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In this paper we discuss the adaptation of the methods of homology from
algebraic topology to the problem of pattern recognition in point cloud data
sets. The method is referred to as persistent homology, and has numerous
applications to scientific problems. We discuss the definition and computation
of homology in the standard setting of simplicial complexes and topological
spaces, then show how one can obtain useful signatures, called barcodes, from
finite metric spaces, thought of as sampled from a continuous object. We
present several different cases where persistent homology is used, to illustrate
the different ways in which the method can be applied.
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1. Introduction

Deriving knowledge from large and complex data sets is a fundamental prob-
lem in modern science. All aspects of this problem need to be addressed
by the mathematical and computational sciences. There are various dif-
ferent aspects to the problem, including devising methods for (a) storing
massive amounts of data, (b) efficiently managing it, and (c) developing un-
derstanding of the data set. The past decade has seen a great deal of devel-
opment of powerful computing infrastructure, as well as methodologies for
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Figure 1.1. A compressed combinatorial representation of a circle.

managing and querying large databases in a distributed fashion. In this
paper, we will be discussing one approach to (c) above, that is, to the prob-
lem of generating knowledge and understanding about large and complex
data sets.
Much of mathematics can be characterized as the construction of methods

for organizing infinite sets into understandable representations. Euclidean
spaces are organized using the notions of vector spaces and affine spaces,
and this allows us to organize the (infinite) underlying sets into understand-
able objects which can be readily manipulated, and which can be used to
construct new objects from old in systematic ways. Similarly, the notion of
an algebraic variety allows us to work effectively with the zero sets of sets
of polynomials in many variables. The notion of shape is similarly encoded
by the notion of a metric space, a set equipped with a distance function sat-
isfying three simple axioms. This abstract notion permits us to study not
only ordinary notions of shape in two and three dimensions but also higher-
dimensional analogues, as well as objects such as the p-adic integers, which
are not immediately recognized as being geometric in character. Thus, the
notion of a metric serves as a useful organizing principle for mathemati-
cal objects. The approach we will describe demonstrates that the notion of
metric spaces acts as an organizing principle for finite but large data sets
as well.
Topology is one of the branches of mathematics which studies properties

of shape. The study of shape particular to topology can be described in
terms of three points.

(1) The properties of shape studied by topology are independent of any
particular coordinate representation of the shape in question, and in-
stead depend only on the pairwise distances between the points making
up the shape.

(2) Topological properties of shape are deformation invariant, that is, they
do not change if the shape is stretched or compressed. They would of
course change if non-continuous transformations were applied, ‘tearing’
the space.
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Figure 1.2. Annulus.

(3) Topology constructs compressed representations of shapes, which re-
tain many interesting and useful qualitative features while ignoring
some fine detail.

Topology deals with shape in two distinct ways. The first is by building
compressed combinatorial representations of shapes, via processes such as
triangulation. Of course, some information about the shape is lost in this
discretization, such as fine-scale curvature information, but as in the exam-
ple in Figure 1.1, the rough overall structure is preserved in passing from
the circle to the hexagon. The second method is by attempting to measure
shape, or aspects of shape. This is done via homological signatures, which
essentially count occurrences of patterns within the shape. The adapta-
tion of these signatures to the study of point cloud data is the subject of
this paper.
The intuitive idea behind algebraic topology is that one should try to

distinguish or perhaps even characterize spaces by the occurrences of pat-
terns within a space. Consider the example of an annulus, in which one
could say that a characteristic pattern is the presence of a loop in the space,
surrounding the removed disc in the middle. One could say intuitively that
the count of loops in an annulus is one, in that there is ‘essentially’ only
one loop in the space, characterized by the fact that it winds around the
central removed disc. It is not so easy to make mathematical sense of this
observation, for reasons made clear in Figure 1.2.
The presence of essentially one loop is something which is difficult to

quantify a priori , since in fact there is an uncountable infinity of actual
loops which have the same behaviour, that is, they wind around the hole
once. In order to resolve this difficulty, and formalize the notion that there is
essentially only one loop, we are forced to perform some abstract construc-
tions involving equivalence relations to obtain a sensible way of counting
the number of loops. The idea is that one must regard many different loops
as equivalent, in order to get a count of the occurrences not of each indi-
vidual loop, but rather of a whole class of equivalent loops. This step is
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what is responsible for much of the abstraction which is introduced into the
subject. Once that layer of abstraction has been built, it provides a way
to detect the presence of geometric patterns of certain types. The general
idea of a pattern is of course a diffuse one, with many different meanings
in many different contexts. In the geometric context, we define patterns as
maps from a template space, such as a circle, into the space. A large part
of the subject concerns the process of reducing the abstract constructions
described above to much more concrete mathematical constructions, involv-
ing row and column operations on matrices. The goals of the present paper
are as follows.

• To introduce the pattern detection signatures which come up in al-
gebraic topology, and simultaneously to develop the matrix methods
which make them into computable and usable invariants for various
geometric problems, particularly in the domain of point clouds or fi-
nite metric spaces. We hope that the introduction of the relevant
matrix algorithms will begin to bridge the gap between topology as
practised ‘by hand’, and the computational world. We will describe
the standard methods of homology, which attach a list of non-negative
integers (called the Betti numbers) to any topological space, and also
the adaptation of homology to a tool for the study of point clouds.
This adaptation is called persistent homology.

• To introduce the mathematics surrounding the collection of persistence
barcodes or persistence diagrams, which are the values taken by the
persistent homology constructions. Unlike the Betti numbers, which
are integer-valued, persistent homology takes its values in multisets
of intervals on the real line. As such, they have a mix of continuous
and discrete structure. The study of these spaces from various points
of view, so as to be able to make them maximally useful in various
problem domains, is one of the most important research directions
within applied topology.

• To describe various examples of applications of persistent homology
to various problem domains. There are two distinct directions of ap-
plication, one being the study of homological invariants of individual
data sets, and the other being the use of homological invariants in the
study of databases where the data points themselves have geometric
structure. In this case, the barcode space can act as the home for a
kind of non-linear indexing for such databases.
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Figure 2.1. Euler’s ‘Bridges of Königsberg’ problem.

2. Topology

2.1. History

Euler’s paper of 1741, in which he studies the so-called ‘Bridges of Königs-
berg’ problem, is usually cited as the first paper in topology. The question
he asked was whether it was possible to traverse all the bridges exactly
once and return to one’s starting point. Euler answered this question by
recognizing that it was a question about paths in an associated network:
see Figure 2.1. In fact, the question only depends on certain properties
of the paths, independent of the rates at which the paths are traversed.
His result concerned the properties of an infinite class of paths, or of a
certain type of pattern in the network. Euler also derived Euler’s polyhe-
dral formula, relating the number of vertices, edges and faces in polyhedra
(Euler 1758a, 1758b). The subject developed in a sporadic fashion over the
next century and a half, including work by Vandermonde on knot theory
(Vandermonde 1774), the proof of the Gauss–Bonnet theorem (never pub-
lished by Gauss, but with a special case proved by Bonnet (1848)), the first
book on the subject by Listing (1848), and the work of Riemann (1851)
identifying the notion of a manifold. In 1895, Poincaré published his sem-
inal paper in which the notions of homology and fundamental group were
introduced, with motivation from celestial mechanics. The subject then de-
veloped at a greatly accelerated pace throughout the twentieth century. The
first paper on persistent homology was published by Robins (1999), and the
subject of applying topological methodologies to finite metric spaces has
been developing rapidly since that time.

2.2. Equivalence relations

A (binary) relation on a set X is a subset of X ×X. We will often denote
relations by ∼, and write x ∼ x′ to indicate that (x, x′) is in the relation.
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Definition 2.1. A relation ∼ on a set X is an equivalence relation if the
following three conditions hold:

(1) x ∼ x for all x ∈ X,

(2) x ∼ x′ if and only if x′ ∼ x,

(3) x ∼ x′ and x′ ∼ x′′ implies x ∼ x′′.

By the equivalence class of x ∈ X, denoted by [x], we will mean the set

{x′| x ∼ x′}.
The sets [x] for all x ∈ X form a partition of the setX. If∼ is any symmetric
binary relation on a set X, then by the equivalence relation generated by
∼ (or the transitive closure of ∼) we will mean the equivalence relation
∼′ defined by the condition that x0 ∼′ x1 if and only if there is a positive
integer n and a sequence of elements x′0, x′1, . . . , x′n so that x′0 = x0, x

′
n = x1,

and x′i ∼ x′i+1 for all 0 ≤ i ≤ n− 1.

For a set X and an equivalence relation ∼ on X, we will denote the set
of equivalence classes under ∼ by X/ ∼, and refer to it as the quotient
of X with respect to ∼. There are several important special cases of this
definition. The first is the quotient of a vector space by a subspace. Let V
be a vector space over a field k, and let W ⊆ V be a subspace. We define an
equivalence relation ∼W on V by setting v ∼W v′ if and only if v− v′ ∈W .
It is easy to verify that ∼W is an equivalence relation. We can form the
quotient V/ ∼W , and one observes that V/ ∼W is itself naturally a vector
space over k, with the addition and scalar multiplication rules satisfying
[v] + [v′] = [v + v′] and κ[v] = [κv]. In this special case, we will denote
V/ ∼W by V/W , and refer to it as the quotient space of V by W . Although
the quotient is an apparently abstract concept, it can be described explicitly
in a couple of ways.

Proposition 2.2. Suppose that we have a basis B of a vector space V ,
and B′ ⊆ B is a subset. If W is the subspace of V spanned by B′, then the
quotient V/W has the elements {[b]|b /∈ b′} as a basis, so the dimension of
V/W is #(B)−#(B′). More generally, if W ′ is a complement to W in V ,
so that W +W ′ = V , and W ∩W ′ = {0}, then the composite

W ′ ↪→ V
p→ V/W

is a bijective linear transformation, so the dimension of V/W is equal to the
dimension of W ′, where p is the map which assigns to v ∈ V its equivalence
class [v] under ∼W .

There is also a matrix interpretation. Let V and W be vector spaces with
ordered bases, and let f : V → W be a linear transformation, with matrix
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A(f) associated to the given bases. The image of f is a subspace of W ,
and we write θ(f) for the quotient space W/im(f).

Proposition 2.3. Let g : V → V and h : W → W be invertible linear
transformations. Then θ(f) is isomorphic to θ(hfg). It follows that if we
have the matrix equation A(f ′) = A(h)A(f)A(g), then θ(f ′) is isomorphic
to θ(hfg).

Proof. This follows from the elementary observation that w ∼im(f) w′ if
and only if

h(w) ∼im(hf) h(w
′).

Proposition 2.4. Let W be the vector space km for some m, and suppose
that we are given an m × n-matrix A with entries in a field k. A can be
regarded as a linear transformation from V = kn to W , and the span of the
columns in this matrix is the image of the transformation A. Then, if we
apply any row or column operation (permuting rows/columns, multiplying
a row/column by a non-zero element of k, or adding a multiple of one
row/column to another) to obtain a matrix A

′
, then θ(A) is isomorphic

to θ(A
′
).

Remark 2.5. Note that for any matrix A over a field, one can apply row
and column operations to bring it to the form[

In 0
0 0

]
,

where n is the rank of A. In this case, the dimension of the quotient is
readily computed using Proposition 2.2.

The second special case is that of the orbit set of a group action. If G is
a group, and we have an action of G on a set X, then the action defines an
equivalence relation ∼G on X by x ∼G x′ if there is a g ∈ G so that gx = x′.
This is readily seen to be an equivalence relation, and the equivalence classes
are called the orbits of the action.
Finally, consider the case of a topological space X equipped with an

equivalence relation R. Then the quotient set X/R is equipped with a
topology by declaring that a set U ⊆ X/R is open if and only if π−1(U) is
an open set in X, where π : X → X/R is the map which assigns to each
x ∈ X its equivalence class [x].

2.3. Homotopy

The fundamental idea of algebraic topology is that one should develop meth-
ods for counting the occurrences of geometric patterns in a topological space
in order to distinguish it from other spaces, or to suggest similarities be-
tween different spaces. A simple example of this notion is given in Figure 2.2.

https://doi.org/10.1017/S0962492914000051 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492914000051


296 G. Carlsson

Figure 2.2. A space with a single loop, and a space with two distinct loops.

In examining these two spaces, we see that the left-hand space contains a
single loop, while the second one contains two distinct loops. Thus, a count
of loops is an interesting quantity to consider, from an intuitive point of
view. However, it appears difficult to make precise mathematics out of this
intuition. It is reasonably easy to make sense of what one means by a loop
in a space X, that is, a continuous map f : S1 → X. So in this case, the
pattern associated to a loop is the circle itself, and an occurrence of the
pattern is a continuous map from the circle S1 to X. However, there are
almost always infinitely many loops in a space. For example, any loop can
always be reparametrized by precomposing with any self-homeomorphism
of the circle. Another difficulty, however, is the situation illustrated by Fig-
ure 2.3(a). The interesting feature is the hole in the centre, and both the
loops (as well as an infinity of others) capture that feature, in the sense that
they ‘go around’ the hole. This makes for an even larger set of loops, and
the idea here is to create a kind of count which captures the feature using
the presence of loops around it, rather than producing an infinity of loops.
The key insight to be had here is that the idea of counting occurrences
of patterns directly is unworkable, but that counting equivalence classes of
occurrences of patterns under an equivalence relation is workable.

Definition 2.6. Given two maps f, g : X → Y of topological spaces, we
say that f and g are homotopic, and write f � g if there is a continuous
map H : X × [0, 1] → Y so that H(x, 0) = f(x) and H(x, 1) = g(x) for
all x ∈ X. The relationship of being homotopic is an equivalence relation.
When there are fixed basepoints x0 ∈ X and y0 ∈ Y , we speak of based
maps as maps f : X → Y for which f(x0) = y0, and of based homotopies as
homotopies H(x0, t) = y0 for all t. Based homotopy is also an equivalence
relation on the set of based maps from X to Y .

Remark 2.7. The fact that one must choose equivalence classes of occur-
rences of a pattern in order to obtain a workable theory is the fundamental
observation in the subject. It is responsible for the power of the method,
and on the other hand for the technical complexity of the subject.

The set of homotopy classes of continuous maps from a space X to a space
Y is a more discrete invariant, which gives a high-level description of the set

https://doi.org/10.1017/S0962492914000051 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492914000051


Topological pattern recognition for point cloud data 297

(a) (b)

Figure 2.3. (a) Two equivalent loops. (b) Distinct equivalence classes of loops.

of maps from X to Y . When X is the n-sphere Sn, one can in a natural way
impose the structure of a group on the set of equivalence classes of based
maps from Sn to Y . The resulting group is denoted by πn(Y, y0). Applied
to the example above, with a single obstacle in the plane, this group π1 is
a single copy of the integers with addition as the operation. The integer
assigned to a given loop is the so-called winding number of the loop, which
counts how many times the loop wraps around the obstacle, with orientation
taken into account as a sign.
In Figure 2.3(b) the black loop has winding number +2, and the white

loop has winding number −1. If there were two obstacles, π1 would be a free
non-commutative group on two generators, and similarly n generators with
n obstacles. If we had a three-dimensional region, with a single ball-shaped
obstacle, then π1 would be trivial, but π2 would be identified with a copy of
the integers, the invariant integer given by a higher-dimensional version of
the winding number. The groups πn(Y, y0) are referred to as the homotopy
groups of a space Y . They serve as a form of pattern recognition for the
space, in that they detect occurrences of the pattern corresponding to the
n-spheres. The homotopy groups allow us to distinguish between spaces,
as follows.

Definition 2.8. Two topological spaces X and Y are said to be homotopy
equivalent if there are continuous maps f : X → Y and g : Y → X such that
gf and fg are homotopic to the identity maps on X and Y , respectively.
There is a corresponding notion for based maps and based homotopies.

Remark 2.9. We note that this is simply a ‘softened’ version of the usual
notion of isomorphism, where the composites are required to be equal to the
corresponding identity maps. Of course, spaces which are actually homeo-
morphic are always homotopy equivalent.

It is now possible to prove the following.

https://doi.org/10.1017/S0962492914000051 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492914000051


298 G. Carlsson

Proposition 2.10. Suppose that two spaces X and Y are based homo-
topy equivalent, with base points x0 and y0 as base points. Then all their
homotopy groups πn(X,x0) and πn(Y, y0) are isomorphic.

This result often allows us to conclude that two spaces are not homotopy
equivalent, and a fortiori not homeomorphic. For example, π2(S

2, 0) is
isomorphic to the group of integers, while π2(R

2, 0) is isomorphic to the
trivial group, and we may conclude that they are not homotopy equivalent.
Although they are easy to define and conceptually very attractive, it turns

out that homotopy groups of spaces are very difficult to compute. There is
another kind of invariant, called homology, which, instead of being easy to
define and difficult to compute, is difficult to define and easy to compute.

2.4. Homology

Homology was initially defined not for topological spaces directly, but rather
for spaces described in a very particular way, namely as simplicial com-
plexes. This description is very combinatorial, and it turns out that (a)
not every space can be described as a simplicial complex, and (b) spaces
can be described as simplicial complexes in many different ways. In the
early development of the subject, the apparent dependence of the homol-
ogy calculation on the simplicial complex structure was a serious problem,
and it was the subject of a great deal of research. These problems were
eventually resolved by Eilenberg, who showed that there is a way to extend
the definition of homology groups to all spaces, and in such a way that the
result depends only on the space itself and not on any particular structures
as a simplicial complex. Eilenberg’s solution was, however, extremely in-
finite in nature, and is not amenable to direct computation. Calculations
of homology for simplicial complexes remain the best method for explicit
calculation. Because most spaces of interest are either explicitly simpli-
cial complexes or homotopy equivalent to such complexes, it turns out that
simplicial calculation is sufficient for most situations.
Let S = {x0, x1, . . . , xn} denote a subset of a Euclidean space Rk. We say

that S is in general position if it is not contained in any affine hyperplane
of Rk of dimension less than n. When S is in general position, we define
the simplex spanned by S to be the convex hull σ = σ(S) of S in Rk. The
points xi are called vertices, and the simplices σ(T ) spanned by non-empty
subsets of T ⊆ S are called faces of σ. By a (finite) simplicial complex, we
will mean a finite collection X of simplices in a Euclidean space so that the
following conditions hold.

(1) For any simplex σ of X , all faces of σ are also contained in X .
(2) For any two simplices σ and τ of X , the intersection σ∩ τ is a simplex,

which is a face of both σ and τ .
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We note that any simplicial complex determines a combinatorial object
consisting of subsets of the full vertex set of the complex, motivating the
following definition.

