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Representation of Banach Ideal Spaces
and Factorization of Operators

Evgenii I. Berezhnoı̆ and Lech Maligranda

Abstract. Representation theorems are proved for Banach ideal spaces with the Fatou property which

are built by the Calderón–Lozanovskĭı construction. Factorization theorems for operators in spaces

more general than the Lebesgue Lp spaces are investigated. It is natural to extend the Gagliardo the-

orem on the Schur test and the Rubio de Francia theorem on factorization of the Muckenhoupt Ap

weights to reflexive Orlicz spaces. However, it turns out that for the scales far from Lp-spaces this is im-

possible. For the concrete integral operators it is shown that factorization theorems and the Schur test

in some reflexive Orlicz spaces are not valid. Representation theorems for the Calderón–Lozanovskĭı

construction are involved in the proofs.

0 Introduction

Let (X0,X1) be a compatible couple of Banach spaces and let F(X0,X1) be a Banach

space intermediate between X0 and X1 generated by an construction F (maybe in-

terpolation one). The so-called inverse interpolation problem is the problem whether

the space F(X0,X1) may be obtained by the same functor F from other compatible

Banach couples having some additional properties.

Consider also a uniqueness problem for the fixed construction or interpolation

method F, that is, the following problem: Does the equality F(X0,X1) = F(Y0,Y1)

with equivalent norms for arbitrary Banach spaces X0,X1,Y0,Y1, or for the spaces

from a given class, imply that X0 = Y0 and X1 = Y1 with equivalence of their norms?

The above two problems are difficult to solve, therefore it makes sense to consider

their simpler versions. In this paper we consider a uniqueness problem for the fixed

construction or interpolation method F, sometimes also called the representation of

the space F(·), by asking the following question:

Does the equality F(X0,X1) = F(X0,X2) hold with equivalent norms for arbitrary

Banach spaces X0, X1, X2, or for the spaces from a given class, imply that X1 = X2 with

equivalent norms?

The non-uniqueness of the real and the complex method are well known. Already,

Grisvard, Seeley and others (see [53], pages 320–321 for references) have considered
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real and complex interpolation with boundary conditions and proved that for 0 <
θ < 1/2,

[L2(Ω),W 1,2(Ω)]θ = [L2(Ω),W 1,2
0 (Ω)]θ = W θ,2(Ω),

where Ω ⊂ Rn is a bounded C∞-domain and W
θ,2
0 (Ω) = {x ∈ W θ,2(Ω) : u|∂Ω = 0},

with W θ,2 being the usual Sobolev space.

For the real interpolation construction, Lions–Magenes (see [28, Theorem 11.1,

p. 55]) proved that for 0 < θ < 1/2,

(

L2(Ω),W 1,2(Ω)
)

θ,2
=

(

L2(Ω),W 1,2
0 (Ω)

)

θ,2
= W θ,2(Ω),

where Ω = {(x, y) : x2 + y2 < 1}. For the real interpolation method we can also take

Triebel’s example connected with the negative answer for the problem of interpola-

tion of intersections. For the weight function w(t) = min(t, 1 − t)−1/2, t ∈ (0, 1)

and the spaces on (0, 1) we have for 1/2 < θ < 1,

(L2,W 1,2 ∩ L2
w)θ,2 = (L2,W 1,2

0 )θ,2 = W θ,2
0 ,

where W
θ,2
0 is the closure of C∞

0 (0, 1) in W θ,2. Moreover, Wallsten has given an ex-

ample of a space M (cf. [54]) for which (M, L∞)θ,p = (L1, L∞)θ,p for 1/2 < θ < 1.

In the seventies, Fefferman–Stein, Rivière–Sagher, Hanks, Bennett–Sharpley and

others (see [2, § 5.6–5.7] for results and references) proved equalities for the complex

interpolation method:

[H1, Lp]θ = Lq
= [L1, Lp]θ and [Lp,BMO]θ = L

p
1−θ = [Lp, L∞]θ

for all 0 < θ < 1, 1 < p <∞ and 1/q = 1 − θ + θ/p, and for the real interpolation

method:

(L1, L∞)θ,p = (Re H1, L∞)θ,p = (L1,BMO)θ,p

= (Re H1, L∞)θ,p = (Re H1,BMO)θ,p = L
1

1−θ ,p

for all 0 < θ < 1, 1 ≤ p ≤ ∞, where L
1

1−θ ,p are classical Lorentz spaces. We also

mention that for an arbitrary couple of Banach spaces X0 and X1, the equalities

[X̃0, X̃1]θ = [X0,X1]θ = [X0
0 ,X

0
1]θ and (X̃0, X̃1)θ,p = (X0,X1)θ,p

hold isometrically for all 0 < θ < 1, 1 ≤ p ≤ ∞, where X̃i is the Gagliardo comple-

tion of Xi and X0
i is the closure of X0 ∩ X1 in Xi for i = 0, 1.

Let us point out that the situation may be quite different if we assume from the

beginning that all the spaces in the problem have some common structure, for ex-

ample, they are Banach lattices on a given measure space (Banach ideal spaces). This

phenomenon, that some problem has negative solution for general Banach spaces but

positive answer in the class of ideal Banach spaces with the Fatou property, was first

observed in [33, 34] in connection to Peetre’s problem on interpolation of intersec-

tions.
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Cwikel and Nilsson [14] showed the uniqueness theorem for the Calderón con-

struction F(X0,X1) = X1−θ
0 Xθ

1 when X0, X1, X2 are Banach ideal spaces and all have

the Fatou property. Their arguments used in the proof are related to ideas in a the-

orem of Pisier [45]. Some related results for finite dimensional Banach spaces were

considered by Rochberg [47].

The inverse interpolation problem for the real method of interpolation F = (·)Φ

on some class of Banach ideal spaces was investigated in [5]. One of the results shows

that if X is a symmetric space on (0,∞) and (X, L∞)θ,p = (Lp, L∞)θ,p, then the

fundamental function of X is equivalent to t1/p.

Cwikel–Nilsson [14, p. 45] and Asekritova–Krugljak [1, p. 114] proved the follow-

ing uniqueness theorem for the real interpolation method:

Let X0, X1, Y0, Y1 be Banach ideal spaces. If (X0,X1)θi ,pi
= (Y0,Y1)θi ,pi

, i = 0, 1, for

some θ0, θ1 ∈ (0, 1), θ0 6= θ1 and p0, p1 ∈ [1,∞], then (X0,X1)θ,p = (Y0,Y1)θ,p for

all θ ∈ (0, 1) and p ∈ [1,∞].

