A NOTE ON (r, λ) -SYSTEMS B. GARDNER

An (r, λ) -system is an arrangement of ν objects (or varieties) into subsets (or blocks) such that each variety appears in exactly r blocks and each pair of distinct varieties appears in exactly λ blocks. To avoid trivial designs, we assume that $1 \le \lambda < r$.

An (r, λ) -system which contains either a complete block or a complete set of singletons is called reducible. Otherwise, it is called irreducible. If $\lambda(\nu - 1) > r(r-1)$, the corresponding system is called hyperbolic.

Stanton and Mullin [2] made the following conjecture and proved it for $\lambda = 1$.

CONJECTURE 2. For $\lambda \leq 2$ (and perhaps all λ), all hyperbolic systems are reducible.

Vranch [3] claims that his results support this conjecture for arbitrary values of λ .

In [1], it is shown that this conjecture is true for all λ in the cases $r = \lambda + 1$ and $r = \lambda + 2$.

For $r = \lambda + 3$, we exhibit counterexamples when $\lambda \ge 3$.

The following irreducible hyperbolic systems provide counterexamples to Conjecture 2 for $\lambda = 3$ and $\lambda = 4$.

Irreducible hyperbolic (6, 3)-system on thirteen varieties.

1	2	3	4	5	6	7	8	10	12	
1	2	3	4	5	6	7	9	11	13	
1	2	3	4	8	9	10	11	12	13	
1	7	8	9							
1	6	10	11							
1	5	12	13							
2	5	6	7	8	9	10	11	12	13	
2										
2										
3	5	8	11							
3	6	9	12							
3	7	10	13							
4	5	9	10							
4	6	8	13							
4	7	11	12.							
			_							

Received by the editors, in revised form, April 15, 1977.

511

Irreducible hyperbolic (7, 4)-system on twelve varieties.

1	2	3	4	6	8	9	10
1	2	3	4	7	10	11	12
1	2	3	5	8	9	11	12
1	2	5	6	7	8	10	12
1	3	5	6	7	9	10	11
1	4	6	7	8	9	11	12
1	4	5					
2	3	4	5	6	7	8	11
2	4	5	6	9	10	11	12
2	7	9					
3	4	5	7	8	9	10	12
3	6	12					
8	10	11.					

References

1. B. Gardner, On Coverings and (r, λ) -systems, Ph.D. Thesis, University of Waterloo, 1972.

2. R. G. Stanton and R. C. Mullin, Inductive Methods for Balanced Incomplete Block Designs, Ann. Math. Stat. 37 (1966), 1348-1354.

3. J. Vranch, On Critical (r, λ)-systems, Can. Math. Bull. 19 (1976), 217-220.

Department of Mathematics, Statistics and Computer Science, Memorial University of Newfoundland,

St. John's, Newfoundland, Canada, A1C 5S7

512