Definition 2.11. By an abstract simplicial complex X, we will mean a
pair X = (V (X),Σ(X)), where V (X) is a finite set called the vertices of
X, and where Σ(X) is a subset (called the simplices) of the collection of all
non-empty subsets of V (X), satisfying the conditions that if σ ∈ Σ(X), and
∅ 
= τ ⊆ σ, then τ ∈ Σ(X). Simplices consisting of exactly two vertices are
called edges.

We note that a simplicial complex X determines an abstract simplicial
complex whose vertex set V (X ) is the set of all vertices of all simplices of X ,
and where a subset of V (X ) is in the collection of simplices Σ(X ) if and only
if the set is the set of vertices of some simplex of X . What is true but less
obvious is that the abstract simplicial complex determines the underlying
space of the simplicial complex up to homeomorphism. Indeed, given any
abstract simplicial complex X, we may associate to it a space |X|, the
geometric realization of X, and every simplicial complex is homeomorphic
to the geometric realization of its associated abstract simplicial complex.
Further, given two abstract simplicial complexesX and Y , a map of abstract
simplicial complexes f fromX to Y is a map of sets fV : V (X)→ V (Y ) such
that, for any simplex σ ∈ Σ(X), the subset fV (σ) ∈ ΣY . The geometric
realization construction is functorial, in the sense that any map f : X → Y
of abstract simplicial complexes induces a continuous map |f | : |X| → |Y |,
so that |f ◦ g| = |f | ◦ |g| and |idX | = id|X|. By a triangulation of a space Z,
we will mean a homeomorphism from the realization of an abstract simplicial
complex with Z. A space can in general be triangulated in many different
ways.
It turns out that it is very easy to describe the set of connected compo-

nents of a simplicial complex in terms of its associated abstract simplicial
complex. Let X be a simplicial complex, and X its associated abstract
simplicial complex.

Proposition 2.12. Let R be the equivalence relation on V (X) generated
by the binary relation R′ on V (X) given by

R′ = {(v, v′)|{v, v′} is a simplex of X}.
The connected components of X are in bijective correspondence with the
quotient V (X)/R.

We now consider the following very simple example of an abstract sim-
plicial complex, denoted by W .

The list of simplices in the corresponding simplicial complex is now

{{A}, {B}, {C}, {D}, {E}, {A,B}, {A,C}, {B,C}, {D,E}}.
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Figure 2.4. The simplicial complex W .

The geometric realization of this complex has two connected components,
namely the triangle ABC and the interval DE. Our first goal is to describe
the computation of the number of connected components using linear alge-
braic methods.

Definition 2.13. Let k be a field, and let S be a finite set. Then, by the
free k-vector space on the set S, we will mean the vector space Vk(S) of k-
valued functions on S, with the vector space operations given by pointwise
sum and scalar multiplication. Vk(S) has a basis Bk(S) identified with S,
consisting of the characteristic functions ϕs defined by ϕs(s

′) = 1 if s′ = s
and ϕs(s

′) = 0 if s 
= s′. In particular, the dimension of Vk(S) is #(S). If
f : S → T is a map of sets, then there is an associated linear transformation
Vk(f) : Vk(S) → Vk(T ), defined on an element ϕ : S → k of Vk(S) by the
formula

Vk(f)(ϕ)(t) =
∑

{s|f(s)=t}
ϕ(s).

Note that a basis element ϕs is carried under Vk(f) to a basis element ϕf(s).

We next suppose that we are given a finite set X, with a binary relation
R ⊆ X × X. We define a subspace Vk(R) ⊆ Vk(X) to be the subspace
spanned by the set

{ϕx − ϕx′ |(x, x′) ∈ R}.
The following is now easy to show.

Proposition 2.14. There is an isomorphism of k-vector spaces

Vk(X)/Vk(R) ∼= Vk(X/R).

Moreover, the composite Vk(X) → Vk(X)/Vk(R) → Vk(X/R) is the linear
transformation induced by the projection X → X/R.

For simplicity, we will now assume that the field k is the field with two
elements {0, 1}, with 1 + 1 = 0, so 1 = −1. We associate to the simplicial
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A B

C D

E

Figure 2.5. The complex X.

complex W shown in Figure 2.4 a matrix denoted by ∂1, given by

∂1 =




AB AC BC DE

A 1 1 0 0
B 1 0 1 0
C 0 1 1 0
D 0 0 0 1
E 0 0 0 1


.

The columns are in correspondence with the edges of the complex, and
the rows are in correspondence with the vertices. The entries are determined
by incidence of a vertex with an edge: it is 1 if the vertex is contained in the
edge and 0 if not. Examining the columns, and noting that v − v′ = v + v′
because of our choice of field, we see that they are exactly the elements

{v − v′|v and v′ span an edge in W}.
We now have the following consequence of Proposition 2.12.

Proposition 2.15. Let π0(|W |) denote the set of connected components
of |W |, and let v0(W ) denote the set of vertices of W . Then the vector
space Vk(π0(|W |)) is isomorphic to the quotient space of Vk(v0(W )) by the
column space col(∂1) of ∂1. Moreover, there is a natural choice of basis for
Vk(π0(W )) consisting of equivalence classes of vertices.

In particular, the number of connected components is equal to the dimen-
sion of Vk(v0(W ))/col(∂1), which by Proposition 2.4 is equal to #(v0(W ))−
rank(∂i). This linear algebraic interpretation of the number of connected
components suggests that we try to interpret the nullity of ∂1 as well as
the rank.
We see easily that the rank of ∂1 is 3, and consequently (by the rank

nullity theorem) that the nullity of ∂1 is 4− rank(∂1) = 1. Inspection shows
that a basis for the null space consists of the element

ϕAB + ϕAC + ϕBC .
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A B

C D

E




AB AC BD BE CD DE

A 1 1 0 0 0 0
B 1 0 1 1 0 0
C 0 1 0 0 1 0
D 0 0 1 0 1 1
E 0 0 0 1 0 1




Figure 2.6. A complex with a two-simplex added.

If we permit ourselves to think of the sums as unions, this linear combination
corresponds to the union of the edges AB,AC, and BC. This union is a
cycle of length three in the complex W shown in Figure 2.4. It is a useful
exercise to make similar computations for other graphs, in particular n-
cycles for numbers > 3, to convince ourselves that the nullity is in each case
the number of cycles in the graph, suitably interpreted. To understand the
interpretation, consider the following complex.
We can see that there are two obvious cycles, AB + BD + DC + AC

and BE + ED + DB, represented by the elements of the null space ζ1 =
ϕAB + ϕBD + ϕCD + ϕAC and ζ2 = ϕBE + ϕED + ϕDB. However, there is
another cycle given by

AB +BE + ED +DC + CA. (2.1)

Note, however, that the sum ζ1 + ζ2 is equal to the element

ϕAB + ϕBE + ϕED + ϕDC + ϕCA,

which is the element of the null space of ∂1 corresponding to the cycle in
(2.1). The cycles actually correspond to the elements of vector space, and
can therefore be added and multiplied by scalars. This give an extremely
useful way of organizing the cycles. In particular, one can construct a basis
of the cycles, instead of counting them all individually.
Next, consider the complex in Figure 2.6, with its corresponding ∂1 ma-

trix. The shading reflects the fact that there is now a two-simplex, namely
{B,E,D}. As in the complex X in Figure 2.5, we have the two loops
ABDC and BED. In this case, though, the loop BDE is filled in by a sim-
plex, and the loop ABEDC can be deformed in the space to the loop ABDC
by traversing the two-simplex. So, by analogy with the discussion of ho-
motopy in Section 2.3, we should construct our formalism in such a way
that the two distinct cycles become equal. More importantly, though, we
are interested in constructing vector spaces which in the end should depend
only on the underlying space, not on the particular triangulation, that is,
on the particular way in which it is described as a simplicial complex.
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Figure 2.7. Two triangulations of the same space.

In Figure 2.7, we see the same space expressed as a simplicial complex in
two different ways. If we construct ∂1 as above, we find that the null space
of ∂1 has dimension 12 in the case of the left-hand complex, and dimension
20 in the case of the right-hand complex. It is therefore clear that to have a
meaningful measure of the number of loops, independent of the particular
simplicial complex structure, we will need to modify or augment the linear
algebra we have so far introduced.
To motivate the construction, consider the complex X in Figure 2.6. In

addition to the vertices and edges, we now have a two-simplex, whose bound-
ary is the cycle BED. The corresponding linear combination

ϕ{B,E} + ϕ{E,D} + ϕ{B,D}
in Vk(σ1(Z)) is the difference between the linear combinations

ϕ{A,B} + ϕ{B,E} + ϕ{E,D} + ϕ{D,C} + ϕ{C,A}
and

ϕ{A,B} + ϕ{B,D} + ϕ{D,C} + ϕ{C,A},

again recalling that differences and sums are the same thing in our field k.
The key idea is that we form the quotient of the null space of ∂1 by the
element

ϕ{B,E} + ϕ{E,D} + ϕ{B,D},

which will be called a boundary because it is derived from the boundary
of the simplex {B,E,D}. This discussion now leads to the following con-
struction attached to an abstract simplicial complex, which includes all the
higher-dimensional simplices.
We let X be a simplicial complex, and as above let Σi(X) denote the set

of i-dimensional simplices, that is, those simplices which as subsets of the
vertex set V (X) have cardinality i+1. We define matrices ∂i whose columns
are in one-to-one correspondence with Σi(X), and whose rows are in one-
to-one correspondence with the Σi−1(X), by declaring that the entry in the
row corresponding to an (i− 1)-simplex τ and in the column corresponding
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to an i-simplex τ ′ is 1 if τ ⊆ τ ′ as sets of vertices, and it is 0 otherwise.
This definition is consistent with the matrices we have constructed in the
special cases above. There is now a key observation relating the matrices ∂i
and ∂i−1.

Proposition 2.16. The matrix product ∂i−1 · ∂i is equal to the zero ma-
trix.

Proof. The rows of ∂i−1 ·∂i are in one-to-one correspondence with Σi−2(X),
and its columns are in one-to-one correspondence with Σi(X). It is easy to
see that the entry in the row corresponding to an (i − 2)-simplex τ and
in the column corresponding to an i-simplex τ ′ is equal to the number of
elements τ̂ of Σi−1(X) which satisfy τ ⊆ τ̂ ⊆ τ ′. This number is either 0,
in the case τ 
⊂ τ ′, or 2, in the case τ ⊂ τ ′. Both numbers are zero in the
field k.

The matrices ∂i can be regarded as the matrices attached to linear trans-
formations from Vk(Σi(X)) to Vk(Σi−1(X), relative to the standard bases
of Vk(Σi(X)). Abusing notation, we will denote the matrices and the trans-
formations by ∂i. What we now have is a diagram,

· · · ∂i+2−→ Vk(Σi+1(X))
∂i+1−→ Vk(Σi(X))

∂i−→ Vk(Σi−1(X))
∂i−1−→ · · ·

∂2−→ Vk(Σ1(X))
∂1−→ Vk(Σ0(X)),

in which each composite of two consecutive linear transformations is iden-
tically zero. This observation now suggests the following definition.

Definition 2.17. By a chain complex C∗ over a field k, we will mean a
choice of k-vector space Ci for every i ≥ 0, together with linear transforma-
tions ∂i : Ci → Ci−1 for all i, so that ∂i−1 · ∂i ≡ 0 for all i.

We now extract information as follows. For every i, we define two subp-
saces Bi and Zi of Ci. Zi is defined as the null space of ∂i, and Bi is defined
as the image of ∂i+1. By Proposition 2.16, it follows that Bi ⊆ Zi, and we
defineHi(C∗) to be the quotient space Zi/Bi. One can check that in the case
of the complex in Figure 2.6, H1 turns out to be a one-dimensional vector
space over k, with ϕAB+ϕBD+ϕDC+ϕCA as an element in Z1 whose image
in Z1/B1 is a non-trivial element, therefore a basis for H1. These vector
spaces, applied to the chain complex associated with a simplicial complex,
will be called the homology groups of the complex.
We now describe the linear algebra which is carried out to compute the

homology groups, and in particular their dimension. That is, we want to
interpret the computation of the homology groups of a complex in terms
of row and column operations. The row and column operations will be
multiplication of a single row (column) by a non-zero element of k, adding
a multiple of one row (column) to another, and transposing a pair of rows
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(columns). We recall Remark 2.5, which asserts that given a matrix A over
a field k, one may perform both row and column operations of the type
described above to obtain a matrix A having the normal form[

In 0
0 0

]
,

where n is the rank of A. A is uniquely determined by A.
In order to study homology, we will instead need to study the normal

forms of pairs of matrices (A,B) with A ·B = 0.

Proposition 2.18. Let

U
B−→ V

A−→W

be linear transformations, such that A ·B = 0. Let F : U → U , G : V → V ,
and H : W → W be invertible linear transformations. Then we have
HAG−1 ·GBF = 0, and there is an isomorphism of vector spaces

N(A)/im(B) ∼= N(HAG−1)/im(GBF ).

Proof. Entirely analogous to Proposition 2.3.

The matrix version now uses the following set of admissible operations on
such a pair. They will be the following.

(1) An arbitrary row operation on A.

(2) An arbitrary column operation on B.

(3) Perform a column operation on A and a row operation on B simultane-
ously, with the operations related as follows. If the column operation
on A is multiplication of the ith column by a non-zero constant x, then
the row operation on B is multiplication of the ith row by x−1. If the
column operation on A is the transposition of two columns, then the
row operation on B is the transposition of the corresponding rows of
B. Finally, if the column operation on A is the addition of x times
the ith column to the jth column, then the row operation on B is the
subtraction of x times the jth row from the ith row.

Note that if we apply any of these operations to a pair (A,B) to obtain
a pair (A′, B′), then (A′, B′) also satisfies A′ · B′ = 0. We now have the
following counterpart of Proposition 2.4 above.

Proposition 2.19. Given a pair (A,B), with A · B = 0, we can perform
operations of the type described above to obtain a pair (A′, B′), with



In 0 0
0 0 0
0 0 0


,


0 0 0
0 0 0
0 0 Im




.
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Here, if there are k, l and m columns in the leftmost, middle, and rightmost
blocks of columns of A respectively (and consequently k, l and m rows in
the top, middle, and bottom blocks of rows of B, respectively), then the
dimension of the homology is l. The pair (A′, B′) is uniquely determined by
the pair (A,B).

Proof. We first perform arbitrary row and column operations to A (making
sure to apply the corresponding row operations to B whenever a column
operation is applied to A), to obtain a pair (A′, B′) of the form



Ik 0 0
0 0 0
0 0 0


,


B

′
11 B′

12 B′
13

B′
21 B′

22 B′
23

B′
31 B′

32 B′
33






for some k. Because of the condition A′ · B′ = 0, it is clear that B′
11 =

B′
12 = B′

13 = 0. We can now perform row and column operations on the
matrix B′, which is of the form

 0 0 0
B′

21 B′
22 B′

23

B′
31 B′

32 B′
33


.

We perform only row operations involving the last l+m rows, since the upper
k rows are identically zero. Each such row operation has a corresponding
column operation on the matrix A′ which affects only the rightmost l +
m columns, and therefore has no effect. Performing these operations is
equivalent to performing arbitrary row and column operations to the matrix[

B′
21 B′

22 B′
23

B′
31 B′

32 B′
33

]
,

which we denote by B̂′. We can therefore perform operations (which have

no effect on A′) so as to put B̂′ into the form[
Im 0
0 0

]
,

and then transpositions of rows and columns so as to put it into the form[
0 0
0 Im

]
.

That this representation is unique is clear from the fact that k and m are
the ranks of the matrices A and B, respectively, and this completes the
proof.

2.5. Functoriality

We have defined vector spaces associated to simplicial complexes, and in
Section 2.3, groups πn(X,x0) associated to a space X with base point x0,
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and sets π0(X). The most important property of these constructions is that
they are able to reflect the behaviour of maps between simplicial complexes
and continuous maps between topological spaces. This property is referred
to as functoriality. In the case of π0(X), this is simply the statement that
given a continuous map f : X → Y , there is an associated map of sets
π0(f) : π0(X) → π0(Y ), since any two points which are connected by a
path in X (and are therefore in the same path component) map under f
to points in Y which are connected by a path. The path in Y is simply
the image of the path in X. Informally, this is just the statement that
‘components map to components’. More generally, given a continuous map
f : X → Y , with f(x0) = y0, there is an induced homomorphism of groups
πn(f) : πn(X,x0)→ πn(Y, y0), which is defined by carrying the equivalence
class of ϕ : Sn → Y to the equivalence class of f · ϕ : Sn → Y . It is
easily shown that this is well defined. Similarly, for any map of abstract
simplicial complexes f : X → Y , there is an induced linear transformation
Hn(f) : Hn(X)→ Hn(Y ). It is obtained by showing the following.

(1) There are linear transformations Vk(Σn(f)) : Vk(Σn(X))→ Vk(Σn(Y ))
which carry the basis elements ϕτ to the basis elements ϕf(τ).

(2) The homomorphisms ∂i respect the maps Vk(Σn(f)) in the sense that
the diagrams

Vk(Σn(X)) Vk(Σn(Y ))

Vk(Σn−1(X)) Vk(Σn−1(Y ))
�

∂n

�Vk(Σn(f))

�
∂n

�Vk(Σn(f))

commute.

(3) It follows from (2) above that Vn(Σn(f)) carries Zn(X) into Zn(Y ) and
Bn(X) into Bn(Y ).

(4) It follows from (3) above that there is an induced homomorphism

Hn(X) = Zn(X)/Bn(X)
Hn(f)−→ Zn(Y )/Bn(Y ) = Hn(Y ).

Remark 2.20. Functoriality of algebraic invariants in topology is one of
its fundamental tools. We will see below that it is what permits us to define
sensible homological invariants of finite metric spaces or point clouds.

2.6. Extending from complexes to spaces

As we have defined it, homology applies to simplicial complexes. This means
that when one is given a topological space X, say defined as the set of so-
lutions of a set of equations, there is not yet a natural definition of the
homology groups of X, without constructing a triangulation of X. Even if
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one can construct a triangulation, it is not clear why a different triangula-
tion would not give a different answer. The problem of extending homology
spaces without a given triangulation was studied intensively in the early
1900s, and was resolved by Eilenberg (1944). He defined homology groups
Hn(X) (called the singular homology groups) for any space X by construct-
ing a chain complex of infinite-dimensional vector spaces (a basis of Cn(X)
is given by the set of all continuous maps ∆n → X) whose homology agrees
with the simplicially constructed homology for any triangulation of X. The
homology groups constructed with these complexes are functorial for any
continuous map f : X → Y , by which we mean that there is a linear
transformation Hn(f) : Hn(X) → Hn(Y ) associated to f . An additional
important property is homotopy invariance, which asserts that if two maps
f, g : X → Y are homotopic (see Definition 2.6), then the linear transforma-
tions Hn(f) and Hn(g) are equal. This is a powerful property, and it allows
direct calculations of homology in some cases. We say that a topological
space X is contractible if idX is homotopic to a constant map.