In this paper we consider uniqueness results (representation theorems) for the

Calderón–Lozanovskiı̆ construction F(X0,X1) = ϕ(X0,X1) with a general function

ϕ ∈ U.

These results have applications in the factorization of operators between Banach

ideal spaces. In the theory of integral operators with positive kernels a special role

is played by the so-called Schur lemma or Schur test (see [23, p. 37] or [52, p. 42]),

which says that an integral operator Kx(t) =
∫

k(t, s)x(s) ds with a positive kernel

k(t, s) ≥ 0 is bounded in Lp for 1 < p < ∞ if and only if there exists a positive

function u such that

Kup ′

(t) ≤ Cup ′

(t) and K ′up(t) ≤ Cup(t),

where K ′ is a formally associate operator and 1/p ′ + 1/p = 1. We can rewrite this in

the factorization way: there exists a positive function u (weight function u) such that

K : L1
up → L1

up and K : L∞
u−p ′ → L∞

u−p ′ is bounded.

In the eighties, interest in statements like the Schur lemma increased after the solu-

tion of the factorization problem of Muckenhoupt’s Ap-condition on weight by Jones

[21], and even stronger after the Rubio de Francia elementary proof of Jones’ theo-

rem [13, 48]. These studies were later developed in [9, 12, 16–18, 20, 49]. All these

papers contain the factorization problem of various classical operators in weighted

Lp spaces.

We will extend factorization theorems from weighted Lp spaces to weighted Ba-

nach ideal X(p) spaces, and the factorization will be proved first through the weighted

L∞ spaces. The main factorization problem is to have factorization through the

weighted L1 and weighted L∞ spaces and this question will be also discussed here.

We prove the factorization result for a sufficiently large class of positive sublin-

ear bounded operators T between Lp spaces through the Lorentz and Marcinkiewicz

spaces generated by a certain weight function. Then we show that factorization of

the symmetric space X(p) through weighted X and L∞ is not true for the positive

sublinear Hardy operator.
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The failure of the main factorization theorem in Calderón–Lozanovskiı̆ spaces

generated by a non-power function is proved for the Volterra operator and the aver-

aging operator. This shows that we cannot go far from the scale of Lp spaces with the

factorization theorems.

Finally, we show that the Schur lemma is not true in some reflexive Orlicz spaces

for the classical Hardy operator; that is, we can construct reflexive Orlicz spaces in

which the classical Hardy operator is bounded (it is bounded even in any reflexive

Orlicz space) but the factorization through weighted L1 and weighted L∞ spaces is

not possible.

Let us mention that a quite different question, called also the Lions problem, about

the effective dependence of a given family of spaces on its function parameter ϕ,

was considered for the complex method of interpolation by Stafney [51], for the real

method of interpolation in [1, 8, 19], for the Calderón–Lozanovskiı̆ construction

ϕ(·) in [6], and for the Gustavsson–Peetre construction Gϕ(·) in [7]. The question

for the Calderón–Lozanovskiı̆ construction is: when are the spaces ϕ0(X0,X1) and

ϕ1(X0,X1) different for ϕ0 6= ϕ1?

The content of the paper is as follows: In Section 1 we define the Banach ideal

spaces and the Calderón–Lozanovskiı̆ construction and collect their properties in-

cluding the Lozanovskiı̆ factorization theorem.

In Section 2 we prove representation theorems, called also uniqueness theorems,

for the Calderón–Lozanovskiı̆ construction generated by different Banach ideal

spaces or the weighted Lp spaces. The main representation theorems (Theorems 1–4)

show that under some little assumption on ϕ the equality ϕ(X0,X1) = ϕ(X0,X2)

with equivalent norms implies that X1 = X2 with equivalent norms, and the equality

ϕ(L1
u, L

∞
v ) = ϕ(L1

w, L
∞) with equivalent norms implies the equivalence of weights

wθ ≈ uθv1−θ for some 0 ≤ θ ≤ 1.

Section 3 contains pointwise estimates for positive sublinear operators. Factoriza-

tion results in weighted X(p) spaces are presented there. They are extensions of the

corresponding results of Hernández [17, 18] for weighted Lp spaces. The main tool

in the proofs is Lemma 6 of the Gagliardo and Rubio de Francia type.

For a large class of positive sublinear operators T which are bounded between Lp

spaces we show a factorization of T through the Lorentz and Marcinkiewicz spaces

generated by a certain weight function.

We also prove that the positive sublinear Hardy operator bounded between sym-

metric spaces X(p) cannot be factorized by a weighted space X and weighted L∞ when

the upper Boyd index of the space X is 1. This example of the Hardy positive sub-

linear operator shows that without any additional assumptions on an operator the

factorization theorem through weighted L1 and weighted L∞ spaces cannot be true.

In Section 4, representation theorems are used to show that the factorization prob-

lem in Calderón–Lozanovskiı̆ spaces generated by a non-power function is not true,

in general, for the Volterra operator and in Section 5 the same is done for the averag-

ing operator.

Section 6 contains a counter-example showing that the classical Hardy operator

between some reflexive Orlicz spaces cannot be factorized through weighted L1 and

weighted L∞ spaces. This also shows that the Schur lemma for positive integral op-

erators between some reflexive Orlicz spaces is false. Detailed proofs of the construc-
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tions of the functions in the counter-example are collected in an appendix.

Preliminary versions of Theorems 4, 8 and 9 were announced without proofs

in [4].

1 Banach Ideal Spaces and the Calderón–Lozanovskiı̆ Construction

Let (Ω, µ) be a complete σ-finite measure space and let L0(µ) or L0(Ω) denote, as

usual, the space of all equivalence classes of measurable functions on Ω with the

topology of convergence in measure on µ-finite sets. The order |x| ≤ |y| means that

|x(t)| ≤ |y(t)| for µ-almost all t ∈ Ω.

A Banach subspace X = (X, ‖ · ‖X) of L0(µ) such that there exists u ∈ X with

u > 0 µ-a.e. on Ω and ‖x‖X ≤ ‖y‖X whenever |x| ≤ |y| is called a Banach ideal space

on Ω or on (Ω, µ).

If X is a Banach ideal space on Ω and w ∈ L0(µ) is a weight function on Ω, that is,

w > 0 a.e. on Ω, we define the weighted space Xw by ‖x‖Xw
:= ‖xw‖X .

