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A NOTE ON (r, A)-SYSTEMS 
BY 

B. GARDNER 

An (r, A)-system is an arrangement of v objects (or varieties) into subsets (or 
blocks) such that each variety appears in exactly r blocks and each pair of 
distinct varieties appears in exactly À blocks. To avoid trivial designs, we 
assume that 1 < À < r. 

An (r, A)-system which contains either a complete block or a complete set of 
singletons is called reducible. Otherwise, it is called irreducible. If A ( ^ - l ) > 
r ( r - l ) , the corresponding system is called hyperbolic. 

Stanton and Mullin [2] made the following conjecture and proved it for 
A = l . 

CONJECTURE 2. For A < 2 (and perhaps all A), all hyperbolic systems are 
reducible. 

Vranch [3] claims that his results support this conjecture for arbitrary values 
of A. 

In [1], it is shown that this conjecture is true for all A in the cases r = A + 1 
and r = A + 2 . 

For r = A + 3, we exhibit counterexamples when A > 3. 
The following irreducible hyperbolic systems provide counterexamples to 

Conjecture 2 for A = 3 and A = 4. 
Irreducible hyperbolic (6, 3)-system on thirteen varieties. 
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Irreducible hyperbolic (7, 4)-system on twelve varieties. 
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