Example 2.21. Rn is contractible, because we have the explicit homotopy
H(v, t) = (1− t)v from idRn to the constant map with value 0.

Proposition 2.22. If X is a contractible space, then Hn(X) = {0} for all
n > 0.

Proof. By the homotopy property and functoriality, the identity transfor-
mation on Hn(X) is equal to the composite Hn(X) → Hn(x0) → Hn(X),
where x0 ∈ X is a point such that f is homotopic to the constant map with
value x0. But it is easy to check directly that Hn(x0) = {0}, and it now
follows that every element in Hn(X) is 0.

Remark 2.23. The singular homology groups are of course impossible
to compute directly, since in particular they involve linear algebra on vec-
tor spaces of uncountable dimension. This means that when we wish to
compute homology, we must either construct a triangulation or use other
computational techniques, called excision and long exact sequences, which
have been developed for this purpose. The important point in the definition
is that it gives well-defined groups for any space, which behave functorially
for continuous maps.

2.7. Making homology more sensitive

It is useful to ask how sensitive a measure homology is of the shape of a
simplicial complex, but considering a simple shape recognition task, namely
the recognition of printed letters. We begin with the first three letters of
the alphabet, and find that H1 succeeds in distinguishing between them.
However, after this initial success, we see that every other letter has the
same first Betti number as one of these three: see Figure 2.8.
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A
(a) β1 = 1

B
(b) β1 = 2

C
(c) β1 = 0

β1 = 0 {C,E,F,G,H, I, J,K,L,M,N, S,T,U,V,W,X,Y,Z}
β1 = 1 {A,D,O,P,Q,R}
β1 = 2 {B}

Figure 2.8. Discrimination of letters by first Betti number.

Homology can be refined to discriminate more finely between the letters.
To understand how this works, we digress a bit to discuss how an analo-
gous problem in manifold topology is approached. In Section 2.6, we saw
that the homology groups Hi(R

n) vanish for all i > 0. What this means is
that homology is unable to distinguish between Rm and Rn when m 
= n.
From the point of view of a topologist who is interested in distinguishing
different manifolds from each other, this means that homology is in some
ways a relatively weak invariant. This failure can be addressed by comput-
ing homology on ‘auxiliary’ or ‘derived’ spaces, constructed using various
geometric constructions.

(1) Removing a point. While the homology groups of Rn vanish, the homol-
ogy groups of Rn−{0} do not. To see this, we observe that we have the
inclusion i : Sn−1 ↪→ Rn−{0} as well as the map r : Rn−{0} → Sn−1

defined by r(v) = f/‖v‖; r ·i is equal to the identity map for Sn−1, and
the other composite i · r is homotopic to the identity map of Rn − {0}
via the straight-line homotopy H(v, t) = (1 − t)i · r + t idRn−{0}. The
existence of this homotopy shows that the map Hi(r) is an isomor-
phism. It is injective because, given any 0 
= x ∈ Hi(R

n − {0}), we
have x = Hi(i ·r)(x) = Hi(i) ·Hi(r)(x), so Hi(r)(x) 
= 0. It is surjective
because for any y ∈ Hi(S

n−1), y = Hi(r · i)(y) = Hi(r)Hi(i)(y), which
exhibits y as the image of Hi(i)(y). Because it is easy to show that
Rn − {v} is homeomorphic to Rn − {0}, one can detect the difference
between Rn and Rm, with m 
= n, by recognizing that the homology
of the results of removing a single point from the two spaces are differ-
ent, since homology detects the difference between spheres of different
dimensions.

(2) One-point compactification. For any space X, one may construct its
one-point compactification by adjoining a single point ∞ to X, and
declaring that neighbourhoods of ∞ are exactly the complements of
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∞

0

Figure 2.9. One-point compactification.

A

Figure 2.10. Removing singular points.

compact subsets of X together with∞. Figure 2.9 shows the one-point
compactification of the real line. Note that although the real line is
contractible and therefore has vanishing homology, its one-point com-
pactification is homeomorphic to the circle, and has non-vanishing H1.

(3) Removing singular points. Consider the space given by the crossing
of two lines. This space is also contractible, as one can easily see by
retracting each line segment onto the crossing point A. On the other
hand, we recognize that its shape has features which distinguish it from
an interval or a circle, and might want to detect that homologically. If
we remove the singular point A, we will find that the space remaining
breaks up into four distinct components, which can be detected by H0.

To think through how we might apply these ideas to the problem of
distinguishing between letters, let us define an end of a spaceX to be a point
x ∈ X, so that there is a neighbourhood N of x which is homeomorphic to
[0, 1), and so that the homeomorphism carries x to 0.
In this case, the auxiliary or derived space is the set of ends of the space,

e(X), and we can compute its zero-dimensional homology H0, to get the
Betti number β0. We now obtain the partition of the set of letters shown
in Figure 2.11.
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A
(a) two ends

D
(b) no ends

X
(c) four ends

β1 = 0, β0(e(X)) = 0 none
β1 = 0, β0(e(X)) = 1 none
β1 = 0, β0(e(X)) = 2 {C,G, I, J,L,M,N, S,U,V,W,Z}
β1 = 0, β0(e(X)) = 3 {E,F,T,Y}
β1 = 0, β0(e(X)) = 4 {H,K,X}
β1 = 1, β0(e(X)) = 0 {D,O}
β1 = 0, β0(e(X)) = 1 {P,Q}
β1 = 0, β0(e(X)) = 2 {A,R}
β1 = 2, β0(e(X) = 0 {B}

Figure 2.11. Improved discrimination of letters
by using ends as well as first Betti number.

We have obtained improved discrimination in this way. Removing singular
points and computing β0 produces further resolution on the letters. For
further discussion of this kind of analysis, see Carlsson, Zomorodian, Collins
and Guibas (2005). If one uses homology on suitably constructed auxiliary
spaces, one can obtain classification criteria for many interesting problems
in shape discrimination.

3. Shape of data

3.1. Motivation

The main goal of this paper is to extend the homological methods described
in Section 2.4 to obtain similar methods applicable to finite metric spaces.
The methods that we describe have been developed in Robins (1999), Edels-
brunner, Letscher and Zomorodian (2002), and Zomorodian and Carlsson
(2005). There is of course a naive extension which regards a finite metric
space as a topological space in the usual way, but this method endows the
points with the discrete topology. In other words, it contains no informa-
tion about shape. What we would like to do is to produce a tool which is
capable, for example, of recognizing that the metric space represented by
Figure 3.1 contains the pattern of a loop. The set of points, as a topological
space, is discrete, but we are able visually to infer that it appears to be
sampled from some kind of circular geometry. What will be shown in this
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Figure 3.1. A ‘statistical circle’.

section is that it is possible to develop just such a tool. To motivate this
construction, we will look at a commonly used statistical methodology.

3.2. Single linkage clustering

The very simplest aspect of the shape of a geometric object is its number of
connected components. Statisticians have thought a great deal about what
the counterpart to connected components should be for point cloud data,
under the heading of clustering: see Hartigan (1975) and Kogan (2007). One
scheme for clustering proceeds as follows. We suppose we are given a finite
metric space with points X = {x1, . . . , xn}, and given pairwise distances.
For every non-negative threshold R, we may form the relation ∼R on the
set X by the criterion

x ∼R x′ if and only if d(x, x′) ≤ R.

We let �R denote the equivalence relation generated by ∼R. The set of
equivalence classes under �R now gives a partition of X, which can be
thought of as a candidate for the connected components in X. So for each
threshold R, we obtain a partition of X. One can now ask which choice of
R is the ‘right’ one. This is an ill-defined question, although there are inter-
esting heuristics. Another approach is to observe that there is compatibility
across changes in R, in that if R ≤ R′, then the partition associated to R′ is
coarser than the partition associated to R, as is indicated in Figure 3.2. The
diagram indicates the change in clustering as the threshold is altered, and
shows the increasing coarseness as R increases. What was recognized by
statisticians is that there is a single profile, called a dendrogram, which en-
codes the clusterings at all the thresholds simultaneously. Figure 3.3 shows
a dendrogram which is associated to the situation given above. The result
is a tree (a simplicial complex with no loops) T together with a reference
map from T to the non-negative real line. This tree can be viewed all at
once. The clustering at a given threshold R is given by drawing a horizontal
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Figure 3.2. Single linkage hierarchical clustering.

Figure 3.3. Dendrogram.

line at level R across the tree, and the clusters correspond to the points of
intersection. In Figure 3.3, the reference map is the height function above
the x-axis.
There is another way to interpret the dendrogram, less visually but for-

mally identical. For each threshold R, we will let XR denote the set of
equivalence classes for the equivalence relation �R. Because the partition
only coarsens as R increases, there is a map of sets XR → XR′ whenever
R ≤ R′, which assigns to each cluster at level R the (unique) cluster at level
R′ in which it is included. This construction is sufficiently useful that we
will give it a name.

Definition 3.1. By a persistent set, we will mean a family of sets {XR}R∈R
together with set maps

ϕR′
R : XR → XR′ for all R ≤ R′,

so that

ϕR′′
R′ ϕR′

R = ϕR′′
R for all R ≤ R′ ≤ R′′.

More generally, for any kind of objects, such as simplicial complexes, vector
spaces or topological spaces, we may speak of a persistent object as a family
of such objects parametrized by R, together with maps (maps of simplicial
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complexes, linear transformations, continuous maps, etc.) from the object
parametrized by r to the one parametrized by r′ whenever r ≤ r′, with the
same compatibilities mentioned above.

For each persistent set there is an associated dendrogram and vice versa.
There is a reformulation of the dendrogram (and hence a persistent set) as-
sociated to a finite metric space using topological notions which will greatly
clarify the development of methods of defining higher-dimensional homology
for finite metric spaces.

Definition 3.2. Given any finite metric space X and non-negative real
number R, we construct an abstract simplicial complex VR(X,R), called
the Vietoris–Rips complex of X, by letting its vertex set be the underlying
set of X, and declaring that any subset {x0, . . . , xn} of X is a simplex of
VR(X,R) if and only if

d(xi, xj) ≤ R for all i, j ∈ {0, . . . , n}.
We note that whenever R ≤ R′ there is an inclusion VR(X,R) ↪→VR(X,R′),
because the vertex sets of the two abstract complexes are the same, and that
any simplex of VR(X,R) is also a simplex of V (X,R′). It follows that we
obtain maps

|VR(X,R)| → |VR(X,R′)|
as well. In short, the family of Vietoris–Rips complexes {VR(X,R)}R∈R
forms a persistent simplicial complex.

The point of this definition is that given any finite metric space X, we
may define the set π0(|VR(X,R)|) of connected components of |VR(X,R)|,
and due to the functoriality of the construction π0, we obtain a persistent
set {π0(|VR(X,R)|)}R. This persistent set can easily be seen to be identical
to the persistent set obtained above. The point is that it is induced by a
map of topological spaces, which will point the way to defining homological
shape invariants of finite metric spaces.

3.3. Persistence

The value of the Vietoris–Rips construction is that for each threshold we
are able to construct a simplicial complex and therefore a topological space,
rather than just a partitioning or clustering of the finite metric space. In
the example shown in Figure 3.4 the underlying metric space consists of six
points, and is pictured on the left. The lower bar is the threshold param-
eter R, and on the right we have a picture of the Vietoris–Rips complex
associated to this metric space and this threshold. The metric space looks
as if it might be sampled from a loop, and we note that the Vietoris–Rips
complex contains a loop. This suggests that we should use Vietoris–Rips
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R

Figure 3.4. Metric space and associated Vietoris–Rips complex.

Figure 3.5. Increasing family of Vietoris–Rips complexes.

complexes as representations of the shape of finite metric spaces. Of course,
the Vietoris–Rips complex is dependent on the choice of threshold, with the
Vietoris–Rips complex consisting of six discrete points when R is smaller,
and it becomes a full simplex (which does not admit a non-trivial loop)
when R is larger than the diameter of the original metric space. This sug-
gests that we would need to find the ‘right’ value of R to capture the shape.
However, there is no obvious heuristic for making this choice. The situation
is entirely analogous to the situation arising in single linkage clustering,
described in the previous section. There, it was possible to construct a
profile, the dendrogram, which provided a simple representation of the be-
haviour of the clustering for all values of the threshold parameter R at once.
We will now show that there is a similar profile which allows us to study
higher-dimensional homology of the Vietoris–Rips complexes at all thresh-
old values at once. In the example in Figure 3.5 we show the Vietoris–Rips
complexes for increasing values of R, and we observe that we have the in-
clusions of complexes for smaller values of R into the complexes for larger
values. We now recall the functoriality of homology from Section 2.5, and
fix a non-negative integer i. By applying Hi to the family {VR(X,R)}R∈R,
we obtain a family {Hi(VR(X,R))}R∈R of vector spaces parametrized by
the real line, and the functoriality of Hi allows us to give this family the
structure of a persistent vector space. This persistent vector space contains
within it the information about the homology of all the Vietoris–Rips com-
plexes for every threshold parameter R, as well as the behaviour of the linear
transformations induced by the inclusion maps from one Vietoris–Rips com-
plex to another. The question for us now is whether or not there is a simple
visual or conceptual representation of the persistent vector space, like the
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dendrogram for the case of the persistent sets in single linkage clustering.
There is such a representation, and in order to present it we will need to
introduce a bit of algebra.

3.4. The algebra of persistence vector spaces

We first define persistence vector spaces.

Definition 3.3. Let k be any field. Then, by a persistence vector space
over k, we will mean a family of k-vector spaces {Vr}r∈R, together with linear
transformations LV (r, r

′) : Vr → Vr′ whenever r ≤ r′, so that LV (r
′, r′′) ·

LV (r, r
′) = LV (r, r

′′) for all r ≤ r′ ≤ r′′. A linear transformation f of
persistence vector spaces over k from {Vr} to {Wr} is a family of linear
transformations fr : Vr →Wr, so that for all r ≤ r′, all the diagrams

Vr Vr′

Wr Wr′
�

fr

�LV (r,r′)

�

fr′

�LW (r,r′)

commute in the sense that

fr′ ◦ LV (r, r
′) = LW (r, r′) ◦ fr.

A linear transformation is an isomorphism if it admits a two-sided inverse. A
sub-persistence vector space of {Vr} is a choice of k-subspaces Ur ⊆ Vr, for all
r ∈ [0,+∞), so that LV (r, r

′)(Ur) ⊆ Ur′ for all r ≤ r′. If f : {Vr} → {Wr}
is a linear transformation, then the image of f , denoted by im(f), is the
sub-persistence vector space {im(fr)}.
Remark 3.4. In many constructions the variable will be restricted to
[0,+∞). This will be clear from the context and should not cause con-
fusion.

The notion of a quotient space also extends to persistence vector spaces.
If {Ur} ⊆ {Vr} is a sub-persistence vector space, then we can form the
persistence vector space {Vr/Ur}, where LV/U (r, r

′) is the linear transfor-
mation from Vr/Ur to Vr′/Ur′ given by sending the equivalence class [v] to
the equivalence class [LV (r, r

′)(v)] for any v ∈ Vr.
We will also want to extend the notion of the free vector space on a set.

Let X be any set, equipped with a function ρ : X → [0,+∞). We will refer
to such a pair (X, ρ) as an R+-filtered set. Then, by the free persistence
vector space on the pair (X, ρ), we will mean the persistence vector space
{Wr}, with Wr ⊆ Vk(X) equal to the k-linear span of the set X[r] ⊆ X
defined by X[r] = {x ∈ X|ρ(x) ≤ r}. Note that X[r] ⊆ X[r′] when r ≤ r′,
so there is an inclusion Wr ⊆Wr′ . The following is a simple observation.
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Proposition 3.5. A linear combination
∑

x axx ∈ Vk(X) lies in Wr if and
only if ax = 0 for all x with ρ(x) > r.

We will write {Vk(X, ρ)r} for this persistence vector space. We say a
persistence vector space is free if it is isomorphic to one of the form Vk(X, ρ)
for some (X, ρ), and we say it is finitely generated if X can be taken to be
finite.

Definition 3.6. A persistence vector space is finitely presented if it is
isomorphic to a persistence vector space of the form {Wr}/ im(f) for some
linear transformation f : {Vr} → {Wr} between finitely generated free
persistence vector spaces {Vr} and {Wr}.

The choice of a basis for vector spaces V and W allows us to represent
linear transformations from V to W by matrices. We will now show that
there is a similar representation for linear transformations between free per-
sistence vector spaces. For any pair (X,Y ) of finite sets and field k, an
(X,Y )-matrix is an array [axy] of elements of axy of k. We write r(x) for
the row corresponding to x ∈ X, and c(y) for the column corresponding to y.
For any finitely generated free persistence vector space {Vr} = {Vk(X, ρ)r},
we observe that Vk(X, ρ)r = Vk(X) for r sufficiently large, since X is finite.
Therefore, for any linear transformation f : {Vk(Y, σ)r} → {Vk(X, ρ)r} of
finitely generated free persistence vector spaces, f gives a linear transfor-
mation f∞ : Vk(Y )→ Vk(X) between finite-dimensional vector spaces over
k, and using the bases {ϕx}x∈X of Vk(X) and {ϕy}y∈Y of Vk(Y ) determines
an (X,Y )-matrix A(f) = [axy] with entries in k. Note that in order to
obtain the usual notion of a matrix as a rectangular array, we would need
to impose total orderings on X and Y , but the matrix manipulations do not
require this.

Proposition 3.7. The (X,Y )-matrix A(f) has the property that axy = 0
whenever ρ(x) > σ(y). Any (X,Y )-matrix A satisfying these conditions
uniquely determines a linear transformation of persistence vector spaces

fA : {Vk(Y, σ)r} → {Vk(X, ρ)r}
and the correspondences f → A(f) and A→ fA are inverses to each other.

Proof. The basis vector y lies in Vk(Y, σ)σ(y). On the other hand,

f(ϕy) =
∑
x∈X

axyϕx.

By Proposition 3.5, on the other hand,
∑

x∈X axyϕx only lies in Vk(X, ρ)σ(y)
if all coefficients axy, for ρ(x) > σ(y), are zero.
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When we are given a pair of R+-filtered finite sets (X, ρ) and (Y, σ),
we will call an (X,Y )-matrix satisfying the conditions of Proposition 3.7
(ρ, σ)-adapted.
Suppose now that we are given (X, ρ) and (Y, σ), with ρ and σ both

[0,+∞)-valued functions on X and Y , respectively. Then any matrix A =
[axy] satisfying the conditions of Proposition 3.7 determines a persistence
vector space via the correspondence

A
θ−→ Vk(X, ρ)/im(fA).

