > 5, we add an element ext(a, f) to 3.
e When a:A, f:B(a)— #3 and b:B(a) we add an element isext(a,f,b) to
Path(ext(a, f),f(b)).

We require that /73 satisfies the following elimination rule. Suppose we are given a family of types
', x : X =z P(x) together with the terms below.

R:JT [T | IT oy | — Peext(a,f)

a:A f:B(a)—> ¢ \b:B(a)
s:I1 11 I [ [1PGsext(a. £, b))
@A f:B@)~> A5 fTlppa PE®) b:B@) il
Suppose further that S satisfies the equalities
S(a.f.f',b,0) =R(a.f,f)
Sa.f.f b, 1) =f(b)

Then we have a choice of term I', x : J# - s(x) : P(x) satisfying the following computation rules
fora: A, f:B(a) —> 2 and b: B(a).

s(ext(a,f)) =R(a,f,sof)
s(isext(a, f, b)(i)) = S(a, f,s o f, b, i)

Moreover the choice of term is strictly preserved by reindexing.

We use the techniques developed by Coquand, Huber and Mortberg together with
W-types with reductions for constructing the actual objects. In order to give %3 the structure
of a fibration, we need to define a composition operator. We will do this by freely adding
an hcomp operator, and then combining it with a transport operator, which we will explicitly
define.
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Definition 10. Let I' s X be a type. We define the naive cone, Cone(X) to be the following
pushout®.

X ——1

l(lxﬁo) C linl

X x I -3 Cone(X)

We can now define %3 to be the following W-type with reductions.

o« Whena: A, c: Cone(B(a)) and f : B(a) — 5, we add an element pastecone(a, ¢, f) to #5.

o Ifa, ¢, f are as above and c is of the form inr(b, 1) for b : B(a), then pastecone(a, ¢, f) reduces
to f(b).

e Wheng:F,e:{0,1}and u:) ,; ((i=0) Vv ¢) — 3, we add an element hcomp(y, ¢, u) to
3.

o If p: ¢, and € and u are as above then hcomp(g, ¢, u) reduces to u(1 — ¢, p).

To check that this really is a W-type with reductions, we need to define the polynomial with
reductions. We take it to be the coproduct of the following two polynomials with reductions.

We define the first component of the coproduct as follows. We take the constructors Y
to be Y ,., Cone(B(a)) and the arities X(a, c) to be B(a). We take the reductions R(a, inl( *))
to be L and R(a, inr(b,i)) to be (i=1) together with the map R(a, inr(b,i)) - b: B(a). Note
that R: (Za:A Cone(B(a))) — IF is well-defined because we have (0 =1) = _L by propositional
extensionality.

The second component in the coproduct is the polynomial with reductions that we used for
local fibrant replacement.

Lemma 11. We construct a transport operator for J{BF.

Proof. We give a proof for the direction ¢ = 0. The construction for the other direction is exactly
the same by symmetry.

Suppose we are given ¢ : IF and a path y in I" which is constant on ¢. We need to define a
transport operator, which is a map ¢ : J#p(,(0)) = #B(y(1)) such that ¢ is the identity when ¢ is
true. Formally this map can be defined by giving an appropriate algebra structure on %3, (1)) and
then using the initiality of #3(, (0)). However, for clarity we will present the proof as an argument
by higher recursion on the definition of 3, (o).

We need to show how to define t(pastecone(a, ¢, f)) and t(hcomp(y, €, u)), and then check
that the definition respects the reduction equations. For the latter, we define the transport operator
so that it preserves the hcomp structure, which determines it uniquely, following Coquand et al.
(2018). For the former, we recall that Cone(B(a)) was defined as a pushout, and so we can split
into a further two cases. Either c is of the form inl( %), or it is of the form inr(b, i) where b : B(a)
and i : . Now in addition to the reduction equation, we have to also satisfy t(inl(  )) = t(inr(b, 0))
in order to eliminate out of the pushout.