The associated space X ′ to X is the space of all x ∈ L0(µ) such that

∫

Ω

|x(t)y(t)| dµ <∞

for every y ∈ X endowed with the norm

‖x‖X ′ = sup
{

∫

Ω

|x(t)y(t)| dt : ‖y‖X ≤ 1
}

.

X ′ is a Banach ideal space.

A Banach ideal space X with a norm ‖ · ‖X has the Fatou property if for any in-

creasing positive sequence (xn) in X with supn ‖xn‖X < ∞ we have that supn xn ∈ X

and ‖ supn xn‖X = supn ‖xn‖X .

For every Banach ideal space X we have the embedding X ⊂ X ′ ′ with ‖x‖X ′ ′ ≤
‖x‖X for any x ∈ X. Moreover, X = X ′′ with equality of the norms if and only if X

has the Fatou property (cf. [25, 27]).

Let X̄ = (X0,X1) be a couple of Banach ideal spaces on Ω and let U denote the

set of all non-negative, concave and positively homogeneous continuous functions

ϕ : [0,∞)× [0,∞) → [0,∞) such that ϕ(0, 0) = 0. Then the Calderón–Lozanovskĭı

construction or the Calderón–Lozanovskĭı spaces ϕ(X̄) = ϕ(X0,X1) consists of all x ∈
L0(µ) such that |x| ≤ λϕ(|x0|, |x1|) for some xi ∈ Xi with ‖xi‖Xi

≤ 1, i = 0, 1. The

spaces ϕ(X̄) are Banach ideal spaces on Ω equipped with the norm

‖x‖ϕ = inf{λ > 0; |x| ≤ λϕ(|x0|, |x1|), ‖x0‖X0
≤ 1, ‖x1‖X1

≤ 1}

(see [30]). In the case of power functionsϕθ(s, t) = s1−θtθ with 0 ≤ θ ≤ 1,ϕθ(X̄) are

the well known Calderón spaces X1−θ
0 Xθ

1 (see [11]). The particular case Xθ(L∞)1−θ =

X(p) for θ = 1/p, 1 ≤ p <∞, is known as the p-convexification of X (see [27, 38]).

The properties of ϕ(X̄) were studied by Lozanovskiı̆ in [30, 31] (see also [35]),

where among other facts is proved the duality result

ϕ(X0,X1) ′ = ϕ̂(X ′
0,X

′
1)
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with equivalent norms. Here, for ϕ ∈ U, the conjugate function ϕ̂ is defined by

ϕ̂(s, t) := inf
{ αs + βt

ϕ(α, β)
: α, β > 0

}

, s, t ≥ 0.

We have ϕ̂ ∈ U and ˆ̂ϕ = ϕ (see [31, 32] and [35, Lemma 15.8]). Note that

(1)
1

ϕ( 1
s
, 1

t
)

= inf
α,β>0

max(αs, βt)

ϕ(α, β)
≤ ϕ̂(s, t) ≤ 2

ϕ( 1
s
, 1

t
)
.

Lozanovskiı̆ also showed that (X1−θ
0 Xθ

1 ) ′ = (X ′
0)1−θ(X ′

1)θ with equality of the

norms ([29], Theorem 2). Using this equality for θ = 1/2 it was shown in [29]

that X1/2(X ′)1/2 = L2 isometrically. From this result follows the Lozanovskiı̆ factor-

ization theorem, proved in [29, Theorem 6] (see also [35, p. 185] and [46]):

Theorem A Let X be a Banach ideal space. Then for every 0 ≤ z ∈ L1 and ε > 0 we

can find 0 ≤ x ∈ X and 0 ≤ y ∈ X ′ such that z = xy and

‖x‖X‖y‖X ′ ≤ (1 + ε)‖z‖1.

If X has the Fatou property, we may take ε = 0 in the above inequality.

Calderón–Lozanovskiı̆ spaces are closely related to Orlicz spaces. Let M : [0,∞) →
[0,∞] be a nondecreasing, convex and left-continuous function, not identical 0 or

∞ on (0,∞), with M(0) = 0. Let ϕ ∈ U be defined by ϕ(s, t) = tM−1(s/t) if t > 0

and 0 if t = 0, where M−1 is the right continuous inverse of M. Then for any Banach

ideal space X on Ω, the Calderón–Lozanovskiı̆ space ϕ(X, L∞) is the Banach ideal

space

XM
= {x ∈ L0(µ); M(|x|/λ) ∈ X for some λ > 0}

equipped with the norm

‖x‖XM = inf{λ > 0; ‖M(|x|/λ)‖X ≤ 1}.

In particular, ϕ(L1, L∞) coincides isometrically with the Orlicz space LM (see [10, 35,

44]).

The Calderón–Lozanovskiı̆ construction is an exact interpolation method for pos-

itive linear or positive sublinear operators (see Berezhnoi [3], Shestakov [50], Ma-

ligranda [32]; cf. also [35, Theorem 15.13]). For arbitrary linear operators (not

necessarily positive) on Banach ideal spaces with the Fatou property, this was proved

by Ovchinnikov [43] (see also [10, 35, 42, 44] for the class of quasi-Banach ideal

spaces). Some other properties of Calderón–Lozanovskiı̆ spaces were investigated in

[6, 22, 26].

The equivalence of two weights u ≈ v on Ω or u(t) ≈ v(t) on Ω will mean that

there exists a constant C > 0 such that 1
C

u(t) ≤ v(t) ≤ Cu(t) for all t ∈ Ω µ-a.e.

Also u ≈ v simply means u(t) ≈ v(t) for all t > 0.

Equality of two Banach spaces X = Y means equality of X and Y as the sets and

also equivalence of their norms.
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2 Representation of Calderón–Lozanovskiı̆ Spaces

In the proof of the first representation theorem we will need the following lemma:

Lemma 1 Let X, Y be two Banach ideal spaces with the Fatou property. If the norms

‖ · ‖X and ‖ · ‖Y are equivalent on X ∩Y , i.e., there exists a constant C > 0 such that

1

C
‖x‖X ≤ ‖x‖Y ≤ C‖x‖X for all x ∈ X ∩ Y,

then X = Y with equivalent norms.

Proof Let x ∈ X with the norm ‖x‖X ≤ 1. In the Banach ideal space X ∩ Y with

the natural norm ‖x‖X∩Y = max{‖x‖X , ‖x‖Y} we take a unit function u, that is,

the function u ∈ X ∩ Y such that u(t) > 0 µ-a.e. on Ω. Then for the sequence of

functions defined by

xn(t) = min{|x(t)|, nu(t)}, n ∈ N

we have xn ∈ X ∩ Y , ‖xn‖Y ≤ C , 0 ≤ xn ≤ xn+1 and limn→∞ xn(t) = |x(t)| µ-a.e.