We have the following facts about this construction.

Proposition 3.8. For any A as described above, θ(A) is a finitely pre-
sented persistence vector space. Moreover, any finitely presented persistence
vector space is isomorphic to one of the form θ(A) for some such matrix A.

Proof. Immediate from the correspondence between matrices and linear
transformations given in Proposition 3.7.

Proposition 3.9. Let (X, ρ) be an R+-filtered set. Then, under the ma-
trix/linear transformation correspondence, the automorphisms of Vk(X, ρ)
are identified with the group of all invertible (ρ, ρ)-adapted (X,X)-matrices.

We now have the following sufficient criterion for θ(A) to be equal to
θ(A′), entirely analogous to Proposition 2.4.

Proposition 3.10. Let (X, ρ) and (Y, σ) be R+ filtered sets, and let A be
a (ρ, σ)-adapted (X,Y )-matrix. Let B and C be (ρ, ρ)-adapted (respectively
(σ, σ)-adapted) (X,X)-matrices (respectively (Y, Y )-matrices). Then BAC
is also (ρ, σ)-adapted, and the persistence vector space θ(A) is isomorphic
to θ(BAC).

Remark 3.11. For any r ∈ F , where F is a field, the elementary matrix
e(i, j, r) is given by ett(i, j, r) = 1 for all t, eij(i, j, r) = r, and euv(i, j, t) = 0
whenever (u, v) 
= (i, j) and u 
= v. Left multiplication by e(i, j, r) has the
effect of adding r times the jth row to the ith row, and right multiplication
by e(i, j, r) has the effect of adding r times the ith column to the jth column.
This observation now suggests that given two R+ filtered sets (X, ρ) and
(Y, σ), and a (ρ, σ)-adapted matrix A, we define an adapted row operation to
be an operation which adds a multiple of r(x) to r(x′), where ρ(x) ≥ ρ(x′).
Similarly, we define an adapted column operation to be an operation which
adds a multiple of c(y) to c(y′), where σ(y) ≤ σ(y′).

We will use this result to classify up to isomorphism all finitely presented
persistence vector spaces. We begin by defining a persistence vector space
P (a, b) for every pair (a, b), where a ∈ R+, b ∈ R+∪{+∞}, and a < b, with
the obvious interpretation when b = +∞. P (a, b) is defined by P (a, b)r = k
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for r ∈ [a, b), P (a, b) = {0} when r /∈ [a, b), and where L(r, r′) = idk
whenever r, r′ ∈ [a, b). This definition can be interpreted in the obvious
way when b = +∞. We note that P (a, b) is finitely presented. For, in the
case where b is finite, let (X, ρ) and (Y, σ) denote R+-filtered sets (X, ρ)
and (Y, σ), with the underlying sets consisting of single elements x and y,
and with ρ(x) = a and σ(y) = b. Then the (1 × 1) (X,Y )-matrix matrix
[1] is (ρ, σ)-adapted since a ≤ b, and it is clear that P (a, b) is isomorphic
to θ([1]). When b = +∞, P (a, b) is isomorphic to the persistence vector
space Vk(X, ρ), and can therefore be written as θ(0), where 0 denotes the
zero linear transformation from the persistence vector space {0}.
Proposition 3.12. Every finitely presented persistence vector space over
k is isomorphic to a finite direct sum of the form

P (a1, b1)⊕ P (a2, b2)⊕ · · · ⊕ P (an, bn) (3.1)

for some choices ai ∈ [0,+∞), bi ∈ [0,+∞], and ai < bi for all i.

Proof. It is clear that a (ρ, σ)-adapted (X,Y )-matrix A which has the
property that every row and column has at most one non-zero element,
which is equal to 1, has the property that θ(A) is of the form described in
the proposition. For if we let {(x1, y1), (x2, y2), . . . , (xn, yn)} be all the pairs
(xi, yi) so that axi,yi = 1, then there is a decomposition

θ(A) ∼=
⊕
i

P (ρ(xi), σ(yi))⊕
⊕

x∈X−{x1,...,xn}
P (ρ(x),+∞).

So, it suffices to construct matrices B and C, which are (ρ, ρ)-adapted (re-
spectively (σ, σ)-adapted) (X,X)-matrices (respectively (Y, Y )-matrices),
so that BAC has the property that every row and column has at most
one non-zero element, and that element is 1. To see that we can do this, we
adapt the row and column operation approach to this setting. The (ρ, σ)-
adapted row and column operations consist of all possible multiplications
of a row or column by a non-zero element of k, all possible additions of a
multiple of r(x) to r(x′) when ρ(x) ≥ ρ(x′), and all possible additions of a
multiple of c(y) to c(y′) when σ(y) ≤ σ(y′). We claim that by performing
(ρ, σ)-adapted row and column operations we can arrive at a matrix with
at most one non-zero entry in each row and column. To see this, first find
a y which maximizes σ(y) over the set of all y with c(y) 
= 0. Next, find an
x which minimizes ρ(x) over the set of all x for which the entry axy 
= 0.
Because of the way x is chosen, we are free to add multiples of r(x) to all
the other rows so as to ‘zero out’ c(y) except in the xy-entry. Because of the
way y is chosen, we can add multiples of c(y) to zero out r(x) except in the
xy-slot, without affecting c(y). The result is a matrix in which the unique
non-zero element in both r(x) and c(y) is axy. By multiplying r(x) by 1/axy,
we can make the xy-entry in the transformed matrix = 1. By deleting r(x)
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and c(y), we obtain a (X − {x}, Y − {y})-matrix which is (ρ′, σ′)-adapted,
where ρ′ and σ′ are the restrictions of ρ and σ to X − {x} and Y − {y},
respectively. We can now apply the process inductively to this matrix. Each
of the row and column operations required can be interpreted as row and
columns on the original matrix, and will have no effect on r(x) or c(y).
The result is that by iterating this procedure, we will eventually arrive at
a matrix with only zero entries, and it is clear that the transformed matrix
has at most one non-zero element in each row and column. The result now
follows by Proposition 3.10.

We will also establish that any two decompositions of the form (3.1) above
for a given persistence vector space are essentially unique.

Proposition 3.13. Suppose that {Vr} is a finitely presented persistence
vector space over k, and that we have two decompositions

{Vr} ∼=
⊕
i∈I

P (ai, bi) and {Vr} ∼=
⊕
j∈J

P (cj , dj),

where I and J are finite sets. Then #(I) = #(J), and the set of pairs
(ai, bi) occurring, with multiplicities, is identical to the set of pairs (cj , dj)
occurring.

Proof. We let amin and cmin denote the smallest value of ai and cj , re-
spectively; amin can be characterized intrinsically as min{r|Vr 
= 0}, and
it follows that amin = cmin. Next, let bmin denote min{bi|ai = amin}, and
make the corresponding definition for dmin; bmin is also defined intrinsically
as min{r′|N(L(r, r′)) 
= 0}, where N denotes null space, so bmin = dmin as
well. This means that P (amin, bmin) appears in both decompositions. For
each decomposition, we consider the sum of all the occurrences of the sum-
mand P (amin, bmin). They are both sub-persistence vector spaces of {Vr},
and can in fact be characterized intrinsically as the sub-persistence vector
space {Wr}, where Wr is the null space of the linear transformation

im(L(amin, r))
L(r,bmin)|im(L(amin,r))−−−−−−−−−−−−−−→ Vbmin

.

It now follows that the number of summands of the form P (amin, bmin) in
the two decompositions are the same, and further that they correspond
isomorphically under the decompositions. Let I ′ denote the subset of I
obtained by removing all i so that ai = amin and bi = bmin, and define
J ′ correspondingly. We can now form the quotient of {Vr} by {Wr}, and
observe that we obtain identifications

{Vr}/{Wr} ∼=
⊕
i∈I′

P (ai, bi) and {Vr}/{Wr} ∼=
⊕
j∈J ′

P (cj , dj).
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(a) barcode (b) persistence diagram

Figure 3.6. Two methods for representing persistent vector spaces.

By an induction on the number of summands in the decompositions, we
obtain the result.

We observe that there is an algorithm analogous to the one constructed
in Proposition 2.19 for computing the homology, in this case using adapted
row and column operations in place of arbitrary operations. This algorithm
then produces a presentation for persistent homology.
The isomorphism classes of finitely presented persistence vector spaces

are in one-to-one correspondence with finite subsets (with multiplicity) of
the set {(a, b)|a ∈ [0,+∞), b ∈ [0,+∞], and a < b}. Such sets can be
represented visually in two distinct ways, one as families of intervals on the
non-negative real lines, and the other as a collection of points in the subset
{(x, y)|x ≥ 0 and y > x} of the first quadrant in the (x, y)-plane. In the
second case, one must place points with b = +∞ above the whole diagram
in a horizontal line indicating infinity. The first representation is called a
barcode, and the second a persistence diagram. We will use and refer to
these representations interchangeably.
We now have a solution to the problem posed in Section 3.1. We may asso-

ciate to any finite metric space a persistence barcode or persistence diagram.
What has now happened is that the Betti numbers have been replaced by
the barcodes. The way to reconcile these two notions is that, roughly speak-
ing, the persistence barcodes often consist of some ‘short’ intervals and some
‘long’ intervals. The short intervals are typically considered noisy, and the
long ones are considered to correspond to larger-scale geometric features,
which one would expect to have a correspondence with the features of a
space from which the metric space is sampled.
Figure 3.7 shows the persistence barcode and persistence diagram for

one-dimensional homology associated to the sampled version of a circle.
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(a) ‘statistical circle’ (b) representations

Figure 3.7. Barcode and persistence diagram for a sampled circle.

The barcode reflects the fact that the first Betti number is equal to 1 by
the fact that it possesses a single long interval and multiple shorter ones.

Remark 3.14. Not all barcodes display this kind of dichotomous be-
haviour between short and long. This reflects the fact that the metric space
might not be representing a simple topological object at a single scale, but
rather a multiscale object of interest in its own right. In addition, we will
see in the next section that we will devise a number of different methods for
generating barcodes, which will reflect more subtle aspects of the shape of
the data set.

Remark 3.15. It is clear from the descriptions given above that the com-
plexity of the persistent homology calculations is the same as that for Gaus-
sian elimination, that is, n3 for an n × n-matrix. What this means is that
direct calculation will be extremely expensive. There are several approaches
to mitigating this problem.

(1) The α and witness complexes, described in Section 3.6 below, allow
us to compute with much smaller complexes, based either on an em-
bedding in a low-dimensional Euclidean space in the case of the α
complex, or on a chosen set of landmarks in the case of the witness
complex. Both are very practical options, and the algorithms described
above apply to that situation as well.

(2) There are also methods for simplifying and drastically reducing the
size of the Vietoris–Rips complex, described in Zomorodian (2010).
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(3) When we are given a space X with a finite covering by sets {Uα}α∈A,
there is a construction known as the Mayer–Vietoris blowup, and a cor-
responding computational device known as theMayer–Vietoris spectral
sequence, which permits the parallelization of the homology computa-
tion into calculations of much smaller complexes. See Hatcher (2002)
for a discussion of the case of a covering by two sets (the Mayer–Vietoris
long exact sequence) and Segal (1968, § 4), for the general case. It pro-
ceeds by performing the individual calculations, and then provides a
reconstruction step. This procedure has been adapted to the persistent
homology situation in Lipsky, Skraba and Vejdemo-Johansson (2011).

Remark 3.16. There are a number of software packages which compute
homology and persistent homology, for example:

• CHOMP (http://chomp.rutgers.edu/),
• Javaplex (https://code. google.com/p/javaplex/), and
• Dionysus (http://www.mrzv.org/software/dionysus/).

Remark 3.17. There are a number of theorems which produce theoretical
guarantees for the computation of homology via various complexes. The so-
called nerve theorem, which follows directly from the construction in Segal
(1968, § 4), gives sufficient conditions for a much smaller construction based
on a covering of the space to compute the homology accurately. Niyogi,
Smale and Weinberger (2008) give conditions which show that with high
confidence, a construction based on ε balls around a finite sample from
a submanifold of Euclidean space computes homology of the submanifold
accurately.

3.5. Making persistent homology more sensitive: functional persistence

Applying persistent homology naively to many data sets will often produce
trivial barcodes, with no long intervals in their barcodes. The reason for this
is that data sets often have a central core, to which everything is connected.
In the data set shown in Figure 3.8, we see that there is a central core and
apparently three ‘flares’ emanating from it.
Roughly, this is a ‘T’ or ‘Y’ shape, and we would not expect to capture

that aspect of its shape with homological methods, since these spaces are
contractible and therefore have vanishing homology. Similarly, if we are
looking at a data set lying along a plane in a high-dimensional space, we
would not expect to be able to detect that fact with homology, since a
plane is also contractible. In Section 2.7, we were able to adapt topological
methods to make them more sensitive by studying auxiliary spaces such
as spaces of ends, one-point compactifications, and the results of removing
points of various types. In this section, we will see how to adapt persistent
homology similarly, so as to be able to capture phenomena of this type.
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Figure 3.8. Central core and three ‘flares’. From
http://macromarketmusings.blogspot.com/2007 09 01 archive.html

When first introducing persistent homology, each finite metric space was
associated to an increasing family of Vietoris–Rips complexes {VR(X, r)}r,
which were used to compute persistent homology. There is another method
of constructing increasing families of simplicial complexes.

Definition 3.18 (functional persistence). We let X be a finite metric
space, and let f : X → R be a non-negative real-valued function. Let us also
select a positive real number ρ. Then by the f -filtered simplicial complex
with scale ρ, we will mean the increasing family of simplicial complexes

{VR(f−1([0, R]), ρ)}R.
This construction will have persistence barcodes of its own, which reflect
topological properties of the sublevel sets of f . We will call this method of
producing persistence diagrams functional persistence.

Remark 3.19. Of course, it is not clear how to choose R in general. Often
inspection of a data set can suggest the right scale, so that one can obtain
useful information. In general, though, it would be much better to be able
to construct two-dimensional profiles which encode both the function values
and the scale at the same time.

One very interesting family of functions to study in this way is the class of
functions measuring the degree of centrality, or data depth, of a data point.
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(a) (b) (c)

Figure 3.9. Detection of ends by zero-dimensional functional persistence barcode.

For example, consider the family of functions ep given by

ep(x) =
∑
x′∈X

d(x, x′)p.

One can also define the p =∞ version by setting e∞(x) = maxx′∈X d(x, x′).
Clearly points which are informally closer to the centre of X will have
lower values of each of these ep, and points on the ‘periphery’ will have
larger values. We will use these function values in order to study persistent
analogues of the ‘ends’ which were used for refining ordinary homology in
Section 2.7, but we will want to introduce the larger values before the smaller
values of the function. For this reason, we will replace ep by the function êp
given by

êp(x) =
emax
p − ep(x)

emax
p − emin

p

,

where emax
p and emin

p are the maximum and minimum values taken by the
function ep on X. The function êp takes values on [0, 1], and attains both 0
and 1. We will then consider the increasing family of complexes

{VR(ê−1
p ([0, R]), ρ)}R

and their persistence barcodes for a couple of examples.

Example 3.20. The data set in Figure 3.9 is shaded by values of êp, with
light shading corresponding to low values of êp, and dark shading to high
values. For a small value of R, the sublevel set of êp would look as in
image (b). and so the zero-dimensional barcode would be of the form in (c).

Example 3.21. The data set in Figure 3.10 is also shaded by values of
êp. A sublevel set of êp for a small value of R would be as in (b). Since
this point cloud is roughly circular, the one-dimensional barcode would look
like (c).
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(a) (b) (c)

Figure 3.10. Detection of dimensionality by
one-dimensional functional persistence barcode.

In both cases, the behaviour of the set of points ‘far from the centre’
measures an interesting aspect of the shape of a data set, in the one case a
set of clusters and in the other a circle.

3.6. Other constructions of complexes

In Section 3.3, we constructed the Vietoris–Rips complex associated to any
metric space. While useful, this construction is often too large to compute
with effectively. There are two constructions of complexes that get around
this problem, which are often used in place of the Vietoris–Rips complex,
which we describe in this section.

The α complex

This construction is performed on a metric space X which is a subspace of
a metric space Y . Typically Y is a Euclidean space RN , and most often N
is small, that is, N = 2, 3, or 4. For any point x ∈ X, we define the Voronoi
cell of x, denoted by V (x), by

V (x) = {y ∈ Y |d(x, y) ≤ d(x′, y) for all x′ ∈ X}.
The collection of all Voronoi cells for a finite subset of Euclidean space is
called its Voronoi diagram. A picture of part of a Voronoi diagram in R2

is shown in Figure 3.11(a). For each x ∈ X, we also denote by Bε(x) the
set {y ∈ Y |d(x, y) ≤ ε}. By the α cell of x ∈ V (x) with scale parameter
ε, we will mean the set Aε(x) = Bε(x) ∩ V (x). The α complex with scale
parameter ε of a subset x ∈ X, denoted by αε(X), will be the abstract
simplicial complex with vertex set X, and where the set {x0, . . . , xk} spans
a k-simplex if and only if

k⋂
i=0

Aε(xi) 
= ∅.
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(a) (b)

Figure 3.11. (a) Voronoi decomposition, and (b) α-complex.

An example might look as in Figure 3.11(b).
We observe that it follows immediately from the definition that if ε ≤ ε′,

then there is an inclusion αε(X) ↪→ αε′(X), and therefore that for any j, we
obtain a persistence vector space

{Hj(αε(X))}ε.
This construction is typically much smaller than the Vietoris–Rips complex,
even though it has the same vertex set, namely X. The number of simplices
included will in general be much smaller. Generically, in fact, all simplices
will be of dimension ≤ N if the set is embedded in RN . The α complex
is typically computed using algorithms for computing the Voronoi diagram
for X as a subset of RN . These algorithms rapidly become intractable
as N increases, which means that the complex can generally be applied
only when the point set is included in a low-dimensional Euclidean space,
or when the embedding in a Euclidean space can be modified to a low-
dimensional embedding via dimensionality reduction techniques. The α
complex is discussed in detail by Zomorodian (2005).

The witness complex

A second construction that yields smaller complexes is the witness complex
(de Silva and Carlsson 2004) in its various forms. The idea here is to use
a version of the Voronoi diagram on the data set X itself, rather than on a
space in which X is embedded. The vertex set of the complex constructed is
smaller than X, consisting of a set of landmark points within X. What this
means is that we may select the size of complex we are willing to work with.