Write t4 for the transport A(y(0)) — A(y (1)) and tp for the transport Ha:A(F(O)) B(a) —
B(ta(a)) ensuring that t4(a) =a and tp(b) =b when ¢ =T, for all a: A(y(0)) and b: B(a).
Write tgl for the homotopy inverse [],. AT(0)) B(ta(a)) — B(a), again ensuring that tgl(b) =b
when ¢ =T. Since we are only guaranteed the existence of a homotopy inverse, not a
strict inverse, we do not necessarily have t;' ot = 1p,). We can however construct paths
p: ]—[a:A(F(O)) Hb:B(u) I — B(a) satistying for all a : A(I"(0)) and b : B(a) that p(a, b, 0) = tgl(tg(b))
and p(a, b, 1) = b. Furthermore, we may assume that for any a, band i, if ¢ = T then p(a, b, i) = b.

We define t(pastecone(a, inl( * ), f)) to be of the form pastecone(t4(a), inl( ), f’), where we
still need to define a function " : B(ta(a)) — #3(, (1)) Note that we may assume by recursion that
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for each b : B(a), t(f(b)) has already been defined and belongs to %3, (1)). Hence, we can simply
define f' tobe tof otzl.

The obvious first attempt at defining t(pastecone(a,inr(b,i),f)) would be
pastecone(ta(a), inr(tg(b),i),tof o tgl). Note however that this does not satisfy the reduc-
tion equations. This is because when i=1, pastecone(a,inr(b i),f) reduces to f(b) and
pastecone(ts(a), inr(tg(b), i), tofotB ) reduces to t(f(tg L(t5(b)))) which is not necessarily
strictly equal to #(f(b)). We fix this using the hcomp constructor following the construc-
tion of homotopy pushouts in Coquand et al. (2018, Section 2.3). We define ¢ : F to be
@V (i=0)V (i=1). We then define u : Z 1 (¥ Vv (j=0)) = Hp( () as follows.

pastecone(tA(a) |nr(tB(b) i),tofoty D) j=0
u(j %) = pastecone(a, inr(b, i), tof) (.p——l—

pastecone(tA(a) |nl(>|<) tofotB i=0

t(f(p(a, b, ))) i=1

We then define t(pastecone(a,inr(b,i),f)) to be hcomp(y,0,u). The reduction equation
for hcomp then ensures that we do satisfy the reduction equation for pastecone and also
retain the necessary equations for the pushout and furthermore ensures that the resulting map
t: By (0)) = “£B(y(1) is (one direction of) a transport operator. OJ

Theorem. We construct a fibration structure for each .#3, which is strictly preserved by
reindexing.

Proof. By Lemmas 11 and 8. O
Lemma 12. We construct terms ext and isext for J#p that satisfy the appropriate equations.

Proof.

ext(a, f) := pastecone(a, inl( ), f)
isext(a, f, b)(i) := pastecone(a, inr(b, i), f)

Lemma 13. 73 satisfies the necessary induction principle.

Proof. Suppose we are given a family of types I', x : #p I- z P(x) together with the terms below.

rR:J] TI [ P®)) | > Plext(a, )

a:A f:B(a)—.#3 \b:B(a)
s:I1 11 I [ [ PGsext(a. £, b))
@A f:B(a)> 8 f':]]y.pa) PFD)) b:Bla) il

We need to define a term I', x : 5 I s(x) : P(x) satisfying the appropriate equalities. We define
s by higher recursion on the construction of JZ5. We first deal with the case s(pastecone(q, ¢, f)).
Recalling that Cone(B(a)) is defined as a pushout, we can split into the two cases ¢ = inl(* ) and
c=inr(b, i) for some b : B(a) and i : 1.
We define
s(pastecone(a, inl( x),f)) := R(a frsof)
s(pastecone(a, inr(b, i),f)) :=S(a,f,sof, b, i)

https://doi.org/10.1017/5S0960129522000068 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129522000068

1194 A. W. Swan and T. Uemura

It is straightforward to check that this does preserve the reduction and pushout equations and
so does give a well defined map. One can show it is a section again by higher recursion and the
computation rules are satisfied by definition.

Finally, to define s(hcomp(g, €, 1)), we use the fibration structure on I', x : #3 ¢ P(x). O

3.2 Internal cubical models

Let . be a model of dependent type theory with dependent product types, dependent sum types,
extensional identity types, unit type, finite colimits, W-types and a countable chain of universes.
We also assume that every context of .# is isomorphic to 1.X for some type 1 & X. In particular,
the category C is finitely complete so that internal categories in C*" make sense. Let (] denote
the internal category in C” in which the objects are the natural numbers and the morphisms from
n to m are the order-preserving functions 2" — 2. Note that .7 has a natural number object since
it has W-types. Spitters (2016) has observed that [J is equivalent to the opposite of the category of
free finitely generated distributive lattices. We will refer to internal presheaves over [ as internal
cubical objects.