Using the Fatou property of Y we obtain that x ∈ Y and ‖x‖Y ≤ C . Therefore,

X ⊂ Y and ‖x‖Y ≤ C‖x‖X for all x ∈ X. Similarly we can prove the reverse imbed-

ding, and Lemma 1 is proved.

Theorem 1 Let ϕ ∈ U. Assume that X0, X1 and X2 are Banach ideal spaces on the

same σ-finite measure space (Ω, µ), and suppose that all of the spaces have the Fatou

property. If

(2) ϕ(X0,X1) = ϕ(X0,X2)

and

(3) lim
n→∞

inf
s>0

ϕ(1, sn)

ϕ(1, s)
= ∞,

then X1 = X2.

Proof Assume that X1 6= X2. Then, by Lemma 1, we can find a sequence xn ∈ X1∩X2

such that ‖xn‖X1
≤ 1 and ‖xn‖X2

> n. Since X2 has the Fatou property it follows that

sup
‖y‖X ′

2
=1

∫

Ω

|xn(t)y(t)| dµ = ‖xn‖X ′ ′

2
= ‖xn‖X2

> n,

and so we can find a sequence yn ∈ X ′
2, ‖yn‖X ′

2
≤ 1 such that

∫

Ω
|xn(t)yn(t)| dµ = n.

Now, by the Lozanovskiı̆ factorization theorem (Theorem A), we can find se-

quences 0 ≤ ξn ∈ X0, 0 ≤ ηn ∈ X ′
0 such that

‖ξn‖X0
= 1, ‖ηn‖X ′

0
= 1 and

1

n
|xn(t)yn(t)| = ξn(t)ηn(t) µ-a.e. on Ω.
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We have ϕ(ξn(t), |xn(t)|) ∈ ϕ(X0,X1) with ‖ϕ(ξn, |xn|)‖ϕ(X0,X1) ≤ 1, and

ϕ̂(ηn(t), |yn(t)|) ∈ ϕ̂(X ′
0,X

′
2)

with ‖ϕ̂(ηn, |yn|)‖ϕ̂(X ′

0 ,X
′

2 ) ≤ 1.

Since ϕ̂(X ′
0,X

′
2) = [ϕ(X0,X2)] ′ = [ϕ(X0,X1)] ′ it follows that

An :=

∫

Ω

ϕ(ξn(t), |xn(t)|)ϕ̂
(

ηn(t), |yn(t)|
)

dµ

≤ ‖ϕ(ξn, |xn|)‖ϕ(X0,X1)‖ϕ̂(ηn, |yn|)‖ϕ(X0,X1) ′

≤ ‖ϕ̂(ηn, |yn|)‖ϕ(X0,X1) ′

≤ C‖ϕ̂(ηn, |yn|)‖ϕ̂(X ′

0 ,X
′

2 ) ≤ C,

which gives that supn∈N
An <∞.

On the other hand, by an estimate in (1), we have ϕ̂(1, u)ϕ(1, 1
u

) ≥ 1 and

An =

∫

Ω

ξn(t)ηn(t)ϕ

(

1,
|xn(t)|
ξn(t)

)

ϕ̂

(

1,
|yn(t)|
ηn(t)

)

dµ

≥
∫

Ω

ξn(t)ηn(t)ϕ

(

1,
|xn(t)|
ξn(t)

)

1

ϕ(1, ηn(t)
|yn(t)| )

dµ

=

∫

Ω

ξn(t)ηn(t)
ϕ(1, nηn(t)

|yn(t)| )

ϕ(1, ηn(t)
|yn(t)| )

dµ

≥ inf
s>0

ϕ(1, ns)

ϕ(1, s)

∫

Ω

ξn(t)ηn(t) dµ = inf
s>0

ϕ(1, ns)

ϕ(1, s)
,

that is,

sup
n∈N

An ≥ sup
n∈N

inf
s>0

ϕ(1, ns)

ϕ(1, s)
≥ lim

n→∞
inf
s>0

ϕ(1, sn)

ϕ(1, s)
= ∞,

which gives a contradiction. Therefore X1 = X2 and the norms are equivalent.

Theorem 1, used in the case of power function ϕθ(s, t) = s1−θtθ with 0 < θ < 1,

gives the following corollary, which was proved differently by Cwikel and Nilsson [14,

Theorem 3.5].

Corollary 1 Let 0 < θ < 1. If X1−θ
0 Xθ

1 = X1−θ
0 Xθ

2 for Banach ideal spaces X0, X1 and

X2 on (Ω, µ) with the Fatou property, then X1 = X2.

Remark 1 For concrete spaces, the assumption (3) on ϕ can be weakened, as we will

prove in Theorem 4. Let ϕ ∈ U and limt→∞ ϕ(t, 1) = ∞. Assume that the measure

space (Ω, µ) is nonatomic. If

ϕ(L1
u, L

∞) = ϕ(L1
w, L

∞)
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with equivalent norms for some weight functions u, w on Ω, then u(t) ≈ w(t) on Ω.

Using Theorem 1 we can prove the following uniqueness theorem for two couples

X̄ = (X0,X1) and Ȳ = (Y0,Y1) of Banach ideal spaces with the Fatou property.

Theorem 2 Let X̄ = (X0,X1) and Ȳ = (Y0,Y1) be two couples of Banach ideal spaces

on the same measure space (Ω, µ) with all spaces having the Fatou property. Suppose

that for ϕ0, ϕ1 ∈ U we can find ϕ ∈ U such that either

ϕ(ϕ0(s, 1), 1) = ϕ1(s, 1) for all s > 0 or ϕ(1, ϕ0(1, t)) = ϕ1(1, t) for all t > 0.

Assume also that ϕ satisfies (3) and either ϕ0 or ϕ1 satisfies

(4) lim
n→∞

inf
s>0

ϕi(sn, 1)

ϕi(s, 1)
= ∞.

If ϕ0(X0,X1) = ϕ0(Y0,Y1) and ϕ1(X0,X1) = ϕ1(Y0,Y1), then X0 = Y0 and X1 = Y1.

Proof By the reiteration formulas (see [35, pp. 180–181]) it yields that

ϕ
(

ϕ0(X0,X1),X1

)

= ϕ1(X0,X1) and ϕ
(

ϕ0(Y0,Y1),Y1

)

= ϕ1(Y0,Y1).