Definition 3.22. Let X be any metric space, and suppose we are given
a finite set L of points in X, called the landmark set, and a parameter
ε > 0. For every point x ∈ X, we let mx denote the distance from this
point to the set L, that is, the minimum distance from x to any point in
the landmark set. Then we define the strong witness complex attached to
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this data to be the complex W s(X,L, ε) whose vertex set is L, and where a
collection {l0, . . . , lk} spans a k-simplex if and only if there is a point x ∈ X
(the witness) so that d(x, li) ≤ mx + ε for all i. We can also consider the
version of this complex in which the one-simplices are identical to those
of W s(X,L, ε), but where the family {l0, . . . , lk} spans a k-simplex if and
only if all the pairs (li, lj) are one-simplices. We will denote this complex
by W s

VR.

There is a modified version of this construction, which is quite useful,
called the weak witness construction. Suppose we are given a metric space
X, and a set of points L ⊆ X. Let Λ = {l0, . . . , lk} denote a finite subset of
L. We say a point x ∈ X is a weak witness for Λ if d(x, l) ≥ d(x, li) for all i
and all l ∈ Λ. Given ε, we will also say that x is an ε-weak witness for Λ if
d(x, l) + ε ≥ d(x, li) for all i and all l /∈ Λ.

Definition 3.23. Let X, L, and ε be as above. By the weak witness
complex Ww(X,L, ε) for the given data we will mean the complex whose
vertex set is L, and for which a family Λ = {l0, . . . , lk} spans a k-simplex if
and only if Λ and all its faces admit ε-weak witnesses. This complex clearly
also has a version in which a k-simplex is included as a simplex if and only
if all its 1-faces are, and this version is denoted by Ww

VR.

One verifies directly from the definition that whenever 0 ≤ ε ≤ ε′, we
then have an inclusion

W s(X,L, ε) ↪→W s(X,L, ε′),
and therefore that after applying homology, we obtain a persistence vector
space {Hk(W

s(X,L, ε))}ε. The same applies to the variant constructions
W s

VR, W
w, and Ww

VR.

Remark 3.24. The point of introducing the complexes W s
VR and Ww

VR is
that they require much less memory, since all the information is contained
in the zero- and one-simplices.

3.7. Zigzag persistence

Persistence objects (sets, vector spaces, etc.) are defined by a collection of
objects parametrized by the non-negative real line together with morphisms
from the objects with parameter value r to objects with parameter value
r′, whenever r ≤ r′. If we restrict the persistence object to the lattice of
non-negative integers, we can view a persistence object as a diagram

X0 → X1 → X2 → · · · → Xn → · · ·
of objects Xn and morphisms Xn → Xn+1 for all n ≥ 0. We can informally
state that a persistence object restricted to the integers is equivalent to a
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diagram of objects having the shape

0 1 2 3 4

where the nodes are objects (sets, vector spaces, simplicial complexes, . . . ),
and the arrows indicate a morphism from one object to another. As such,
it is an infinite quiver diagram (Derksen and Weyman 2005). Any directed
graph Γ is called a quiver, and a representation of Γ over a field k is an
assignment of a k-vector space Vv to each vertex of Γ and a k-linear trans-
formation Le : Vv → Vw for every edge e from v to w. We will also refer
to a representation of Γ as a diagram of shape Γ. One could also consider
diagrams with the shape

0 1 2 3 4

Precisely, this corresponds to a family of objects parametrized by the non-
negative integers, with a morphism from Xi → Xi+1 when i is even, and a
morphism Xi+1 → Xi when i is odd. We will call such a diagram of k-vector
spaces, where k is a field, a zigzag persistence vector space. Zigzag vector
spaces arise in a number of ways.

Example 3.25. Consider a very large finite metric space X, so large that
we do not expect to be able to compute its persistent homology using a
Vietoris–Rips complex. We might instead try to form many smaller samples
{Si} from X, and attempt to understand how consistent these calculations
are. We note that given such a family of samples, we may fix a threshold
parameter R and construct VR(Si, R) for all i. To attempt to assess the
consistency of the computations which arise out of these complexes, we can
form the unions Si ∪ Si+1 and note that we have inclusion maps Si ↪→
Si ∪ Si+1 and Si+1 ↪→ Si ∪ Si+1. These maps induce maps on the Vietoris–
Rips complexes, and by applying homology to the Vietoris–Rips complexes,
we obtain k-vector spaces Vi = Hj(VR(Si, R)) and Vi,i+1 = Hj(VR(Si ∪
Si+1, R). The inclusion maps now mean that we obtain a diagram of the
form

V0 → V0,1 ← V1 → V1,2 ← V2 → V2,3 ← V3 → · · · .
On an intuitive level, consistency between the calculations is measured by
the existence of classes xi ∈ Vi and xi+1 ∈ Vi+1, so that the images of xi and
xi+1 in Vi,i+1 are the same non-zero class, and more generally for sequences
of classes {xi}, with xi ∈ Vi, so that for all i, the images of xi and xi+1 in
Vi,i+1 are equal to the same non-zero element.

Example 3.26. Given a simplicial complex X and a simplicial map from
X to the non-negative real line, triangulated, with the vertex set being the
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non-negative integers and the edges being the closed intervals [n, n+1], we
can form the subcomplexes f−1([n, n+ 1]), as well as f−1(n). We have the
diagram

f−1(0)→ f−1([0, 1])← f−1(1)→ f−1([1, 2])← f−1(2)→ · · ·
A scheme which could compute homology only of complexes based at the
nodes of this diagram, and which could extract the homology of the entire
complex from these calculations, would permit the parallelization of homol-
ogy computations into smaller pieces. This is of course very desirable.

Example 3.27. In the discussion of the witness complex, we selected a
set of landmarks L from a metric space X, and computed certain complexes
W (X,L, ε), for which there were several variants. We suppress the super-
scripts s and w, as well as the other labels, since the construction works
for all the values. In general, it is difficult to assess how accurately the
persistent homology of X is captured by the witness complex. One piece
of evidence for accuracy would be a method which assesses how consistent
different choices of landmarks are. In order to do this, one can construct
a bivariate version of the witness complex which takes as input a pair of
landmark sets (L1,L2), denoted by W (X, (L1,L2), ε), which maps to each
of the complexes W (X,L1, ε) and W (X,L2, ε) in a natural way. Given a
collection of landmark sets Li, we obtain a diagram of witness complexes

W (X,L1, ε)←W (X, (L1,L2), ε)→W (X,L2, ε)← .

After applying homology, one can again ask for consistent families as in
Example 3.25 above.

It now turns out that there is a classification theorem for zigzag persis-
tence vector spaces over a field k analogous to that for ordinary persistence.

Definition 3.28. A zigzag persistence k-vector space V. is called cyclic if
there are integers m ≤ n so that Vi = k for m ≤ i ≤ n, Vi = {0} if i < m or
i > n, and the homomorphisms Vi → Vi+1 or Vi+1 → Vi are all equal to the
identity homomorphism on k whenever m ≤ i ≤ i+ 1 ≤ n.

One example is

{0} → k
id← k

id→ k ← {0} → {0} ← · · · .
Each cyclic persistence vector space is indecomposable, in that it cannot
be expressed as a direct sum of diagrams. Note that the cyclic zigzag
persistence vector spaces are parametrized by intervals [m,n] with inte-
ger endpoints. We write V [m,n]. for the cyclic k-vector space which is
exactly non-zero for the integers in [m,n]. We have the following analogue
of Proposition 3.12.
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Theorem 3.29. We say that a zigzag persistence k-vector space V. is of
finite type if (a) each vector space Vi is finite-dimensional, and (b) Vi = {0}
for sufficiently large i. Then, for any zigzag persistence k-vector space V. of
finite type, there is an isomorphism

V.
∼=

⊕
i

V [mi, ni]. (3.2)

for some choices of pairs of integers (mi, ni). Furthermore, the decomposi-
tion (3.2) is unique up to a reordering of the summands.

The content of this theorem is that there is a barcode description of the
isomorphism classes of zigzag persistence vector spaces, just like that for
ordinary persistence vector spaces, except that the intervals in the bar-
codes are constrained to be integers. This theorem was first proved by
Gabriel (1972), and is discussed from the point of view of computational
issues by Carlsson and de Silva (2010). This result can now be applied to
Examples 3.25 and 3.27 above. The presence of long bars in the barcode
decomposition says that there are elements which are consistent across all
the vector spaces in the interval determined by the bar. For Example 3.26
above, the zigzag construction can be used to give a very efficient and paral-
lelizable method for computing the homology of the entire complex. These
ideas are discussed by Carlsson and de Silva (2010) and Carlsson, de Silva
and Morozov (2009).

4. Structures on spaces of barcodes

4.1. Metrics on barcode spaces

We have now associated to any finite metric space a family of persistence
barcodes, or persistence diagrams. One important property to understand
is the degree to which the barcode changes when we have small (in a suitable
sense) changes in the data. In order to even formulate the answer to such
a question, we will need to define what is meant by small changes in the
barcode. In order to do this, we will define the bottleneck distance between
barcodes. For any pair of intervals I = [x1, y1] and J = [x2, y2], we will
define ∆(I, J) to be the l∞-distance between the two, regarded as ordered
pairs in R2, that is, max(|x2− x1|, |y2− y1|). For a given interval I = [x, y],
we also define λ(I) to be (y − x)/2. λ(I) is the l∞-distance to the closest
interval of the form [z, z] to I. Given two families I = {Iα}α∈A and J =
{Jβ}β∈B of intervals, for finite sets A and B, and any bijection θ from a
subset A′ ⊆ A to B′ ⊆ B, we will define the penalty of θ, P (θ), to be

P (θ) = max
(
max
a∈A′(∆(Ia, Jθ(a))

)
, max
a∈A−A′(λ(Ia)), max

b∈B−B′(λ(Jb)))
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and then define the bottleneck distance d∞(I, J) to be

min
θ

P (θ),

where the minimum is taken over all possible bijections from subsets of A
to subsets of B. This is easily verified to be a distance function on the set
of barcodes.

Remark 4.1. d∞ is actually the p =∞ version of a family of metrics dp,
called the Wasserstein metrics. The metric dp is defined via the penalty
function Pp, given by

Pp(θ) =
∑
α∈A′

∆(Iα, Jθ(α))
p +

∑
α∈A−A′

λ(Iα)
p +

∑
b∈B−B′

λ(Jb)
p,

and we set dp(I, J) = (minθ Pp(θ))
1
p .

We now have a notion of what it means for barcodes to be close. There
is also a notion of what it means for two compact metric spaces to be close,
given by the Gromov–Hausdorff distance, first defined by Burago, Burago
and Ivanov (2001). It is defined as follows. Let Z be any metric space, and
let X and Y be two compact subsets of Z. The Hausdorff distance between
X and Y , dH(X,Y ), is defined to be the quantity

max
{
max
x∈X

min
y∈Y

dZ(x, y),max
y∈Y

min
x∈X

dZ(x, y)
}
.

Given any two compact metric spaces X and Y , we consider the family
I(X,Y ) of all simultaneous isometric embeddings of X and Y . An ele-
ment of I(X,Y ) is a triple (Z, iX , iY ), where Z is a metric space and iX
and iY are isometric embeddings of X and Y , respectively, into Z. The
Gromov–Hausdorff distance of X and Y is now defined to be the infimum
over I(X,Y ) of dH(im(iX), im(iY )). It is known to give a metric on the col-
lection of all compact metric spaces. It is also known to be computationally
very intractable. Chazal et al. (2009) have proved the following.

Theorem 4.2. Fix a non-negative integer k, let F denote the metric space
of all finite metric spaces, and let B denote the set of all persistence barcodes.
Let βk : F → B be the function which assigns to each finite metric space its
k-dimensional homology barcode. Then βk is distance non-increasing.

This result is interesting not only because it gives some guarantees on
how certain changes in the data affect the result, but it also provides an
easily computed lower bound on the Gromov–Hausdorff distance in a great
deal of generality.
There are also stability results for functional persistence, or rather, an

analogue of functional persistence. In Definition 3.18, we defined functional
persistence based on a function defined on the points of a metric space, or
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equivalently on the vertices of its Vietoris–Rips complex. For any topo-
logical space X and continuous real-valued function f : X → R, one can
also define associated persistence vector spaces {Hi(f

−1((−∞, r])}r, which
are very close analogues to the simplicial complex construction described
above. In fact, a real-valued function on the vertex set of a simplicial com-
plex can be extended in a natural way to a continuous function on the
geometric realization of the simplicial complex, using a weighted sum of
values of the function on the vertices based on the barycentric coordinates
of the point. The idea will be that small changes in the function should
yield only small changes in the associated persistence barcode. The results
we will describe appear in Cohen-Steiner, Edelsbrunner and Harer (2007)
and Cohen-Steiner, Edelsbrunner, Harer and Mileyko (2010).
To state the results, we will need some definitions. Let X be a topological

space, and let f : X → R be a real-valued function on X. For every non-
negative integer k, a ∈ R, and ε ∈ (0,+∞), we have the induced map

j = jk,a,ε : Hk(f
−1(−∞, a− ε]) −→ Hk(f

−1(−∞, a+ ε]).

We say that a is a homological critical value of f if there is a k such that
jk,a,ε fails to be an isomorphism for all sufficiently small ε. Further, we say
that the function f is tame if it has a finite number of homological critical
values and the homology groups Hk(f

−1(−∞, a]) are finite-dimensional for
all k ∈ N and a ∈ R. This condition holds, for example, in the case of Morse
functions on closed manifolds (see Milnor (1963)) and for piecewise linear
functions on finite simplicial complexes, so the result we will state is quite
generally applicable. The following theorem is proved in Cohen-Steiner et al.
(2007).

Theorem 4.3. Let X be any space which is homeomorphic to a simplicial
complex, and suppose f, g : X → R are continuous tame functions. Then
the persistence vector spaces {Hk(f

−1((−∞, r])}r and {Hk(g
−1((−∞, r])}r

are finitely presented, and therefore admit barcode descriptions for each
k ∈ N, which we denote by βkf and βkg. Moreover, for any k, we have that

d∞(βkf, βkg) ≤ ‖f − g‖∞.

There is also a stability result for the Wasserstein distances dp, with p
finite, in the presence of a Lipschitz property for the functions, proved in
Cohen-Steiner et al. (2010).

4.2. Coordinatizing barcode space

Another way to describe infinite sets is via the theory of algebraic varieties,
that is, as the set of solutions to a set of equations, either over the real
numbers, the complex numbers, or some other field. When this is possible,
it gives a very compact description of a large or infinite set. The method
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also produces a ring of functions on the set, by restricting the polynomial
functions to it. Functions are useful in studying any set by machine learn-
ing and other methods. We will discuss the possibilities for producing a
coordinatized model of the set of all barcodes.
Let us consider first the set Bn of all barcodes containing exactly n inter-

vals or ‘bars’. Each of the intervals is determined by two coordinates, the
left-hand endpoint x and the right-hand endpoint y. If we have n intervals,
we have 2n coordinates {x1, y1, . . . , xn, yn}. The trouble is that the barcode
space does not take into account the ordering of the intervals, so it is not
possible to assign a value to the ith coordinate itself. To understand how
to get around this problem, we discuss a familiar situation from invariant
theory.
We consider Rn, let Σn be the group of permutations of the set {1, . . . , n},

and consider the ring of polynomial functions An = R[x1, . . . , xn] on Rn. We
will describe how to coordinatize the set of orbits (as defined in Section 2.2)
Rn/Σn, that is, the ‘set of unordered n-tuples of real numbers’, or equiva-
lently the collection of multisets of size n. If f is a polynomial function on
Rn, it may be treated as a function on the set of orbits if it has the property
that f(σ�v) = f(�v) for all σ ∈ Σn and �v ∈ Rn. The group Σn acts on the
ring An, and an element f ∈ An is a function on the orbit set Rn/Σn if
and only if it is fixed under all permutations σ ∈ Σn. The set of all fixed
functions (denoted by AΣn

n ) is a ring in its own right, and it turns out that
it has a very simple description.

Proposition 4.4. The ring AΣn
n is isomorphic to the ring of polynomials

R[σ1, σ2, . . . , σn], where σi denotes the ith elementary symmetric function
given by ∑

s1,s2,...,si

xs1xs2 · · ·xsi ,

where the sum is over all i-tuples of distinct elements of {1, . . . , n}.

We now have coordinates that describe the set R/Σn. The analogous con-
struction for the set Bn would be to form the subring of R[x1, y1, . . . , xn, yn]
fixed under the action of Σn which permutes the xi among themselves and
the yi among themselves, and obtain a coordinatization in this way. This
does give a ring of functions, but it is not a pure polynomial ring but has
relations, or syzygies. A full discussion of this situation is given in Dalbec
(1999). To give an idea of what this means, we first observe that the ele-
mentary symmetric functions σi(�x) and σi(�y) are definitely invariant, and
generate a full polynomial subring of the ring of functions. Let us restrict
to the case n = 2. Then there is another function ξ = (x1y1 + x2y2), which
cannot be expressed in terms of the elementary symmetric functions applied
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to �x and �y. It turns out that there is now an algebraic relation

ξ2 − σ1(�x)σ1(�y)ξ + σ1(�x)
2σ2(�y) + σ2(�x)σ1(�y)

2 − 4σ2(�x)σ2(�y) = 0,

which after consideration shows that there is no algebraic coordinatization
by the four-dimensional affine space but rather by a subset of a higher-
dimensional space defined by one or more algebraic equations. Nevertheless,
one can express Bn as the points of an algebraic variety in this way.
What we would really like to do is to coordinatize the collection of all the

setsBn as a variety, in an appropriate sense. One could consider the disjoint
union

∐
nBn, but we would rather disregard intervals of length zero in a

systematic way, since they correspond to features which are born and die at
the same time, and hence do not have any actual persistence. This suggests
that we define a set B∞ as follows. We let ∼ denote the equivalence relation
on

∐
nBn generated by equivalences

{[x1, y1], [x2, y2], . . . , [xn, yn]} ∼ {[x1, y1], [x2, y2], . . . , [xn−1, yn−1]}
whenever xn = yn. We then define the infinite barcode set B∞ to be the
quotient ∐

n

Bn/ ∼ .

The question we now pose is whether this infinite set can also be coordina-
tized, again in a suitable sense. To see how this can be done, we consider
two simpler examples of coordinatization.

Example 4.5. We let An denote the set Rn/Σn, and we let A∞ denote∐
n

An/ ∼,

where ∼ is the equivalence relation given by declaring that (x1, . . . , xn) ∼
(y1, . . . , ym) if and only there are sets S ∈ {1, . . . , n} and T ⊆ {1, . . . ,m}
satisfying the following properties.