Theorem. Under those assumptions, the category of internal cubical objects in .% is part of a
model of type theory that satisfies Assumption 4.

Example 14. Let o be a partial combinatory algebra. It is well-known that the category Asm(.2/)
of assemblies on &7 is part of a model of type theory with dependent product types, dependent
sum types, extensional identity types, unit type and finite colimits. It is also known that Asm(.2?)
has W-types (an explicit construction is found in van den Berg 2006, Section 2.2). Assuming a
countable chain of Grothendieck universes in the set theory, Asm(.</) has a countable chain of
universes, since for each Grothendieck universe one may implement a universe in assemblies as
the uniform assembly on the set of small assemblies. Thus, the category CAsm(27) of internal
cubical objects in Asm(7) is part of a model of type theory that satisfies Assumption 4.

It is shown in Orton and Pitts (2018) that, when . = Set, the category of presheaves over
O satisfies all the axioms of Orton and Pitts if we take F to be the presheaf of locally decidable
propositions. The proof works for an arbitrary .7 and one can show that the category of internal
cubical objects in . is part of a model of type theory satisfying Assumption 4 except the existence
of cofibrant W-types with reductions (see also Uemura 2019). To construct cofibrant W-types
with reductions, we recall the following from Swan (2018).

Theorem. Let & be a locally cartesian closed category with finite colimits and disjoint coprod-
ucts and W-types, and let C be an internal category in &. Then the category &?(C) of internal
presheaves over C has all locally decidable W-types with reductions.

We furthermore observe that one can show that this construction is stable under pullback up
to isomorphism using a technique similar to the one used by Gambino and Hyland for ordinary
W-types (Gambino and Hyland 2004). The reason is that pointed polynomial endofunctors are
stable under pullback because they are constructed from X types, I1 types and pushouts, all
of which are preserved by pullback, and in locally cartesian closed categories, the initial alge-
bras of such pointed endofunctors are also stable under pullback. However, to ensure that the
construction is strictly preserved requires a little more work.

We show how to use the non-split version above to construct split W-types with reductions.
The essential idea is to carry out the construction given above “pointwise,” expanding out the
method suggested by Coquand et al. (2018, Section 2.2). Since we define cubical sets here as a
category of presheaves in the usual, contravariant sense, we work with contravariant presheaves
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here, although the original proof in Swan (2018) is phrased in terms of covariant presheaves. We
also make minor adjustments to fit with the ‘split’ version appearing in Section 2.2.

Suppose that we are given a context I' € &2(C) together with a type Y € ([ T"), a type X €
P( fC{Y}), a locally decidable monomorphism R>— Y and a map k: ]_[),: r X(y) over fc .

We need to show how to define a strict version of the W-type with reductions W(Y, X, R).
We will refer to the new strict version as W/(Y, X, R). This should be an element of £( fc I'), so
in particular we need to define a family of types W'(Y, X, R)(c, y) indexed by objects ¢ of C and
elements y : I'(c).

We fix such a cand y. We first note that we have a locally decidable polynomial with reductions
Y,,X,, R, in the internal presheaf category Z( [ C(—, c)) given by reindexing along the map
C(—,¢) = T given by Yoneda. We then carry out the ‘non-strict’ construction to get a presheaf
W(Y,,X,,R,) on fC C(—, ¢) and finally we define W'(Y, X, R)(c, y) to be W(Y,,X,, R,)(c, 1,).

For completeness, we unfold the definitions to obtain the following explicit description of
W/(Y, X, R)(c, y). We first define the dependent W-type Ny of normal forms indexed by the
objects (d, f) offC C(—,0).

If (d, f) is an object of fc C(—, ¢), we add an element to Ny(d, f) of the form sup(y, &) whenever
y is an element of Y(d, I'(f)(y)) that does not belong to the subobject R(d, I'(f)(y)) and « is an
element of the following type.