From the equalities in the assumption we obtain that

ϕ(X,X1) = ϕ(X,Y1) with X = ϕ0(X0,X1).

Using Theorem 1 we obtain that X1 = Y1 with equivalent norms. Now, if ϕi satisfies

(4) for i = 0 or i = 1, then from the first or the second equality in the assumption

and from the just proved equality X1 = Y1 we have

ϕi(X0,X1) = ϕi(Y0,X1), i = 0, 1,

or

ϕ̃i(X1,X0) = ϕ̃i(X1,Y0), i = 0, 1,

where ϕ̃i(s, t) = ϕi(t, s). Since the condition (4) for ϕi means the condition (3) for

ϕ̃i we obtain from Theorem 1 that X0 = Y0 with equivalent norms, and the proof is

complete.

As a corollary, we obtain the result proved by Cwikel and Nilsson [14, Theo-

rem 3.1] for the power functions ϕθ0
and ϕθ1

.

Corollary 2 If X1−θ0

0 Xθ0

1 = Y 1−θ0

0 Y θ0

1 and X1−θ1

0 Xθ1

2 = Y 1−θ1

0 Y θ1

1 for some θ0, θ1 ∈
[0, 1] with θ0 6= θ1 and for Banach ideal spaces X0, X1, Y0, Y1 on (Ω, µ), all with the

Fatou property, then X0 = Y0 and X1 = Y1.

Theorem 3 Let X, Y be two Banach ideal spaces on Ω and u, v two weights on Ω. Then

for 0 ≤ θ ≤ 1 we have equality

X1−θY θ
= (Xu)1−θ(Yv)θ

if and only if u(t)1−θv(t)θ ≈ C on Ω.
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Proof Let a ≤ u(t)1−θv(t)θ ≤ b for some a, b > 0 and all t ∈ Ω µ-a.e.

If x ∈ X1−θY θ with norm < 1, then

|x| ≤ |x0|1−θ|x1|θ with ‖x0‖X ≤ 1 and ‖x1‖Y ≤ 1,

which we can rewrite as

|x| ≤ b
∣

∣

∣

x0

u

∣

∣

∣

1−θ∣
∣

∣

x1

v

∣

∣

∣

θ

= b|x ′
0|1−θ|x ′

1|θ

with ‖x ′
0‖Xu

= ‖x0‖X ≤ 1 and ‖x ′
1‖Yv

= ‖x1‖Y ≤ 1. This means that

x ∈ (Xu)1−θ(Yv)θ

with norm ≤ b.

Conversely, if x ∈ (Xu)1−θ(Yv)θ with norm < 1, then

|x| ≤ |x0|1−θ|x1|θ with ‖x0‖Xu
≤ 1 and ‖x1‖Yv

≤ 1,

which gives

|x| ≤ 1

a
|x0u|1−θ|x1v|θ =

1

a
|x ′

0|1−θ|x ′
1|θ

with ‖x ′
0‖X = ‖x0‖Xu

≤ 1 and ‖x ′
1‖Y = ‖x1‖Yv

≤ 1, that is, x ∈ X1−θY θ with norm

≤ 1
a
.

To prove the reverse implication assume that X1−θY θ = (Xu)1−θ(Yv)θ . Then, by

the duality theorem,

(X ′)1−θ(Y ′)θ = (X ′
1/u)1−θ(Y ′

1/v)θ,

and for any non-negative functions x0 ∈ X, x1 ∈ Y , y0 ∈ X ′, y1 ∈ Y ′ from the unit

balls, we have
∫

Ω

x0(t)1−θx1(t)θ y0(t)1−θ y1(t)θu(t)1−θv(t)θ dµ

≤ ‖x1−θ
0 xθ1‖X1−θY θ‖(y0u)1−θ(y1v)θ‖(X1−θY θ) ′

= ‖x1−θ
0 xθ1‖X1−θY θ‖(y0u)1−θ(y1v)θ‖(X ′)1−θ(Y ′)θ

≤ C‖x1−θ
0 xθ1‖X1−θY θ‖(y0u)1−θ(y1v)θ‖(X ′

1/u)1−θ(Y ′
1/v)θ

≤ C‖x0‖1−θ
X ‖x1‖θY‖y0u‖1−θ

X ′
1/u
‖y1v‖θY ′

1/v
≤ C.

By the factorization theorem (Theorem A), for any 0 ≤ z ∈ L1(µ) we can find non-

negative x0 ∈ X, y0 ∈ X ′ and x1 ∈ Y , y1 ∈ Y ′ such that x0 y0 = z and x1 y1 = z.

Then
∫

Ω

z(t)u(t)1−θv(t)θ dµ =

∫ ∞

0

x0(t)1−θx1(t)θ y0(t)1−θ y1(t)θu(t)1−θv(t)θ dµ ≤ C,

from which we obtain that u(t)1−θv(t)θ ∈ L∞(µ), or equivalently u(t)1−θv(t)θ ≤ C

for all t ∈ Ω µ-a.e., since the following implication is true:
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If 0 ≤ w /∈ L∞(µ), then we can find 0 ≤ z ∈ L1(µ) for which
∫

Ω
z(t)w(t) dµ = ∞.

Now, for the spaces X0 = Xu and X1 = Yv we have by the formula in the assump-

tion that

((X0)1/u)1−θ((X1)1/v)θ = X1−θY θ
= (Xu)1−θ(Yv)θ = X1−θ

0 Xθ
1 .

Therefore the equality
(

(X0)1/u

) 1−θ(
(X1)1/v

) θ
= X1−θ

0 Xθ
1 holds, from which to-

gether with the proof as above we obtain that ( 1
u

)1−θ( 1
v
)θ ∈ L∞(µ) or, equivalently,

u(t)1−θv(t)θ ≥ c > 0 for all t ∈ Ω µ-a.e. Thus u(t)1−θv(t)θ is equivalent to a constant

function on Ω.

Corollary 3 Let X,Y be two Banach ideal spaces on Ω and u, v two weights on Ω. If

we have equalities

X1−θ0Y θ0 = (Xu)1−θ0 (Yv)θ0 and X1−θ1Y θ1 = (Xu)1−θ1 (Yv)θ1

for some θ0, θ1 ∈ [0, 1] with θ0 6= θ1, then u(t) ≈ v(t) ≈ C on Ω.