(1) xs = 0 and yt = 0 for all s ∈ S and t ∈ T .

(2) We have n−#(S) = m−#(T ), and call this common number k.

(3) The unordered k-tuples obtained by deleting the elements correspond-
ing to S and T from (x1, . . . , xn) and (y1, . . . , ym) respectively, are
identical.

There are natural maps from An to A∞, and the maps are injective on
points. We therefore have an increasing system

A1 ↪→ A2 ↪→ A3 ↪→ · · · ,
which corresponds to a system of ring homomorphisms

R[σ1]← R[σ1, σ2]← R[σ1, σ2, σ3]← · · · ,
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where the homomorphism R[σ1, . . . , σn+1] → R[σ1, . . . , σn] is defined by
σi → σi for 1 ≤ i ≤ n, and σn+1 → 0.
Associated to such a system is its limit, which is itself a ring. We will

not go into detail about this, but refer to the book by Mac Lane (1998)
for background material on limits and their dual construction, a colimit.
In this case, the construction produces a ring of functions which can be
described as follows. LetM denote the set of all monomials in the infinite
set {σ1, σ2, . . . , σn, . . .}, and let Mn ⊆ M denote the subset of monomials
which involve only {σ1, . . . , σn}. Then inverse limit ring is identified with
the set of all infinite sums

∑
µ∈M rµµ so that the sums

∑
µ∈Mn

rµµ are

all finite. So, for instance, the infinite sum
∑

n σn is an element of this
ring. Elements in this ring certainly define functions on A∞, because the
functions σN vanish on An whenever n ≤ N . The limit ring is, however, a
little complicated given the finiteness conditions we are required to impose.
It would be simpler to restrict in a natural way to the functions which are
polynomial in the elements σi. One way to do this is as follows. We may
extend the rings R[σ1, . . . , σn] to have complex coefficients, so that they are
of the form C[σ1, . . . , σn], and construct the limit ring Λ as in the real case.
The group of complex numbers of length one now acts on this ring via the
action defined by

ζ · (σi) = ζiσi

and extended to the limit ring in the obvious way. We say that an element
f in Λ is K-finite if the span of the entire orbit of f is a finite-dimensional
C-vector space. (The notion of K-finiteness is introduced in Knapp.) The
intersection of the set of K-finite vectors in Λ with the limit ring over R can
now be identified with the polynomial ring on the variables σi.

In the example above, taking the quotient by the equivalence relation ∼
did not create complicated rings, as each of the rings R[σ1, σ2, . . . , σn] is a
pure polynomial ring in n variables. In general, though, taking quotients by
equivalence relations can create rings which are not pure polynomial, and
in some cases not even finitely generated as algebras.

Example 4.6. Consider the plane X = R2, and consider the equivalence
relation ∼ defined by declaring that (x, 0) ∼ (x′, 0) for all x, x′. This relation
‘collapses’ the entire x-axis to a point, while leaving the rest of the set
unchanged. The question is whether or not R2/ ∼ can be described as an
algebraic variety. As in the case of the ring of invariants of a group action
giving a variety structure on an orbit set, in this case we will ask which
polynomial functions f on R have the property that f(x) = f(x′) whenever
x ∼ x′. This means that we are asking for the polynomials f in two variables
so that f(x, 0) = f(x′, 0) for all x, x′. A quick calculation shows that this
ring of functions consists of all polynomials in x and y so that the linear term
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in x is zero. So, a basis for it is the set of monomials {xiyj |i > 0 =⇒ j > 0}.
This is a ring which is easy to understand, but it is not a finitely generated
algebra. It is generated by the elements θi = xiy together with the element
y, and they satisfy the relations θ2i = yθ2i. We can then obtain a description
of R2/ ∼ as the set of points in R∞ = {(y, θ1, θ2, . . .)|θ2i = yθ2i for all i > 0}.
Note that in this case infinitely many coordinates will typically be non-zero
for a given (x, y).

The image of Bn → B∞, which we denote by B′
n, can be described as

the set obtained from Bn by taking the quotient by an equivalence relation
∼n defined as follows. Given two multisets of intervals (with n intervals)
S = {[x1, y1], [x2, y2], . . . , [xn, yn]} and S′ = {[x′1, y′1], [x′2, y′2], . . . , [x′n, y′n]},
we say that S ∼n S′ if there are subsets I, I ′ ⊂ {1, . . . , n}, so that xi =
yi for all i ∈ I, and x′i′ = y′i′ for all i′ ∈ I ′, and so that the multisets
S − {[xi, xi]|i ∈ I} and T − {[x′i′ , x′i′ ]|i′ ∈ I ′} are identical multisets of
intervals. This means that B′

n can be expressed as the quotient of Bn

by an equivalence relation, similar to that described in Example 4.6. It
corresponds to a ring A(B′

n), which is in general not finitely generated.
However, we consider the increasing sequence of sets

B′
1 ↪→ B′

2 ↪→ B′
3 ↪→ · · ·

and a corresponding system of ring homomorphisms

A(B′
1)←− A(B′

2)←− A(B′
3)←− · · · ,

as in Example 4.5. This system also has a limit, which we will denote by
A(B∞). There is a construction of K-finite vectors analogous to the one
carried out above in the case of the symmetric polynomials, and the ring of
K-finite vectors turns out to be isomorphic to a polynomial ring on a set
of variables {τij |1 ≤ i, 0 ≤ j}. The variables τij correspond to functions on
B∞, which can be described as follows. It will suffice to describe τij on Bn,
that is, on an unordered n-tuple of intervals. To do this, we first define a
function τ ′ij on the set of ordered n-tuples on intervals by

τ ′ij([x1, y1], . . . , [xn, yn]) = (y1 − x1) · · · (yi − xi)

(
y1 + x1

2

)j

.

To obtain τij we simply symmetrize by writing

τij =
∑
σ∈Σn

τ ′ij ◦ σ.

So, for example, τ10 applied to an unordered n-tuple of intervals is the sum of
the lengths of the intervals, τ20 is the second elementary symmetric function
in the lengths, and τ1j is the sum over all the intervals of the product of the
length of the interval with the jth power of its midpoint.
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Figure 4.1. A loop with outliers.

4.3. Multidimensional persistence

One of the problems which frequently comes up in persistent homological
calculations is that the presence of a few outliers can mask structure. The
example in Figure 4.1 is suggestive. Note that the main structure is a
sampling from a loop, but there are a number of outliers in the interior of
the loop. The homology of the complexes built from this data set will not
strongly reflect the loop, because the short connections among the outliers
and between the outliers and the points on the actual loop will quickly fill
in a disc. In order to remedy this, we would have to find a principled way
to remove the outliers in the interior. A measure of density would have this
effect, because the outliers by many measures of density would have much
lower density than the points on the loop itself. So, if we selected, say, the
90% densest points by a density measure, we would effectively be choosing
the loop itself. However, this choice of threshold is arbitrary, so just as we
chose to maintain a profile of homology groups over all threshold values for
the scale parameter, we might attempt to create such a profile for values
of density.
Another problem with persistent homology has already been made appar-

ent in Section 3.5, where we constructed the increasing family of simplicial
complexes {VR(f−1([0, R]), ρ}R for a non-negative real-valued function f
on our data set, and for a fixed choice of our scale parameter ρ. These com-
plexes allowed us to study topological features of the data sets which are not
captured by the direct application of persistent homology, but using them
requires us to make a choice of the scale parameter. There is no universal
or natural choice of ρ, so it would be very desirable to be able to track both
R and ρ simultaneously.

These considerations motivate the following definition. We let R+ =
[0,+∞), and we define a partial order on Rn

+ by declaring that (r1, . . . , rn) ≤
(r′1, . . . , r′n) if and only if ri ≤ r′1 for all 1 ≤ i ≤ n.
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Definition 4.7. By an n-persistence vector space over a field k, we will
mean a family of k-vector spaces {V�r}�r∈Rn together with linear transforma-
tions L(�r, �r′) : V�r → V�r′ whenever �r ≤ �r′, so that

L(�r′, �r′′) · L(�r, �r′) = L(�r, �r′′)

whenever �r ≤ �r′ ≤ �r′′. There are obvious notions of linear transformations
and isomorphisms of n-persistence vector spaces.

We might hope that there is a compact representation of the isomorphism
classes of n-persistence vector spaces analogous to the barcode or persistence
diagram representations available in 1-persistence, equivalently the ordinary
persistence we have already discussed. It turns out, though, that this is not
possible, for the following reason. As was observed in Zomorodian and
Carlsson (2005), ordinary persistence vector spaces have much in common
with the classification of graded modules over the graded ring k[t]. Indeed,
if we restrict the domain of the scale parameter r in ordinary persistence to
the integer lattice Z+ ⊆ R+, then the classification of such restricted persis-
tence vector spaces is identical to the classification of graded k[t]-modules.
Similarly, it is shown in Carlsson and Zomorodian (2009) that the isomor-
phism classification of n-persistence vector spaces with the parameter set
restricted to Zn

+ is identical to the classification of n-graded modules over
the n-graded ring k[t1, . . . , tn]. It is well understood in algebraic geometry
that the classification of modules over polynomial rings in more than one
variable is fundamentally different from the one-variable case. In particular,
for graded one-variable polynomial rings, the parametrization of the set of
isomorphism classes is independent of the underlying field k, whereas this
does not hold for multigraded polynomial rings in more than one variable.
In fact, the classification for more than one variable usually involves spaces
of structures, rather than discrete sets. What these problems suggest is that
we should drop the idea of dealing with a complete classification of the iso-
morphism classes of n-persistence vector spaces, and instead develop useful
invariants which we expect will measure useful and interesting properties of
n-persistence vector spaces.
One approach to finding invariants is via the functions defined in Sec-

tion 4.2. It turns out that some of them can be interpreted in ways which
do not depend on obtaining an explicit barcode representation. For any
finitely presented persistence vector space {Vr}r, we can define two func-
tions attached to V , ∆V : R+ → R+ and ρV : R2

+ → R+. We set

∆V (r) = dim(Vr)

and

ρV (r, r
′) = rank(L(r, r′)).
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Example 4.8. We consider the function τ10 from Section 4.2, which is
given by

∑
i(yi − xi). It is easy to check that the equation

τ10(x1, y1, . . . , xn, yn) =

∫
R+

∆V (r) dr

holds for finite barcodes.

Example 4.9. One can also show that

1

2
(τ210 − 2τ20) =

1

2

∑
i

(yi − xi)
2 =

∫ ∫
R2
+

ρV (r, r
′) dr dr′.

Example 4.10. We also have

τ11 =

∫
R+

r∆V (r) dr.

None of the integrals involve the explicit barcode decomposition, but
depend only on the information concerning the dimensions of the spaces
Vr and the ranks of the linear transformations L(r, r′). The value of this is
that ∆V and ρV have direct counterparts in the n-persistence situations, and
integrating them (this time over Rn

+ and R2n
+ , respectively) yields analogues

of at least these invariants in the multidimensional situation. The study of
invariants of multidimensional persistence vector spaces is ongoing research.

4.4. Distributions on B∞

We have seen that one can use persistence barcodes to obtain invariants of
finite metric spaces which mimic homological invariants for ordinary topo-
logical spaces. For finite metric spaces obtained by sampling, one can hope
to make an inference on the barcode invariant. For example, if one sees a
barcode with a bar which one perceives as ‘long’, how can one determine if
such a long bar could have occurred by chance. More generally, how can
one use barcodes to reject a null hypothesis that the sample was obtained
from a fixed distribution or family of distributions? In order to make such
an inference, one will need to develop a theory of probability measures on
B∞, and Mileyko, Mukherjee and Harer (2011) have taken some important
first steps in this direction. We summarize their work.
The setB∞ becomes a topological space by equipping it with the quotient

topology (see Section 2.2) under the map∐
n

Bn → B∞,

where eachBn is topologized using the quotient topology for R2n→R2n/Σn,
and where

∐
nBn is topologized by declaring that a set in

∐
nBn is open

if and only if its intersection with Bn is open for each n. In Section 4.1,
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metrics dp, with the possibility of p =∞, were introduced on B∞. The goal
of the work in Mileyko et al. (2011) is to study the possibility of defining
expectations and variances, in the Fréchet sense (Fréchet 1944, 1948), on
the metric spaces (B∞, dp). One obstacle to realizing this goal is the fact
that the metric space (B∞, dp) is not complete. In order to deal with this

problem, Mileyko et al. (2011) construct completions B̂p of (B, dp). We will
first enlarge the set B∞ to include countable multisets of intervals {Ia}a∈A,
where A is a countable set. For a fixed p, the underlying set of Bp will be
the set of all {Ia}a∈A for which∑

a∈A
λ(Ia) < +∞. (4.1)

It is now clear by inspection that the distance dp extends naturally to a

metric d̂p on B̂p via the same formula as in Section 4.1: the sum may be
infinite, but it is always convergent due to condition (4.1). We now have
the following.

Theorem 4.11 (Mileyko et al. 2011). The metric space (B̂p, d̂p) is com-
plete and separable.

The goal of Mileyko et al. (2011) is now to construct means and variances

on B̂p. In general metric spaces X there is no notion of a single point-valued
mean, but the mean will actually be a subset of X. Here is the definition
of Fréchet means and variances, paraphrased from Mileyko et al. (2011).

Definition 4.12. Let X be a metric space, let B(X) be its Borel σ-
algebra, and let P be a probability measure on (X,B(X)), and suppose
that P has a finite second moment, that is,

∫
X d(x, x′)2 dP(x′) <∞ for all

x ∈ X. Then, by the Fréchet variance of P we will mean

varP = inf
x∈X

[
FP(x) =

∫
X

d(x, x′)2 dP(x′)
]
,

and the set

EP = {x|FP(x) = varP}
will be called the Fréchet expectation or the Fréchet mean of P.
As stated, EP always exists as a set, but it may be empty or contain more

than one point. There are results on the non-emptiness and the uniqueness
of Fréchet means for manifolds (Karcher 1977, Kendall 1990). What is

proved in Mileyko et al. (2011) is an existence result for the case X = B̂p.

Theorem 4.13. Let P be a probability measure on (B̂p, d̂p), and suppose
that P has finite second moment and compact support. Then EP 
= ∅.
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Turner, Mileyko, Mukherjee and Harer (2014) made this existence theo-
rem algorithmic, but for a somewhat different choice of metric and metric
space. By the L2 Wasserstein metric on B∞, we mean the analogue of d2
for the choice of penalty function

λL2(I, J) = (x1 − x2)
2 + (y1 − y2)

2.

The resulting metric space is simpler to work with computationally, and all
the existence results from Mileyko et al. (2011) are also shown to hold in
Turner et al. (2014).
Another approach concerns the notion of distances between measures on

metric spaces, and developed by Blumberg, Gal, Mandell and Pancia (2013)
and Chazal, Cohen-Steiner and Merigot (2011). One useful choice is the so-
called Lévy–Prohorov metric.

Definition 4.14. Given a metric space (X, dX), the Lévy–Prohorov met-
ric πX on the set P(X) of probability measures on the measurable space X,
with its σ-algebra of Borel sets B(X), is defined by

πX(µ, ν) =

inf{ε > 0|µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε for all A ∈ B(X)},
where Aε denotes the ε-neighbourhood of A, that is, the union of all balls of
radius ε about points of A. This metric is defined for all metric spaces, and
is known to induce the topology of weak convergence of measures on P(X)
when X is a ‘Polish space’, that is, a separable complete metric space.

By a metric measure space (X, dX , µX), we will mean a metric space
(X, dX) together with a probability measure µX on the σ-algebra of Borel
sets associated to the metric dX . Greven, Pfaffelhuber and Winter (2009)
defined an analogue to the Gromov–Hausdorff metric on the collection of
compact metric measure spaces. Given two metric measure spaces

X = (X, dX , µX) and Y = (Y, dY , µY ),

the Gromov–Prohorov distance between X and Y is defined by Greven et al.
(2009) to be

dGPr(X ,Y) = inf
(ϕX ,ϕY ,Z)

π(Z,dZ)((ϕX)∗µX , (ϕY )∗µY )

where, as in the definition of the Gromov–Hausdorff metric, (ϕX , ϕY , Z)
varies over all pairs of isometric embeddings ϕX : X → Z and ϕY : Y → Z
of X and Y into a compact metric space Z.
The distributions on B∞ of interest in Blumberg et al. (2013) are those

which are obtained by sampling n points in X, according to the probability
measure µX , and computing persistent homology in a fixed dimension k
to obtain persistence barcodes. The idea is that each one is a kind of
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finite approximation to the metric measure space, and the result shows
that the differences between these measures is controlled by the Gromov–
Prohorov distance between the actual metric spaces. More precisely, given
a metric measure space (X, dX , µX), they construct probability measures

Φn
k = Φn

k(X, dX , µX) on the completed barcode spaces B̂∞ described above,
via the formula

Φn
k(X, dX , µX) = (βk)∗(µn

X),

where βk denotes the k-dimensional barcode, and (−)∗ denotes the push

forward measure to B̂p. This formula makes sense because (a) βk is a
continuous map of metric spaces by Theorem 4.2, and (b) both spaces are
given the structure of measurable spaces via the Borel σ-algebras. The main
theorem of Blumberg et al. (2013) is now as follows.

Theorem 4.15 (Blumberg et al. 2013, Theorem 5.2). Let (X, dX , µX)
and (Y, dY , µY ) be compact metric measure spaces. Then we have the fol-
lowing inequality relating the Prohorov and Gromov–Prohorov metrics:

πB̂∞(Φn
k(X, dX , µX),Φn

k(Y, dY , µY )) ≤ ndGPr((X, dX , µX), (Y, dY , µY )).

This estimate permits us to prove the following convergence result.

Corollary 4.16 (Blumberg et al. 2013, Corollary 5.5). Let S1 ⊂ S2

⊂ · · · ⊂ · · · be a sequence of randomly drawn samples from (X, dX , µX).
We regard Si as a metric measure space using the subspace metric and the
empirical measure. Then Φn

k(Si) converges in probability to Φn
k(X, dX , µX).

Remark 4.17. One could formulate similar results in other contexts. For
example, a very interesting object of study would be to study the distri-
butions obtained by instead choosing various landmark sets in a witness
complex. This would then give an assessment of how well the space is rep-
resented by witness complexes of a fixed size.