[T Note.f 0 g)XUosT G0 @)
gie—d

The next step is to define maps Ny(d, f) — No(e,f o g) whenever g: e—~d and f: d—¢
in C. Say that we are given an element of Ny(d,f) of the form sup(y,a). We recall that
No(g)(sup(y, @) is defined by splitting into cases depending on whether or not y belongs to the
subobject R(d, I'(f)(y)). If it does, we define No(g)(sup(y, o)) to be (g, k(y)). Otherwise, we define
No(g)(sup(y, @)) to be sup(Y(g)(y), «’) where o’ (h, x) is defined to be a(g o h, x).

We then define N(d, f) for each f : d — ¢ to be the subobject of Ny(d, f) consisting of heredi-
tarily natural elements and verify that this does indeed define a presheaf on fc C(—, ¢). But this is
identical to Swan (2018, Section 4) so we omit the details.

If we then define W/(Y, X, R)(c, y) to be N(c, 1.), then this is strictly stable under reindexing
by definition.

One can construct by recursion an isomorphism between N(d, f) and W(Y, X, R)(d, I'(f)(y))
for each f:d—c. In particular, this gives us an isomorphism between N(c, 1) and
W(Y,X,R)(c,y), and so we have a canonical isomorphism between W’(Y,X,R)(c,y) and
W(Y, X, R)(c, y). It follows that we can assign an initial algebra structure to W/(Y, X, R)(c, y)
by transferring the algebra structure on W(Y, X, R)(c, y) via the isomorphism.

3.3 Discrete types

We introduce a class of types in an Orton-Pitts model for future use. Let & be a model of type
theory satisfying Assumption 4.

Definition 15. A type 1+ X is said to be discrete if the map Ax.Ai.x: X — X! is an isomorphism.
The proofs of the following propositions are found in Uemura (2019).

Proposition 16. Every discrete type 1 = X carries a fibration structure.
Proposition 17. If a type 1+ X has decidable equality, then it is discrete.
Corollary 18. The natural number object in & is discrete.
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4. Church’s Thesis

We consider a dependent type theory with dependent product types, dependent sum types, iden-
tity types, unit type, disjoint finite coproducts, propositional truncation and natural numbers. In
such a dependent type theory, one can define Kleene’s computation predicate T(e, x, z) and result
extraction function U(z) as primitive recursive functions T: N x N x N— 2and U : N — N. The
statement T'(e, x, z) means that z codes a computation on Turing machine e with input x and U(z)
is the output of the computation. Church’s Thesis is the following axiom.

Vf:N—)NHEZNVXINHZZNT(e> x,2) A U(z) :f(x)

Since the type ) .y T(e, x, 2) x U(z) = f(x) is a proposition, Church’s Thesis is equivalent to the
type

[

fN—=>N

ST Tex2) x UR) =f(x)

eN x:N zN

4.1 Failure of Church’s thesis in internal cubical models

Let .7 be a model of type theory as in Section 3.2. We have seen that the category &(0J) of internal
cubical objects in .7 is part of a model of type theory satisfying Assumption 4. In this section, we
show the following theorem.

Theorem. The negation of Church’s Thesis holds in the model of univalent type theory %

To prove Theorem 4.1, we recall from Uemura (2019) the notion of a codiscrete presheaf and
some useful propositions. The constant presheaf functor A : . — £?(J) extends to a morphism
of cwf’s and preserves (at least up to isomorphism) several type constructors. Here, we only need
the following.

Proposition 19. The morphism A :. — Z2(0) of cwf’s preserves dependent product types,
dependent sum types, extensional identity types and natural number objects.

A constant presheaf AX is regarded as a type in % by the following proposition and
Proposition 16.

Proposition 20. Constant presheaves are discrete.

For types 1 o X and x: X Y(x), one can define a type x: AX ) VxY(x) called the
codiscrete presheaf which has the following properties.

Proposition 21. Vy is the right adjoint to the evaluation functor (—)o at 0 € [: for any type
x: AXF ) Z(x), we have a natural bijection between the set of elements x : AX, z : Z(x) = ()
b: VxY(x) and the set of elements x: X, z: Zo(x) . b: Y(x). Note that (AX)o = X and thus Z is
a type in . over X.

Proposition 22. For a type x: X o Y(x), the type x: AX ‘- gy VxY(x) has a composition

structure and is a proposition in 2 (0J).