Proof From Theorem 3, used twice, we have that u1−θ0 vθ0 = u( v
u

)θ0 ≈ C0 on Ω and

u1−θ1 vθ1 = u( v
u

)θ1 ≈ C1 on Ω. Therefore, u(t) ≈ v(t) ≈ C on Ω.

The next theorem on the representation or the inverse interpolation problem will

have only weighted L1 and L∞ spaces but then we can change the spaces on both

places. We again need a lemma.

Lemma 2 If ϕ(t, 1) is a strictly increasing function and for some x ∈ X and some

measurable set A we have ‖xχA‖X = 1, then ‖ϕ(|x|, v−1)χA‖ϕ(X,L∞

v ) = 1.

Proof Clearly ‖ϕ(|x|, v−1)χA‖ϕ(X,L∞

v ) ≤ 1. Assume therefore that it is strictly less

than 1. Then, for some ε > 0,

ϕ(|x|, v−1)χA ≤ (1 − ε)ϕ(|x0|, |x1|)χA

with ‖x0‖X ≤ 1 and ‖x1‖L∞

v
≤ 1. Hence

ϕ(|x|, v−1)χA ≤ (1 − ε)ϕ(|x0|, v−1)χA ≤ ϕ
(

(1 − ε)|x0|, v−1
)

χA.

Since ϕ(t, 1) is strictly increasing it follows that |x(t)|χA ≤ (1 − ε)|x0|χA and so

‖xχA‖X ≤ (1 − ε)‖x0χA‖X ≤ (1 − ε) < 1, which is a contradiction.

For a function ϕ ∈ U consider a submultiplicative and quasi-concave function ρϕ
on (0,∞) defined by

ρϕ(a) = lim sup
t→∞

ϕ(at, 1)

ϕ(t, 1)
, a > 0.
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By the well-known theorem on submultiplicative functions on (0,∞) we can find

numbers 0 ≤ α ≤ β ≤ 1, called also the indices of ϕ, such that

ρϕ(a) ≥ max(aα, aβ).

Moreover, for any ε > 0 we have ρϕ(a) ≤ aα−ε for a > 0 sufficiently close to zero,

ρϕ(a) ≤ aβ+ε for a sufficiently large, and

α = αϕ = lim
a→0+

ln ρϕ(a)

ln a
, β = βϕ = lim

a→∞
ln ρϕ(a)

ln a

(see, e.g., [25], Theorem 1.3 or [35], Theorem 11.3).

Theorem 4 Let ϕ ∈ U and ϕ(t, 1) be a strictly increasing function. Assume that the

measure space (Ω, µ) is nonatomic. If

(5) ϕ(L1
u, L

∞
v ) = ϕ(L1

w, L
∞)

for some weight functions u, v,w, then there exists θ ∈ [0, 1] such that

(6) w(t)θ ≈ u(t)θv(t)1−θ on Ω.

More precisely, if v is equivalent to a constant function, then we can take θ = 0 and if v

is not equivalent to a constant function on Ω, then the function ϕ has the same indices

αϕ = βϕ and we can take θ = α = αϕ.

Proof If v is equivalent to a constant function on Ω, i.e.,

c = sup
t∈Ω

1

v(t)
sup
t∈Ω

v(t) <∞,

then we can take θ = 0.

Assume therefore that supt∈Ω

1
v(t)

supt∈Ω
v(t) = ∞. For any k ∈ N define sets

Uk = {t ∈ Ω : 2−k−1 < u(t) ≤ 2−k}, Vk = {t ∈ Ω : 2−k−1 < v(t) ≤ 2−k},

Wk = {t ∈ Ω : 2−k−1 < w(t) ≤ 2−k}, P = {(i, j, k) ∈ N3 : Ui ∩V j ∩Wk 6= ∅}.

Note that
⋃

(i, j,k)∈P Ui ∩V j ∩Wk = Ω. If 0 < µ(A) <∞, then ‖ 1
uµ(A)

χA‖L1
u
= 1 and

by Lemma 2 we have the equality

∥

∥

∥
ϕ
( 1

uµ(A)
,

1

v

)

χA

∥

∥

∥

ϕ(L1
u,L

∞

v )
= 1.

If A ⊂ Ui ∩V j ∩Wk, then

∥

∥

∥
ϕ
( 2i

µ(A)
, 2 j

)

χA

∥

∥

∥

ϕ(L1
u,L

∞

v )
≤

∥

∥

∥
ϕ
( 1

uµ(A)
,

1

v

)

χA

∥

∥

∥

ϕ(L1
u,L

∞

v )
= 1,
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and, by the assumption that the norms are equivalent,

∥

∥

∥
ϕ
( 2i

µ(A)
, 2 j

)

χA

∥

∥

∥

ϕ(L1
w ,L

∞)
≤ C,

and so

ϕ
( 2i

µ(A)
, 2 j

)

χA(t) ≤ Cϕ
( |x(t)|

w(t)
, 1

)

χA(t)

with x ∈ L1, ‖x‖L1 ≤ 1 or

ϕ
( 2i

µ(A)
, 2 j

)

χA(t) ≤ 2Cϕ
(

|x(t)|2k, 1
)

χA(t).

Take d = ess inft∈A |x(t)|. If d > 0, then

ϕ
( 2i

µ(A)
, 2 j

)

χA(t) ≤ 2Cϕ(d2k, 1)χA(t)

and dχA(t) ≤ |x(t)|χA(t) gives ‖dχA‖L1 ≤ ‖xχA‖L1 ≤ 1 or d ≤ 1
µ(A)

. Thus

ϕ
( 2i

µ(A)
, 2 j

)

χA(t) ≤ 2Cϕ
( 1

µ(A)
2k, 1

)

χA(t).

If d = 0, then limt→0+ ϕ(t, 1) > 0, and the above estimate also holds.

Similarly, for A ⊂ Ui ∩V j ∩Wk with 0 < µ(A) <∞ we have the estimate

ϕ
( 1

µ(A)
2k, 1

)

χA(t) ≤ 2Cϕ
( 2i

µ(A)
, 2 j

)

χA(t).

From the above estimates we have the inequalities

1

2C
ϕ
( 2k

µ(A)
, 1

)

≤ 2 jϕ(2i− j−k 2k

µ(A)
, 1) ≤ 2Cϕ

( 2k

µ(A)
, 1

)

,

and by taking µ(A) → 0+ (we can do this since measure is nonatomic) we have

2 jρϕ(2i− j−k) ≤ 2C and 2− jρϕ(2 j+k−i) ≤ 2C.