5. Organizing data sets

5.1. Natural image patches

In this section we will describe the homological analysis of a particular data
set coming out of neuroscience and image processing. The data set was
constructed by Lee, Pedersen and Mumford (2003), and the analysis was
done by Carlsson, Ishkhanov, de Silva and Zomorodian (2008). We first
discuss the data set. It consists of images from a black and white digital
camera. Each such image can be thought of as a pixel vector in a space
whose dimension is the number of pixels used in the camera, and where
the coordinate for a given pixel is a grey-scale value, which we will think of
as a continuous variable, but which in fact takes integer values between 0
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and 255. The ‘metaproblem’ proposed by Lee et al. was to understand in
some sense the structure of the set of all images that might actually occur
in taking images, versus the set of all possible pixel vectors. The usual
topological method of trying to understand a space makes little sense here,
due to the extremely high dimensionality of the space of images. Lee et al.
decided instead to study the statistics of small (3×3) patches within a large
database of images taken by two Dutch neuroscientists around Groningen
in the Netherlands (van Hateren and van der Schaaf 1998).
Each such patch was taken as a vector in R9, with one grey-scale value

for each of the nine pixels. One preliminary observation is that most images
contain large solid regions, and therefore that patches which are constant
or nearly constant will dominate the statistics of the set of patches. For
this reason, Lee et al. decided to study only high-contrast patches, that is,
patches {xij}1≤i,j≤3 such that a certain positive definite quadratic form on
the vector of differences {xij −µ} is large, where µ is the mean value of the
values xij . The quadratic form is called the D-norm, and is a rescaling of
the standard Euclidean form in a way which reflects the placement of the
pixels in the 3× 3 array. They then constructed a data set of 4× 106 high-
contrast patches, by which they mean patches whose D-norm lies in the
top 20% values which occur. They then proceeded to perform the following
transformations to this data set.

(1) For any vector �x = {xij}ij , let µ(�x) denote the mean of the entries
xij . Replace each vector �x by �x′ = �x − µ(�x). This is done so as
to understand the structure of the patch independent of the absolute
values of the grey-scale values.

(2) Replace each vector �x′ by �x′/‖�x′‖D. This is done so as to understand
the patch structure independently of the absolute value of the contrast
in the patch.

We now have a data setM consisting of 4× 106 points lying on a seven-
dimensional ellipsoid E7 within an eight-dimensional subspace of R9. This
is the data set we will study.
The first inclination is to apply persistent homology directly. Unfortu-

nately, it turns out thatM fills out the full E7, which would mean that were
we to carry out the calculation, we would expect to find the homology of
E7. This would be unsurprising, and would not yield useful insights about
M. One can observe, though, that the density suitably measured varies a
great deal within M. This means that we can threshold by density, and
obtain a data set consisting of the most frequently appearing patches, or
motifs, in M. Such information would clearly be useful, for example, in
constructing compression schemes. The analysis in Carlsson et al. (2008)
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(a) (b)

β0 β1

0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 5.1. (a) Zero-dimensional and (b) one-dimensional
persistence barcodes for X(300, 30).

Figure 5.2. Primary circle in the data setM.

uses a very simple proxy for density, called co-density. The co-density with
parameter k on a finite metric space, denoted by ρk(x), is defined by

ρk(x) = {d(x, x′)| where x′ is the kth nearest neighbour to x}.
Note that ρk varies inversely with actual density, and also that the parameter
k plays a role similar to the choice of variance in a Gaussian kernel density
estimator. The size of the parameter k determines whether the density is
computed more or less locally, that is, using smaller or larger balls around a
point x. For a data set X, we let X(k, p), where k is a positive integer and
p is a percentage, denote the set of points x for which the value of ρk(x) is
among the top p% of the values occurring in X. Figure 5.1 shows the zero-
and one-dimensional persistence barcodes occurring for X(300, 30), where
X is a set of size 5× 104 sampled at random fromM.

Note that the zero-dimensional barcode, in Figure 5.1(a), shows a single
long bar, indicating that the space is well approximated by a connected
space. The one-dimensional barcode, in Figure 5.1(b), also has a single
long bar, indicating that it might very well be modelled by a circle. This is
indeed the case, as suggested by the circular coordinatization of the patches
in Figure 5.2. What it demonstrates is that the highest-density patches,
according to ρ300, consist of the discrete versions of linear functions in two
variables. This is not so surprising, but it is evidence that the method works.
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(a) (b)

β0 β1

0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 5.3. (a) Zero-dimensional and (b) one-dimensional
persistence barcodes for X(15, 30).

PRIMARY

SECONDARY SECONDARY

Figure 5.4. Primary and secondary circles inM.

One could then ask what happens when we use a more local density proxy,
that is, a smaller value of k. Figure 5.3 shows the result for X(15, 30), where
X is again a subsample fromM of size 5× 104. In this case, we again have
a single long line in the zero-dimensional barcode, indicating connectedness,
but the one-dimensional barcode has five long bars, suggesting that β1 for
this data set should be 5. We note that we obtain the same pattern, with
five long bars in the β1 barcode for different subsamples, so it appears to
be recognizing a real feature of the data set. In Figure 5.4, note that the
‘north’ and ‘south’ points on the left secondary circle are identical to the
north and south points on the primary circle, and the east and west points
of the right-hand secondary circle are identical to the east and west points
on the primary circle. This suggests that the space be identified with a
collection of three circles, one labelled ‘primary’ and the other two labelled
‘secondary’, with two points in each of the secondary circles identified with
two points in the primary circle, and with no overlap between the two
secondary circles. This gives us the idealized pictures in Figure 5.5. The
model in Figure 5.5(b) is obtained by stretching and moving the secondary
circles; it is clear that β1 = 5, since there are five independent loops.
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(a) (b)

Figure 5.5. (a) Three-circle model, and (b) three-circle model deformed.

(a)

(b)

(c)

β2

β1

β0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Figure 5.6. (a) Zero-dimensional, (b) one-dimensional,
and (c) two-dimensional persistence barcodes.

One can now ask whether there is a natural two-dimensional object into
which the data fits, and in such a way that the three-circle model naturally
fits into it as well. In this case, because we are trying to obtain a two-
dimensional geometry, we are actually forced to use the full data set M,
rather than a subsample. We also have to choose the k-parameter so that the
density estimator is even more localized. Figure 5.6 shows the persistence
barcodes in dimensions 0, 1 and 2 in this case.
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(a) (b)

Figure 5.7. (a) Torus and (b) Klein bottle.
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Figure 5.8. Identification space model for the Klein bottle.

Figure 5.6(a) suggests that the space is connected. Note that in the one-
and two-dimensional barcodes (Figure 5.6(b,c)) there is an interval of signif-
icant length (roughly from 0.15 to 0.30) in which there are two bars in the
one-dimensional barcode and a single line in the two-dimensional barcode,
suggesting that for that range of values of the scale parameter we have a
complex with β1 = 2 and β2 = 1, with F2 coefficients. There is a classifica-
tion of all compact two-dimensional manifolds (Munkres 1975, Chapter 12),
from which one can deduce that the only two possible such manifolds are the
torus and the Klein bottle, as in Figure 5.7. A calculation for the field F3

distinguishes between these two, and the persistent homology calculations
shows that the Klein bottle is the correct choice. The mod 3 Betti numbers
of the torus are (1, 2, 1) and for the Klein bottle they are (1, 1, 0).

It is interesting to explore how the three-circle model might fit inside the
Klein bottle. In order to do this, we will need a model of it more suitable
for computation. One way of doing this is via an identification space model,
which can be pictured as in Figure 5.8. The points labelled P,Q,R, and S
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Figure 5.9. (a) Primary circle and (b) secondary circles in the Klein bottle.

Figure 5.10. Parametrization of high-contrast patches by the Klein bottle.

are identified with other points labelled P,Q,R, and S respectively. This
means we are taking the quotient topology as in Section 2.2 of the relation
in which all the equivalence classes have either just one element (when the
point is in the interior of the rectangle) or exactly two elements, when they
are on the boundary of the disc. In this case, points along the horizontal
boundary lines are identified with their counterparts on the opposite line,
and the points along the vertical boundary lines are identified with the
points they correspond to when we perform a reflection of the opposite
segment. Given this model, we can see how the three-circle model fits inside
this space.
Figure 5.10 is a schematic describing how the high-contrast patches are

parametrized by the Klein bottle. Note that the parametrization respects
the equivalence relation, in that patches on the boundary are identical to
the corresponding patches on the opposite segment.
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Having this kind of description of the geometric structure of the data set
can be useful in a number of ways.

(1) Platonic model. We have studied discretizations of patches obtained
by sampling on 3×3 grids. But we could also ask what fully continuous
model might be consistent with our understanding of M. We will do
this by considering the intensity function of the patch as a quadratic
polynomial of degree two, in two variables, on the unit square. We
now describe a subspace of the set of all quadratic polynomials in two
variables (which have six parameters: one constant, two linear, and
three quadratic coefficients) by the following requirements.

• ∫
D f = 0, where D denotes the unit square.

• ∫
D f2 = 1.

• The function f is of the form f(�x) = q(λ(�x)), where q is a single-
variable quadratic polynomial, and where λ is a linear functional
on the plane.

The first two conditions are analogous to the requirements that the
mean intensity be zero and the contrast be one, which were imposed
on the data set in Lee et al. (2003). They define a subset which is a four-
dimensional ellipsoid S4 in R6. The final condition, which is non-linear,
defines a two-dimensional subspace of S4 which is homeomorphic to the
Klein bottle, as can be readily verified.

(2) Compression schemes. An understanding of what the frequently oc-
curring data points are in a data set is often an important part of any
compression scheme. For example, the wedgelet compression scheme
(Donoho 1999) uses the information that the primary circle in our
description consists of frequently occurring patches to obtain an in-
teresting compression scheme. Maleki, Shahram and Carlsson (2008)
have constructed a scheme based on the Klein bottle which outper-
forms wedgelets on some particular images. The rate distortion curve
is given in Figure 5.11, where the Klein bottle compression scheme is
the upper curve, and the lower curves are two different versions of the
wedgelet scheme.

(3) Texture recognition. In many image processing situations, we are in-
terested in recognizing not only large-scale features but also properties
which are more related to the texture of regions of the image. For exam-
ple, in studying textures, we expect to deal instead with the statistics
of small features within the patch. One approach to this problem is
studied in Perea and Carlsson (2014). The idea is to study all high-
contrast patches occurring inside a (larger) texture patch statistically,
in the hope that the statistics will tell the difference between textures.
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Figure 5.11. Rate distortion curve for Klein bottle-based compression.

One way to understand the statistics is to locate, for each high-contrast
patch, the closest point on the Klein bottle to that patch. If we carry
out this process, we obtain a large collection of points on the Klein
bottle. We can then generate a probability density function on the
Klein bottle by smoothing. Since the Klein bottle has a very simple
geometry (it has the torus as a two-fold covering space), we can per-
form Fourier analysis on the probability density function, to obtain
coordinates which are the Fourier coefficients. It turns out that these
coefficients are able to distinguish textures in various databases quite
effectively, close to state of the art. The advantage of this method is
that the effect of rotation on an image gives an easy transformation
on the Klein bottle, namely translation in the horizontal direction in
the identification space model in Figure 5.1. The standard approach
to this problem is to identify a finite set of patches (the codebook),
and to compute dot products of a given patch with each of them, giv-
ing a distribution function on a finite set. The key observation here is
that we can deal with infinite codebooks if the codebook is equipped
with a useful geometry, as is the Klein bottle. Actual finiteness can be
replaced by finiteness of description.

5.2. Databases of compounds

In the previous section we saw that persistent homology can be a useful
tool for understanding the overall structure of a complex data set. In this
section, we will discuss how persistence barcodes can instead be applied to
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the individual elements, or data points, in databases where these elements
themselves carry a geometric structure.
Databases of organic compounds are of fundamental importance in many

biomedical applications. They are, for example, the main object of study
in the area of drug discovery. The possibility of developing methods for in-
terrogating them, and in particular to determine rapidly and simply which
compounds are functionally similar to which other compounds, is something
that should be explored. One approach to this problem is to somehow as-
sign metric structures to sets of compounds. One difficulty is that sets of
compounds do not fit neatly into standard formats for data, such as spread-
sheets. The data specifying a particular compound consist of position coor-
dinates for its atoms as well as information about bonds between the atoms.
Since different compounds consist of different numbers of atoms as well as
different numbers of bonds, there is no simple vector description with a fixed
number of coordinates that can describe a set of compounds. In addition,
the description is not unique, since a molecule could be rotated to produce
different coordinates for the atoms. There is a standard method for encod-
ing the structures of compounds, referred to as simplified molecular-input
line-entry system, or SMILES. In this system, the compounds are repre-
sented as a list of symbols encoding the atoms, as well as other annotation
symbols which permit the reconstruction of the compound. Three problems
with this representation are that (a) there is not always a unique SMILES
representation of a given molecule, (b) the conversion from SMILES to a
three-dimensional representation can be ambiguous, and (c) the structure
is such that there is no obvious way of assigning a distance function or sim-
ilarity score to a pair of SMILES structures. Bak and Lerner (2014) have
described a method for assigning distance functions to sets of compounds
which circumvents these difficulties. We now describe their approach.
Any compound can be described as a finite collection of atoms with po-

sitions in three-dimensional Euclidean space, together with a collection of
bonds connecting the atoms, and the lengths of the bonds. There are now
two ways to assign a metric space structure to the set of atoms.

(1) The three-dimensional Euclidean distance between atoms.

(2) By regarding the bonds as the edges in a weighted graph with the
weight being the bond length, we may define an edge-path metric,
where the distance between two atoms α and β is the minimum over
all k and all sequences α0, α1, . . . , αk for which each pair (αi, αi+1) is
connected by a bond, of the sum

∑
i

λ(αi, αi+1),
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where λ(αi, αi+1) denotes the length of the bond connecting αi and
αi+1.

A key observation concerning these metrics is that they are independent of
rotations of the molecules. Bak and Lerner (2014) have constructed various
persistence barcodes, some using geometric constructions as in Section 3.6,
and others using functional persistence (see Definition 3.18) based on various
functions on the set of atoms of the molecule. The geometric constructions
are of two types, namely the Vietoris–Rips complex constructed in Defini-
tion 3.2 and the α complex defined in Section 3.6. The α complex is based
on the embedding of the set of atoms in three-dimensional Euclidean space.
The fact that the atoms are embedded in a low-dimensional Euclidean space
is what makes the α complex construction tractable. The collection of func-
tions on the set of atoms used for the functional persistence barcodes is as
follows:

(1) the centrality function ê2(x), defined in Section 3.5,

(2) the atomic mass of the atom,

(3) the partial charge of the atom.

In the case of functional persistence barcodes, a choice of scale must be
made. The choices made by Bak and Lerner (2014) are a finite set of small
multiples of the carbon–carbon bond length within the molecule. Given
these choices, persistence barcodes are now constructed in dimensions 0, 1,
2 and 3. Let us index the set of choices of barcodes under consideration
by β ∈ B, where B is an indexing set. Then, for each β, we assign the
bottleneck distance or Wasserstein metric with p = 2, and label it dβ for
that particular complex construction. We can then assign an associated
weighted family of metrics

d�aB =

(∑
β∈B

aβd
2
β

) 1
2

to any selection of non-negative real-valued vectors �a = {aβ}β .
Bak and Lerner study a particular class of compounds called dihydro-

folate reductase (or DFHR) inhibitors. These are compounds that inhibit
the functioning of dihydrofolate reductase in the biosynthesis of purines,
thymidylate, and other important amino acids. The synthesis which is asso-
ciated with DFHR is important in the development of cancer, and therefore
inhibiting its functioning is a useful property in the management of cancer.
DFHR inhibition is the basis for Methotrexate, which is the first histori-
cal example of structure-based drug design applied to cancer. The idea in
Bak and Lerner (2014) is now to develop a database of drugs which might
have some likelihood of being a DFHR inhibitor. To develop this database,
they first observed that one necessary property of a DFHR inhibitor is
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Figure 5.12. Data set constructed using the ‘Mapper’ methodology.

that it should contain at least one aromatic group and one hydrophobic
portion. The necessity for this criterion comes from the observation that
all known DFHR inhibitors have this property. They then constructed a
database of three-dimensional conformations, extracted from commercial or
open-source databases, or in some cases constructed by hand. There are
large databases for which this has already been done, and relatively stan-
dard ways of doing this. One such method is ZINC: http://zinc.docking.org/
(Irwin and Schoichet 2005). For other molecules, that do not have a three-
dimensional structure, they used a tool called OMEGA to generate con-
formations, and used the lowest-energy conformation. Inhibitors in species
other than humans were used. The compounds were combined into a sin-
gle dataset with 4000 compounds. They then worked with an optimization
scheme to perform ‘metric learning’ to find the best values of �a in select-
ing the metric. This optimization scheme was based on an objective func-
tion defined for the so-called DBSCAN clustering. The metric selected was
the one optimizing this objective function. The metric they constructed
produced very good localization of the actual DFHR inhibitors within the
larger database of putative DFHR inhibitors. Figure 5.12 is an image of the
data set constructed using the ‘Mapper’ methodology: see Carlsson (2009),
Singh, Mémoli and Carlsson (2007), Nicolau, Levine and Carlsson (2011),
and Lum et al. (2013). What it shows is that the DFHR inhibitors exist as
four separate very localized groups. Understanding this grouping is inter-
esting, but it means that one can now test a new compound to see where
it belongs in the image network, by selecting the point in the existing data
set which is closest to the new point. It will therefore act as a mechanism
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for rejecting out of hand many compounds, which then do not have to be
tested in the laboratory.
Bak and Lerner also used the algebraic functions defined in Section 4.2

to provide coordinates which can be used as input to more sophisticated
machine learning methods. It was applied to the problem of classifying
DFHR inhibitor versus non-inhibitor status based only on the barcode.