Proof of Theorem 4.1. We define types f : N — NFC'(f) ;=) .5 [ Lon 2zn T(e X, 2) x Ulx) =
f(x) and f:N— Nk C(f):= |C'(f)|. Let N denote the natural number object in .#. Then
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Church’s Thesis is interpreted in ? ) as ]_[f an—N) [CI z (D)(f ) by Proposition 19. We will

P

construct two functions in £ (0J):

 Tawow [C170F) - VN [CT (6
. <nf:A(N»N) VN»N[[C’]]y(f)) — 0.

Then we readily get a function (]_[f: AN—N) [[C]]ff”(l])(f)> — 0.

For the former one, it suffices to give a function [C’ Hf@(D)(f) — Vo nICT” (f) for all
f: A(N — N) by the recursion principle of the propositional truncation because the codomain
is a proposition by Proposition 22. By the adjunction (— ) 7 VNN, it suffices to give a func-

tion [C']; Z(0) — [C']” but we have an isomorphism [C’HJ(D) = (AICT o =1CT7 by
Proposmon 19.

For the latter function, observe that ]_[f:A(N_)N) VN_>N[[C’]]y(f) =V (]_[f:N_>N I[C/]]y(f)>

and that V10 = 0. Then we apply V; to the function (nf:N» Ny [C ¥ (f)) — 0 in . obtained

from the inconsistency of Church’s Thesis with the axiom of choice and function extensionality.
O

5. Null Types

Let & be a model of univalent type theory. Based on Rijke, Shulman and Spitters’ null types (Rijke
et al. 2020), we define a notion of null structure as follows.

Let a: A+ B(a) be a proposition in &. For a type ' - X in &, we define a proposition I' -
isNullg(X) as

'~ l_[ isEquiv(A(x : X).A(b: B(a)).x)
a:A

and call a term of isNullp(X) a B-null structure on X. A B-null type is a type I' - X equipped with
a B-null structure 7 on X. That is, a B-null type has a witness that the canonical map X — X5 is
an equivalence for each a.

Definition 23. We define a cwf &3 as follows:

o the contexts are those of &;
o the types are the B-null types in &;
o the elements of I' =g, X are those of the underlying type X in &.

We have the obvious forgetful morphism &g — & of cwf.

For a proposition a : A - B(a), a nullification operator assigns

o each type I' = X a B-null type I' F #3X and an element I' - nx : X — #pX; and
o each pair of type I - X and B-null type I' - Y an element I'" - e : isEquiv(A(f : Z3X — Y).f o

nx.

We also require that a nullification operator is preserved by reindexing.
We review some properties of null types. See Rijke et al. (2020) for further details.
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Proposition 24. LetT'+X and I, x: X F Y(x) be types in &.

o There exists a term of type I' = ([ .5 isNullg(Y (x))) — isNullp(] [,..x Y(x)).
o There exists a term of type I' = isNullg(X) — ([ ],.x isNullg(Y(x))) — isNullp(}_,.x Y(x)).
o There exists a term of type I' - isNullp(X) — ]_[xo)xlzx isNullg(ldx(xg, x1)).

Consequently, &g supports dependent product, dependent sum and intensional identity types
preserved by the morphism &g — &.

For a universe U, we define a subuniverse U of U as

Up = {X: U|isNullg(X)}.
Proposition 25. The universe Ug has a B-null structure.

Proof. Our condition that each B(a) is a proposition corresponds to Rijke, Shulman and Spitters’
notion of topological modality. They prove in Rijke et al. (2020, Corollary 3.11 and Theorem 3.12)
that any such modality is lex and hence that the universe of modal types is itself modal. O

Proposition 26. If a nullification operator £p exists, then it preserves propositions.

Proof. This is true for any modality by Rijke et al. (2020, Lemma 1.28). O
Corollary 27. Suppose that & has a nullification operator £p. Then a: A+ £3B(a) is contractible.
Proof. Since .ZpB(a) is a proposition, it suffices to find an element of [ [ .., -#3B(a). Assume that
a: A is given. Since .ZB(a) is B-null, it is enough to give a function B(a) — .£pB(a), so take the

constructor np(,) : B(a) = Z3B(a). O

Corollary 28. Suppose that & has a nullification operator £p. Then X — £ || X|| gives proposi-
tional truncation in the model &3.