Let Q = {p = i − j − k : (i, j, k) ∈ P}. If sup{|p| : p ∈ Q} < ∞, then 2 j ≤ 2C ,

2− j ≤ 2C and the weight v(t) is equivalent to a constant function, which cannot

happen. Thus we must have

sup{|p| : p ∈ Q} = ∞.

Since

ρϕ(2i− j−k)ρϕ(2 j+k−i) ≤ 4C2
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it follows that

α = β, ρϕ(a) ≥ aα for all a > 0, and ρϕ(2p)ρϕ(2−p) ≤ 4C2 for all p ∈ Q.

If sup{p : p ∈ Q} = ∞ and lim supp→∞,p∈Q
ρϕ(2p)

2pα = ∞, then

4C2 ≥ lim sup
p→∞,p∈Q

ρϕ(2p)ρϕ(2−p) ≥ lim sup
p→∞,p∈Q

ρϕ(2p)(2−αp) = ∞.

If inf{p : p ∈ Q} = −∞ and lim supp→−∞,p∈Q
ρϕ(2p)

2pα = ∞, then

4C2 ≥ lim sup
p→∞,p∈Q

ρϕ(2p)ρϕ(2−p) ≥ lim sup
p→∞,p∈Q

ρϕ(2p)(2−αp) = ∞.

This means that 2 j2(i− j−k)α ≈ 1 for all (i, j, k) ∈ P. Therefore on all sets Ui∩V j∩Wk

we have ( 1
u

)α( 1
v
)1−αwα ≈ 1 or wα ≈ uαv1−α, and since the sum of these sets is Ω,

the proof is complete.

In equality (5) we can have four weights, but before we formulate it we prove the

following lemma:

Lemma 3 The equality ϕ(L1
u0
, L∞

u1
) = ϕ(L1

v0
, L∞

v1
) holds if and only if the equality

ϕ(L1
u0w, L

∞
u1w) = ϕ(L1

v0w, L
∞
v1w) is true.

Proof It is enough to show that

ϕ(L1
u0
, L∞

u1
) ⊂ ϕ(L1

v0
, L∞

v1
) implies ϕ(L1

u0w, L
∞
u1w) ⊂ ϕ(L1

v0w, L
∞
v1w)

with the same norms of embeddings. In fact, if x ∈ ϕ(L1
u0w, L

∞
u1w) with the norm< 1,

then

|x| ≤ ϕ(|x0|, |x1|) with ‖x0‖L1
u0w

≤ 1 and ‖x1‖L∞

u1w
≤ 1,

and so

|x|w ≤ ϕ(|x0|w, |x1|w) = ϕ(y0, y1)

with

‖y0‖L1
u0

= ‖x0w‖L1
u0

= ‖x0‖L1
u0w

≤ 1 and ‖y1‖L∞

u1
= ‖x1w‖L∞

u1
= ‖x1‖L∞

u1w
≤ 1.

Thus xw ∈ ϕ(L1
u0
, L∞

u1
) and, by the embedding assumption, xw ∈ ϕ(L1

v0
, L∞

v1
), that is,

|x|w ≤ Cϕ(|z0|, |z1|) with ‖z0‖L1
v0
≤ 1 and ‖z1‖L∞

v1
≤ 1

or, equivalently,

|x| ≤ Cϕ

( |z0|
w
,
|z1|
w

)

= Cϕ(x ′
0, x

′
1)
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with

‖x ′
0‖L1

v0w
=

∥

∥

∥

z0

w

∥

∥

∥

L1
v0w

= ‖z0‖L1
v0
≤ 1 and ‖x ′

1‖L∞

v1w
=

∥

∥

∥

z1

w

∥

∥

∥

L∞

v1w

= ‖z1‖L∞

v1
≤ 1,

we obtain that x ∈ ϕ(L1
v0w, L

∞)v1w with the norm ≤ C .

Directly from Theorem 4 and Lemma 3 we obtain the following result:

Corollary 4 Let ϕ and the measure space (Ω, µ) be the same as in Theorem 4. If

ϕ(L1
u0
, L∞

u1
) = ϕ(L1

v0
, L∞

v1
)

for some weight functions u0, u1, v0, v1 on Ω, then there exists θ ∈ [0, 1] such that

u0(t)θu1(t)1−θ ≈ v0(t)θv1(t)1−θ on Ω.

Remark 2 Note that

ϕ(L1
u, L

∞
v ) = LM

v

( u

v
dt

)

,

where function M is defined by M
(

ϕ(s, 1)
)

= s and the last space is a weighted

Orlicz space generated by the norm

‖x‖LM
v ( u

v
dt) = inf

{

λ > 0 :

∫

Ω

M
(

v(t)|x(t)|/λ
) u(t)

v(t)
dt ≤ 1

}

.

Similarly, ϕ(L1
w, L

∞) = LM(wdt). In the case when v = 1 and M ∈ ∆2 globally,

that is, M(2u) ≤ CM(u) for all u > 0, it is known that LM(udt) = LM(wdt) if and

only if u ≈ w on (0,∞) or on a measurable subset Ω of Rn of a positive measure (see

[24]). In the case when v is not equivalent to a constant, then the technique from

[24] does not work. On the other hand, if we look for these spaces as special cases of

the Musielak–Orlicz spaces generated by the functions M(a, t) = M
(

v(t)a
)

u(t)
v(t)

and

N(a, t) = M(a)w(t) and use the criterion for the equality LM = LN with equivalent

norms (see [40]), then these general conditions seem to be not helpful in proving the

corresponding equivalence of the weights as in Corollary 4.

We give an example showing that for a certain non-power function ϕ ∈ U and

some weights u, v we can have equality ϕ(L1
u, L

∞
v ) = ϕ(L1, L∞) with equivalent

norms.

Example 1 Consider the concave function on (0,∞) defined byψ(t) = t1/2 ln1/2(1+

t) and let ϕ(s, t) = tψ(s/t) = s1/2t1/2 ln1/2(1 + s
t
). Then ρϕ(a) = a1/2. We will show

that there exists a weight u on Ω = I = (0, 1) such that

ϕ
(

L1
1/u(I), L∞

u (I)
)

= ϕ
(

L1(I), L∞(I)
)

with equivalent norms. Assume that the weight u satisfies u(t) ≥ 1 a.e. on I and
∫ 1

0
u(t) dt ≤ 2.
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Observe that for a, b ≥ 0 we have the inequality

(7) a ln(1 + ab2) ≤ 2(a + b) ln(1 + a + b).