5.3. Viral evolution

The phylogenetic tree has become the standard model to capture the evo-
lution of species since Darwin. A single tree, the ‘Tree of Life’, contains
all species, alive and extinct, into a single structure. The revolution in ge-
nomic technologies in the last 20 years has led to an explosion of data and
methods developed to infer tree structure on sets of sequences (Felsenstein
2004, Drummond, Nicholls, Rodrigo and Solomon 2002). This phylogenetic
model strictly models clonal evolution, when genetic material is obtained
from a single lineage of ancestors. In this case mutations can occur and then
be transmitted via replication of the genomic material from a single parent
to the offspring. It is known that there are numerous other mechanisms
for the transfer of genetic material from one organism to another, where
the organisms may even belong to different species. Recombination of ge-
nomic material is common in many species. But examples across species are
pervasive in nature, such as hybrids in plants, horizontal gene transfer in
bacteria, and fusions of genomes, as occurred with mitochondria and chloro-
plasts. It has been argued by Doolittle (1999) that trees do not adequately
model the full range of possible mechanisms for transfer of genetic material,
thereby producing conflicting results in the reconstruction of the Tree of
Life. It turns out that all trees have vanishing homology groups, and that
therefore homological methods might be used to provide evidence for the
presence of horizontal evolutionary events within a collection of sequences,
or in their genetic history. This idea was proposed by Chan, Carlsson and
Rabadan (2013), who outlined a dictionary of correspondences between al-
gebraic topology and evolutionary concepts. The power of homology to
study genomic data was shown with examples arising from viral evolution.
The data sets consist of genetic sequences, which are sequences from

a four-element alphabet given by {A,G,C,T}, corresponding to the nu-
cleotides adenine, guanine, cytosine, and thymine. One natural metric on
the set of such sequences is the Hamming distance, which assigns to a pair
of sequences {xi}i and {yi}i, with xi, yi ∈ {A,G,C,T}, the number of val-
ues of i for which xi 
= yi. Equivalently, one can describe the Hamming
distance as the minimal number of substitutions which have to be made in
one sequence to obtain the other. There are many variants on this distance
which take into account the rates at which the various substitutions take
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place and assign different numbers to each possible substitution. Several
variations of these distances were studied by Chan et al. (2013), with simi-
lar results. The Nei–Tamura results were displayed. At this point we may
apply the persistent homology techniques to such finite metric spaces, and
obtain persistence barcodes.
Since what we are trying to do is to distinguish some of these metric

spaces from trees, it is important to understand the behaviour of persistent
homology of spaces which are somehow ‘tree-like’. Let Γ denote a weighted
graph, that is, a triple (V (Γ), E(Γ), fΓ), where V (Γ) is a finite set, E(Γ)
is a subset of the collection of two-element subsets of V (Γ), and where
fΓ : E(Γ)→ (0,+∞) is a weighting function on the edges. By an edge-path
in Γ, we will mean a sequence {v0, v1, . . . , vn} of elements vi ∈ V (Γ) such
that for every 0 ≤ i ≤ n− 1, we have that {vi, vi+1} is an element of E(Γ).
For any edge path e = {v0, v1, . . . , vn}, the length of e, denoted by λ(e), is
given by

λ(e) =
n−1∑
i=0

fΓ({vi, vi+1}).

The distance between any two vertices v and v′ of Γ, dΓ(v, v′), is given by

dΓ(v, v
′) = min

e
λ(e),

where the minimum is taken over all edge-paths e = {v0, . . . , vn} with the
property that v0 = v and vn = v′. We denote the metric space (V (Γ), dΓ) by
M(Γ). We now have the following result concerning the positive-dimensional
persistent barcodes of a metric space M(Γ).

Proposition 5.1. Let Γ be any weighted graph, and assume that the
underlying undirected graph is a tree, that is, it admits no cycles. Then the
persistence barcodes βi(M(Γ)) are all trivial, that is, they are the empty
multiset of bars, whenever i > 0.

Remark 5.2. This result uses in an essential way the result proved by
Buneman (1974) that a metric space is of the form M(Γ) if and only if it
satisfies the so-called four-point condition, which asserts that a finite metric
space (X, d) is of the form M(Γ) for some weighted tree if and only if the
condition

d(x, y) + d(z, t) ≤ max(d(x, z) + d(y, t), d(x, t) + d(y, z))

holds for all quadruples of elements x, y, z, t ∈ X.

The effect of this result is that one can determine that a finite metric
space is not tree-like, or is isometric to a finite subset of a space of the form
M(Γ). This statement alone is not useful in studying data, since there will
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be no ‘exactly tree-like’ metric spaces occurring in the presence of noise.
However, we have Theorem 4.2, which shows us that if a finite metric space
is approximately a tree-like metric space, that is, close to a tree-like metric
space in the Gromov–Hausdorff metric, then its higher-dimensional barcodes
will be close to the empty barcode in the bottleneck distance. This means
that all the intervals contained in the barcode are of small length.
Chan et al. (2013) applied persistent homology in one and two dimensions

to data sets arising in viral evolution, using the Vietoris–Rips and witness
complex defined in Section 3.6. A summary of their results is as follows (see
Chan et al. 2013 for details).

(1) The type of exchange of genomic material can be catalogued by the
topology of the genomic data. In the case of strict clonal evolution,
all information is captured by the zero-dimensional homology. Seg-
mented viruses, that is, viruses whose genomic information is encoded
in different ‘chromosomes’ or segments, undergo reassortments: the
generation of novel viruses with combinations of segments from the
different parental strains. This phenomenon is the source of most of
the reported influenza pandemics in humans (the H2N2 pandemic in
1957 and H3N2 in 1968), where a novel viral strain is generated by reas-
sorting segments of different parental strains infecting different hosts.
A data set of sequences arising in avian influenza was studied from
this point of view. When each distinct segment was studied, there
was no higher-dimensional behaviour. However, the metric space pro-
duced by using the concatenated sequences did produce significant one-
dimensional homology, which would preclude phylogeny as a complete
explanation. Other viruses, such as HIV, the cause of AIDS, undergo
recombination, where the genome of the offspring is a mosaic of the
genome of the parents. Circulating recombinant forms (CRFs) are ex-
amples of HIV viruses with complex recombinant patterns. Persistent
homology shows higher-dimensional homology groups capturing some
of the complex recombinant structures.

(2) Estimating the rate and scale of horizontal evolution. By performing
persistent homological calculations on simulations, it was observed that
a lower bound for the recombination/reassortment rate was obtained
by studying the counts of the number of bars in the corresponding
barcode. By analysing the numbers of these events it was possible to
assess the evolutionary pressures that link different pieces of genomic
material together. For instance, when analysing the homology of avian
influenza A, it was shown that several segments, containing the genes
that encode the polymerases, are more likely to co-segregate together,
possibly indicating that natural selection does not allow all combina-
tions to be equally fit.
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(3) Higher-dimensional homology generators capture genomic exchange.
In cases where higher-dimensional homology was observed, a repre-
sentative cycle for a given feature (or bar) was obtained. Such a cy-
cle is a linear combination of pairs of landmark points in the case of
one-dimensional homology, of triples of landmark points in the case
of two-dimensional homology, and so on. The cycle then gives a list
of data points which occur, and this list was studied. In the cases
studied, these occurrences were consistent with the known horizontal
transfer mechanisms in these situations. It should be pointed out that
the representative cycle was chosen directly from the algorithms used
to compute the persistent homology, and no effort was made to find the
minimal cycle, that is, one with the smallest number of summands in
the formal sum. Choosing the minimal cycle would be expected to give
even more focused outcomes. One might also attempt to reconcile the
findings of homology with results obtained via the mapping methods
introduced in Singh et al. (2007).

(4) Explicit examples were studied: the triple reassortant avian virus that
led to the outbreak in China in March 2013, the rate of reassortment
of influenza A viruses infecting different hosts (humans, swine and
birds), HIV recombination, and many other viruses including dengue
virus, hepatitis C virus, West Nile virus, and rabies.

5.4. Time series

Time series are a very interesting class of data, where for a discrete variable
t we have a point xt in a metric space (X, d). Usually X is a Euclidean space
Rn. Given such a time series and a positive integer l, we can construct a
data set out of the time series {xt}t as follows. Let Tl({xt}t) denote the
set of all fragments (xti , xti+1 , . . . , xti+l

) for every possible initial time ti.
From the distance function d on X, we can define a distance function dT on
Tl({xt}t) by the formula

dT ((xti , xti+1 , . . . , xti+l
), (xtj , xtj+1 , . . . , xtj+l

)) =

( s=l∑
s=0

d(xti+s, xtj+s)
2

) 1
2

.

To give an idea of how this works, we consider a time series given by

xt = sin(tε),

where ε > 0 is a very small number, or threshold. If l = 0, then the data
set we obtain is just the range of the sine function restricted to the set of
multiples of the threshold ε. If ε is sufficiently small, it will roughly fill out
the interval [−1, 1], the range of the sine function. On the other hand, if
l = 1, then the data points are pairs (sin(tε), sin((t+1)ε)). A sketch of this
data set in the case where ε = π/4 is shown in Figure 5.13. It is easy to
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Figure 5.13. A space of time series fragments.

check, using trigonometric identities, that this set is a discrete set of points
lying on the ellipse

x2 −
√
2

2
xy + y2 =

1

2
.

The fact that this data set contains a loop reflects the fact that the sine
function is periodic. If we performed the same construction for a time series
of the form xt = tε, we would instead obtain a set of points sampled from
the line with equation y = x + ε. This set has no loops, and this reflects
the fact that the linear function f(x) = xε is not periodic. These observa-
tions suggest the possibility that computing the one-dimensional persistent
homology groups of the metric spaces Tl({xt}t) could be a strategy for de-
tecting periodic behaviour of a given function. This method is proposed
by Perea and Harer (2014), and some of its properties are explored. We
summarize their results below.
For any real-valued function f on the real line, we will define the sliding

window embedding attached to f and with parameters M ∈ N and τ ∈
(0,+∞), denoted by SWM,τf(t), by

SWM,τf(t) = (f(t), f(t+ τ), . . . , f(t+Mτ)),

where SWM.τf is an RM+1-valued function on R. By choosing a finite set
of points T ∈ [0, L], we obtain a point cloud attached to the function f ,
which we denote by C = C(f,M, τ, T ). It is the persistent homology of
C, using the Vietoris–Rips complex, which will reflect periodic behaviour.
To formulate the main result of Perea and Harer (2014), we make some
definitions. For any L2 function on the circle S1, we let Snf denote its Nth
Fourier truncation, that is, the linear combinations of sin(nt) and cos(nt),
for n ≤ N , occurring in the Fourier decomposition for f . For any finite
set T ⊆ S1, we can then apply the sliding window embedding for SNf ,
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based on M and τ , and restrict it to T , to obtain a point cloud in (M +1)-
dimensional Euclidean space Y = Y (f, T,N,M, τ). We then apply a process
which mean-centres every data point in Y , and then normalizes it to lie on
the unit sphere in RM+1. That is, for each data point x = (x0, x1, . . . , xM ),
we first transform it to a vector x̂ = (x̂0, x̂1, . . . , x̂n), where

x̂i = xi − 1

M + 1

(∑
i

xi

)
.

Finally, we form x∗ = x̂/‖x̂‖. We will denote the point cloud which has been
transformed in this way by Y (f, T,N,M, τ). We next assume the function
f is L-periodic on R, so that

f

(
x+

2π

L

)
= f(x).

We then set

τN =
2π

L(2N + 1)
.

It is then shown in Perea and Harer (2014) that the limit of the sequence
dgmY (f, T,N, 2N, τN ) exists as a point dgm∞(f, T, w) in the completed

barcode space B̂∞, based on the bottleneck distance, defined in Section 4.4,
where dgm denotes the operation which assigns to a point cloud its one-
dimensional persistence diagram, or barcode, and where w = 2π/L. For
any barcode β = {(x1, y1), . . . , (xn, yn)} in B∞, we define its maximal per-
sistence mp(β) by the equation mp(β) = maxi(yi − xi). It is easy to check

that mp extends to a function on B̂∞. Perea and Harer (2014) have also
proved that one may take a limit over families of subsets Tδ ⊆ S1, where Tδ

is δ-dense in the sense that every point in S1 is within a distance δ of some
point in Tδ, and where δ → 0, to obtain a limit dgm∞(f, w). One of the
principal results of Perea and Harer (2014) is as follows.

Theorem 5.3. Let f be an L-periodic continuous function on S1 such
that f̂(0) = 0 and ‖f‖2 = 1, and suppose that the persistence diagram is
computed for homology with coefficients in Q. Then we have that

mp(dgm∞(f, w)) ≥ 2
√
2max

n∈N
|f̂(n)|,

where f̂(n) is given by f̂(n) = 1
2an − i

2bn if n > 0, = 1
2a−n +

i
2b−n is n < 0,

and = a0 if n = 0, where an and bn denote the coefficients of cos(nt) and
sin(nt), respectively, in the Fourier expansion of f .

This is a very interesting relationship, and these observations are used
as the basis for a test for periodicity based on persistence barcodes of the
point clouds constructed from the function f . Perea and Harer (2014) made
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(a)

(b) (c)

Figure 5.14. Distribution of stars, galaxies and other structures:
(a) 2Mass redshift survey, (b) NASA/Goddard, (c) ESO/IAC.

comparisons with more conventional methods for detecting periodicity, with
favourable results.

5.5. Structure of the cosmic web

A very interesting object of study in cosmology and astrophysics is the
distribution of stars, galaxies, and other structures. Far from being uni-
form, it exhibits very intricate local structure, as indicated by the images in
Figure 5.14, from Huchra et al. (2005) (a), NASA’s Goddard Space Flight
Center (b), and the European Southern Observatory and Instituto de As-
trofisica de Canarias (c). Galaxies and mass exist in a wispy web-like spatial
arrangement consisting of dense compact clusters, connected by elongated
filaments, and sheet-like walls, which surround large near-empty void re-
gions; see Bardeen, Bond, Kaiser and Szalay (1986) for a discussion of the
relevant cosmology. To understand this kind of ‘three-dimensional texture’,
one can attempt to study it as a topological problem. It is usually formu-
lated via an assumption that the presence of matter is obtained by sampling
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from a density function ρ defined on three-dimensional space. The density
ρ would itself be a complicated object, given the complexity of the resulting
sampling. The first recognition that topological methods could be useful
in this setting occurred in Gott, Dickinson and Melott (1986) and Hamil-
ton, Gott and Weinberg (1986). The idea was that one should study the
level sets of ρ from a topological point of view. These level sets are two-
dimensional surfaces, for which there is a natural integer invariant called
the genus, which is defined as one half of its first Betti number. Gott et al.
(1986) and Hamilton et al. (1986) considered the genus of the level surfaces
as a useful numerical invariant of this situation. Note that the genus differs
from the Euler characteristic, defined below, by a constant. Another family
of spaces one could study is the excursion sets at various levels r, defined as
ρ−1([r,+∞)). It was recognized in Sousbie (2011) and Sousbie, Pichon and
Kawahara (2011) that persistent homology gives a method which allows us
to track topological behaviour of excursion sets as the thresholds for these
excursion sets decrease.
In order to develop theory, and to understand the appearance of observed

results, one can assume that ρ is itself a random function, or a random field,
obtained under some stochastic process. The idea is that one could attempt
to understand expected values for the Betti numbers of the excursion sets
of random fields. Random fields have been studied in great detail in Adler
(1981) and Adler and Taylor (2007). A case of particular interest is that of
a Gaussian random field, in which the assumption is made that the distri-
bution assumed by the values of the random field at any particular point or
any finite family of points in the domain is Gaussian. Gaussian fields in a
cosmological context are of key importance because of the following facts.

(1) The primordial universe was, to high precision, a spatial Gaussian
random field, which has been shown observationally by numerous cos-
mic microwave background experiments such as COBE (Bennett et al.
2003), WMAP (Spergel et al. 2007), and more recently Planck (Abergel
et al. 2011).

(2) There is also a fundamental physical reason to expect that all primor-
dial structure is nearly completely Gaussian. This concerns the gener-
ation of primordial density perturbations during the early inflationary
phase of the universe (at t ∼ 10−36 seconds after the Big Bang), during
which quantum fluctuations were blown up to macroscopic proportions.

(3) A more technical mathematical reason why Gaussian fluctuations are
expected is the central limit theorem. Given the fact that the fluctu-
ations at each scale are independently distributed, it would naturally
give rise to a Gaussian field.

This assumption permits us to understand many properties of the random
field, including some topological ones.
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There is another useful integer-valued summary of the homology of any
finite-dimensional space called the Euler characteristic of the space. It is
defined to be the alternating sum

χ(X) =
∑
i

(−1)iβi(X).

Note that there is an Euler characteristic for each different field of coeffi-
cients. The Euler characteristic is a very useful invariant due to the fact
that it is so readily computable, as is demonstrated in the following result.

Proposition 5.4. Let X be any finite simplicial complex. Then χ(X) is
equal to the alternating sum ∑

i

(−1)iσi(X),

where σi(X) denotes the number of i-dimensional simplices in the com-
plex X.

What this means is that the Euler characteristic can be computed directly
by counting simplices, without performing any linear algebra. The price one
pays is, of course, that much information about the actual homology is lost.

Example 5.5. Let Sn denote the n-sphere. Then χ(Sn) = 0 if n is odd,
and 2 if n is even. So, while the Betti numbers can distinguish between
all spheres, the Euler characteristic can only determine the parity of the
dimension of the sphere.

It turns out that for many Gaussian random fields, as shown by Adler and
Taylor, it is possible to determine the distribution of the statistic given by
the Euler characteristic of the excursion sets, in terms of certain parameters
defining the random field. These beautiful results are described in detail in
Adler and Taylor (2007). An important case (when the Gaussian field is
characterized by its power spectrum) was obtained in the cosmological liter-
ature (Bardeen et al. 1986, Hamilton et al. 1986). What this suggests is the
possibility that we can begin to evaluate models for the stochastic processes
from which the distribution in the cosmic web is generated, provided that
we can develop sufficient theory to do so.
More recently, Park et al. (2013) and van de Weygaert et al. (2011) have

shown that the Betti numbers of Gaussian random fields carry strictly more
information concerning the random field than the Euler characteristic alone.
Specifically, it is found that an invariant of the Gaussian field called the
slope of the power spectrum affects the shape of the curves of the Betti
numbers (as the threshold r changes), while the shape of the curve of Euler
characteristics is independent of it.
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Persistent homology has also been studied in this way. Adler et al. (2010)
have defined the analogue of the Euler characteristic for persistent homology
and studied it for Gaussian random fields. The analogue of the Euler char-
acteristic for persistent homology is defined as follows. For a fixed barcode
β = {(x1, y1), . . . , (xn, yn)}, we define

τ(β) =
∑
i

(yi − xi),

and then define the analogue of the Euler characteristic, χpers by the formula

χpers(X) =
∑
i

(−1)iτ(βi(X)),

where βi(X) denotes the i-dimensional persistence barcode for X. This
quantity has the same properties which make the Euler characteristic highly
computable, and in Adler et al. (2010) a result is proved which computes
χpers for Gaussian random fields.
Finally, van de Weygaert et al. (2011) have taken a different topological

approach to analyse the topology at various scales of a set of discrete points
in two- or three-dimensional space. The points are to be thought of as indi-
vidual stars, or perhaps galaxies, and the idea is to construct the α complex
(see Section 3.6) associated to them at various scales. This method is used
by van de Weygaert et al. (2011) to study the Betti numbers produced by
various stochastic process models, including some which are explicitly pro-
posed for cosmological problems. In addition, they point out that persistent
homology is applicable to this family of complexes, and will likely be applied
in future investigations.
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