Proof. By Proposition 26, .Z3 ||X|| is a proposition. For any B-null proposition Z, we have
equivalences
(LB Xl = 2) = (IX]| > 2)
~(X— 2).

5.1 Null types in Orton-Pitts models
Let & be an Orton-Pitts model.

Definition 29. A type a: A+ B(a) in & or & is said to be well-supported if the propositional
truncation a : At-g ||B(a)|| taken in the model & of extensional dependent type theory is inhabited.

Proposition 30. Let 1-¢ X be a type and a: Atz B(a) a proposition. If X is discrete and B is
well-supported, then X has a B-null structure.

Proof. We show that, for any a:A, the function k;:=AxAbx:X— (B(a)— X) is an

isomorphism in the internal language of &. Since B is well-supported, k, is injective. To prove
surjectivity, we assume that f : B(a) — X is given. By the well-supportedness of B, there exists
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some element b : B(a). We show that f = k,(f(b)). Assume b’ : B(a) is given. Since B is a propo-
sition in E, we have a path p:1— B(a) such that p0 =¥ and pl = b. By the discreteness of X
the path f o p : T — X is constant, which implies that f(b’) = f(b). Hence, we have f = k,(f (b)) by
function extensionality. O

We easily deduce the following corollaries.
Corollary 31. If B is well-supported, then 0 has a B-null structure.
Corollary 32. If B is well-supported, then N has a B-null structure.

Proposition 33. Leta: Az B(a) be a proposition and I' =z X and I" =z Y types. Then there exists
a term of type

I' FisNullg(X) — isNullg(Y) — isNullg(X + Y).

Proof. We proceed in the internal language of &. Suppose that X and Y has a B-null structure.
Assume that a : A is given. Since the function (X 4+ Y) — (B(a) = (X + Y)) factors as

X+Y > B(a) > (X +7Y)

_—

(B(a) > X) + (B(a) = Y),

it suffices to show that the function @ : ((B(a) — X) + (B(a) > Y)) — (B(a) > (X + Y)) is an
isomorphism. The injectivity of ® follows from the well-supportedness of B. To prove the surjec-
tivity, we assume that f : B(a) — (X + Y) is given. We show that (V.p(q)fb € X) V (Vp.pa)fb € V).
Since B is well-supported, there exists some element by : B(a). We know that fbg € X V fby € Y.
Suppose that fby € X. Assume b: B(a) is given. Since B is a proposition in &, we have a path
p :I— B(a) such that p0 = by and p1 = b. Since the exponential functor ( — ) preserves colimits
because it has a right adjoint, we have (V;1f(pi) € X) v (Vi1f(pi) € Y). Now f(p0) € X and thus
we have V;.1f (pi) € X. In particular, fb € X. In a similar manner, we have V}.p,\fb € Y assuming
fbo € Y. Hence, we get (Vi.pa)fb € X) V (Vp:pa)fb € Y). O

By Corollary 18, and Propositions 24, 30 and 33, for any type X defined in dependent type
theory only using dependent product types, dependent sum types, identity types, unit type, dis-

joint finite coproducts and natural numbers, the underlying type of [[X]lgﬁ is equal to [X]¢ for
any well-supported proposition B in &.In particular, in this case if [X]¢ is inhabited, then so is
[x]%.

Example 34. Markov’s Principle is the following axiom.
Va:N—27"(Inna(n) — Fpna(n)

It is equivalent to the type

[T I

a:N—=2 p:(],.y a(n)—0)—0

Za(n)

n:N

For a decidable predicate o : N — 2, the proposition “ Yo a(n) || is equivalent to the type
Y opn () X [y @ (k) = n < k which is defined without propositional truncation. Hence, if the
model & of extensional dependent type theory satisfies Markov’s Principle, then so does the model
&p of univalent type theory for any well-supported proposition B in &
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We now show how to define nullification operators in Orton-Pitts models. Following Rijke
et al. (2020, Section 2.2), we will first define an operator _#g, although we will only consider the
case of nullification, since that is all we need here.

Lemma 35. For types a: Atz B(a) and I' =z X, we have the higher inductive #p(X) defined as
follows.

o When x:X, then Zp(X) contains an elementozfz(x).

o Whena:Aandf:B(a) — 3, then Zp(X) contains an element ext(a, f).

o« When a:A, f:B(a)—> 3 and b:B(a) then ld(ext(a,f),f(b)) contains an element
isext(a, f, b).

Proof. _#p(X) differs from #3 by having an extra point constructor oz)}'z X — _7B(X).
We define A’ to be the type A + X and define the family of types a : A’ - B/(a) as follows.

B'(inl(a)) := B(a)
B'(inr(x)):=0

We can then take _#p(X) to be Jp, as defined in Section 3.1. We take aﬁ(x) to be
ext(inr(x), L ;) where L y; is the unique map from 0 to JZ3. O

Theorem. & has a nullification operator % for every type a: Az B(a).

Proof. This follows from Rijke et al. (2020, Theorem 2.18), observing that for the case of nul-
lification the pushout appearing there is just a suspension, which we have already shown how
to implement in Theorem 3.1, and we showed in Lemma 35 how to implement their ¢
operator. O

6. Church’s Thesis in Null Types

Consider a dependent type theory with dependent product types, dependent sum types, iden-
tity types, unit type, disjoint finite coproducts, propositional truncation and natural numbers.
Let a: A B(a) be a type in this type theory where A and B are definable only using dependent
product types, dependent sum types, identity type of 2, unit type, finite coproducts and natural
numbers. We define a : Ak C(a) := ||B(a)||. For an Orton-Pitts model &, the underlying types of

the interpretations [A]¢ and IIB]](E are [A]¢ and [B]¢, respectively.

Theorem. Let & be an Orton-Pitts model. Suppose that [[B]]g is well-supported. Then the
proposition C holds in the model of univalent type theory Elcpé-

Proof. Let D= [C]]g. By assumption [[B]]‘? is well-supported and so is its truncation D. By
Corollary 18 and Propositions 24, 30 and 33, the underlying types of [A]%P and [B]°P are equal
to [A]¢ and [B]¢, respectively. Hence, we have [C]] b = #plClé by Corollary 28, and this type
is inhabited by Corollary 27. O
Corollary 36. Let .7 be a model of type theory as in Section 3.2. If the proposition C holds in .7,
then C also holds in the model of univalent type theory &)@ where & = ().
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Proof. Since C = ||B|| holds in .%, the type [B] is well-supported. Then [[B]]g = [B]? is also
well-supported because the constant presheaf functor .# — & preserves all structures of the type
theory. Then use Theorem 6. O

Example 37. Recall that Church’s Thesis is equivalent to the type

[T DoT1D. Tex2) x Ul) =f(x)

fN->Nll eN xN zN

Also note that the equality of natural numbers is decidable, and thus there exists a function
=nN: N — N — 2 such that the type U(z) =f(x) is equivalent to (U(z) =n f(x)) = 1. Therefore,
Church’s Thesis is equivalent to a type of the form

[]1B@I
a:A

with a type a: At B(a) definable only using dependent product types, dependent sum types,
identity of 2, unit type, finite coproducts and natural numbers. Since Church’s Thesis holds in
the category Asm(.#1) of assemblies on Kleene’s first model %1, by Corollary 36 the model of
univalent type theory éa[[ CIé satisfies Church’s Thesis where & = CAsm(.7]).

We can now prove our second main result, which informally says that univalent type theory is
consistent with the main principles of Recursive Constructive Mathematics.

Theorem. Martin-Lof type theory remains consistent when all of the following extra structure
and axioms are added.

(1) Propositional truncation.
(2) The axiom of univalence.
(3) Church’s Thesis.

(4) Markov’s Principle.

Proof. We prove consistency by constructing a model where all of the above holds and where
there is no element of type L. Consider the Orton-Pitts model & with & = CAsm(.#7). We have
seen that & satisfies Church’s Thesis in Example 37. It remains to show that & satisfies Markov’s
Principle and _L is empty in this model.

Using well supportness again, and Example 34 we see that to show Markov’s principle holds, it
suffices to show it holds in cubical assemblies (as a model of extensional type theory). Again, we
observe that the type corresponding to Markov’s principle is preserved by the constant presheaves
functor, and so it suffices to show that Markov’s principle holds in assemblies, which is again a
standard argument.

Using well supportness once more, and Corollary 31, we see that L is the same in null types as
in cubical assemblies. It follows that it has no global sections, i.e. there is no element of type L in
the model. O

We can use Theorem 6 for other principles.

Example 38. Brouwer’s Continuity Principle is the following axiom.

VF:(N—)N)—>Nva:NeNan:NVﬁ:N—)N(Vm:Nm <n— a(m)=p(m)) - Fla) = F(B)
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The standard ordering < on N is decidable, and thus Brouwer’s Continuity Principle is an instance
of Theorem 6.

We obtain a new proof of the following result due to Coquand et al. (2021).

Theorem. Martin-Lof type theory remains consistent when all of the following extra structure
and axioms are added.

(1) Propositional truncation.
(2) The axiom of univalence.
(3) Brouwer’s Continuity Principle.

Proof. This is the same as for Theorem 6. See e.g. van Oosten (2008, Proposition 3.1.6) for a proof
that Brouwer’s principle holds in the the effective topos (the same proof applies for assemblies).
O

The original proof by Coquand, Ruch and Sattler used cubical sheaves. Mike Shulman has
pointed out that it can also be proved using the main result of Shulman (2019): there are well-
known examples of Grothendieck toposes where Brouwer’s continuity principle holds, and using
a Grothendieck (0o, 1)-topos whose corresponding 1-topos of hsets is such a topos, one obtains a
model of univalent type theory where Brouwer’s continuity principle holds. Both the Coquand-
Ruch-Sattler proof and Shulman’s proof can also be said to use modalities, although in a very
different way to our proof.

7. Conclusion and Further Work

We have constructed a model of type theory that satisfies the main axiom of homotopy type
theory (univalence) and the main axioms of recursive constructive mathematics (Church’s the-
sis and Markov’s principle). However, in both fields, there are additional axioms that are natural
to consider, but which we have left for future work.

With regards to homotopy type theory, we expect that the remaining higher inductive types
appearing in Univalent Foundations Program (2013) can be implemented following the technique
suggested in Rijke et al. (2020, Remark 3.24) together with the technique of Coquand et al. (2018)
for constructing the necessary higher inductive types in cubical assemblies.

The situation with the remaining axioms of recursive constructive mathematics is more diffi-
cult. The axiom of countable choice is often included, but it is unclear whether countable choice
holds in our model, or how to adjust the model to ensure countable choice does hold. The other
main axiom of recursive constructive mathematics is extended Church’s thesis, which states that
certain partial functions from N to N are computable. The main issue here is that it is unclear what
is the most natural way to formulate partial functions in homotopy type theory. Much progress on
this has been made by Escard6 and Knapp (2017). However, as they show, a weak form of count-
able choice is needed for their definition to work as expected. We expect that for any reasonable
formulation of extended Church’s thesis Theorem 6 can be used to construct a model where it
holds.

Another open problem is to find a good definition of (oo, 1)-effective topos, which should
be to the effective topos what (0o, 1)-toposes are to Grothendieck toposes. In particular, the
effective topos should be recovered as the localisation of the hsets in the (oo, 1)-effective topos,
and commonly seen theorems and definitions in the effective topos should be special cases of
corresponding higher versions. One possible definition is cubical assemblies. We can now see
another possibility in the form of reflective subuniverses of cubical assemblies. However, our defi-
nition is dependent on a particular choice of axioms that satisfy the necessary conditions to apply

https://doi.org/10.1017/5S0960129522000068 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129522000068

Mathematical Structures in Computer Science 1203

Theorem 6, so we leave open the problem of finding a ‘natural’ definition that satisfies axioms such
as Church’s thesis without needing to ensure they hold in the definition. One possible approach is
to try to find a version of our construction that applies to all well supported maps at once. Another
possibility is to further develop an alternative, more direct approach by Van den Berg (2020).
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Notes

1 Surprisingly, however, this version is consistent with intensional type theory as long as one drops the & rule, which was
proved by Ishihara, Maietti, Maschio and Streicher in Ishihara et al. (2018). They leave the case where one has the & rule but
not function extensionality open and to the authors’ knowledge it remains an open problem.

2 Equivalently, the map is a monomorphism, and for this reason hpropositions are sometimes referred to as mono types.

3 Pushout in the usual categorical sense, not the homotopy pushout.
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