In fact, if 0 ≤ a ≤ 1, then

a ln(1 + ab2) ≤ a ln(1 + b2) ≤ a ln(1 + b)2

= 2a ln(1 + b) ≤ 2(a + b) ln(1 + a + b),

and if a ≥ 1, then

a ln(1 + ab2) ≤ a ln(a + ab2) ≤ a ln(1 + a + b)2

= 2a ln(1 + a + b) ≤ 2(a + b) ln(1 + a + b).

We show first the imbedding ϕ(L1
1/u, L

∞
u ) ⊂ ϕ(L1, L∞). If x ∈ ϕ(L1

1/u, L
∞
u ) and the

norm is < 1, then

|x| ≤ ϕ
(

|x0|u,
1

u

)

with ‖x0‖L1 ≤ 1

and, by (7),

|x| ≤ ϕ(|x0|u,
1

u
) = |x0|1/2 ln1/2(1 + |x0|u2) ≤

√
2(|x0| + u)1/2 ln1/2(1 + |x0| + u)

=
√

2ϕ(|x0| + u, 1) ≤ 3
√

2ϕ

( |x0| + u

3
, 1

)

.

This means that x ∈ ϕ(L1, L∞) with norm ≤ 3
√

2. Therefore we have a continuous

imbedding

ϕ(L1
1/u, L

∞
u )

3
√

2→֒ ϕ(L1, L∞).

Secondly, we prove the reverse imbedding ϕ(L1, L∞) ⊂ ϕ(L1
1/u, L

∞
u ). Let x ∈

ϕ(L1, L∞) with norm < 1, that is,

|x| ≤ ϕ(|x0|, 1) and ‖x0‖L1 ≤ 1.

Then, since the weight u satisfies u(t) ≥ 1 a.e on I, it follows that

|x| ≤ ϕ(|x0|, 1) = |x0|1/2 ln1/2(1 + |x0|)

≤ |x0|1/2 ln1/2(1 + |x0|u2) = ϕ
(

|x0|u,
1

u

)

,

and so x ∈ ϕ(L1
1/u, L

∞
u ) with norm ≤ 1. Thus we have a continuous imbedding

ϕ(L1, L∞)
1→֒ ϕ(L1

1/u, L
∞
u ).

As concrete weight u on I = (0, 1) for which
∫ 1

0
u(t) dt ≤ 2 and u(t) ≥ 1 for all

t ∈ (0, 1) we can take u(t) = t−1/2 on (0, 1).
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3 Factorization of Positive Sublinear Operators in X
(p) Spaces

Let X be either L0(µ) or a Banach ideal space on (Ω, µ). An operator T : X → L0(ν)

is called positive if 0 ≤ x ∈ X implies that 0 ≤ Tx ∈ L0(ν); T is called sublinear if,

for all x, y ∈ X and any a ∈ R,

|T(x + y)(t)| ≤ |Tx(t)| + |Ty(t)| and |T(ax)(t)| = |a| |Tx(t)| ν-a.e.

Classical examples of positive linear operators are integral operators Kx(t) =
∫

Ω
k(s, t)x(s) ds with positive measurable kernels k(s, t) ≥ 0 and as positive sublinear

operators we can take maximal operators and Lx(t) =
∫

Ω
|l(s, t)|x(s) ds with measur-

able kernel l(s, t).

If 1 ≤ p <∞ and 1/p + 1/p ′ = 1, then for any positive sublinear operator T the

pointwise Hölder–Rogers1 inequality is true:

T(|x|1/p|y|1−1/p)(t) ≤ [T(|x|)(t)]1/p[T(|y|)(t)]1−1/p ν-a.e.,

which can be rewritten as

(8) T(|x| |y|)(t) ≤ [T(|x|p)(t)]1/p[T(|y|p ′

)(t)]1/p ′

ν-a.e.

for any x, y ∈ X. This estimate follows directly from the equality

a1/pb1−1/p
= inf

ε>0

[ 1

p
ε

1
p
−1a +

(

1 − 1

p

)

ε
1
p b

]

,

which is true for any real positive numbers a, b. Note that more general pointwise

estimates for positive sublinear operators can be proved. In fact, this was used (but

not explicitly written) for positive linear operators in the proof of the fact that the

Calderón–Lozanovskiı̆ spaces are exact interpolation spaces for positive linear oper-

ators (see [3, 32, 50]; see also [35, Theorem 15.13]). It was also noted in [37] that the

same estimate is true for positive sublinear operators. We include the proof here.

Lemma 4 Let X be either L0(µ) or a Banach ideal space on (Ω, µ) and let T : X →
L0(ν) be a positive sublinear operator. If ϕ ∈ U, then for any x, y ∈ X

(9) T
(

ϕ(|x|, |y|)
)

(t) ≤ ϕ
(

T(|x|)(t),T(|y|)(t)
)

ν-a.e.

Proof Since for arbitrary a > 0, b > 0,

ϕ(|x|, |y|) ≤ a|x| + b|y|
ϕ̂(a, b)

,

it follows that

T
(

ϕ(|x|, |y|)
)

≤ aT(|x|) + bT(|y|)
ϕ̂(a, b)

1The classical Hölder inequality should historically correctly be called the Hölder–Rogers inequality
(cf. [36]).
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914 E. I. Berezhnoı̆ and L. Maligranda

for arbitrary a, b > 0, and so

T
(

ϕ(|x|, |y|)
)

≤ ˆ̂ϕ
(

T(|x|),T(|y|)
)

= ϕ
(

T(|x|),T(|y|)
)

.

Lemma 5 Let X be either L0(µ) or a Banach ideal space on (Ω, µ). Assume that

T : X → L0(ν) is a positive sublinear operator. Then, for any weights w0, w1 on Ω

and 1 ≤ p <∞, the operator defined by

Tpx(t) = [w0(t)T(|x|pw1)(t)]1/p

is positive and sublinear.

Proof We have, by using the Hölder-Rogers inequality (8) similarly as in the proof

of the Minkowski inequality,

[Tp(x + y)(t)]p
= w0(t)T(|x + y|pw1)(t)

≤ w0(t)T(|x| |x + y|p−1w1 + |y| |x + y|p−1w1)(t)

≤ w0(t)T(|x| |x + y|p−1w1) + T(|y| |x + y|p−1w1)(t)

≤ w0(t)T(|x|pw1)1/pT(|x + y|(p−1)p ′

w1)1/p ′

+ w0(t)T(|y|pw1)1/pT(|x + y|(p−1)p ′

w1)1/p ′

= w0(t)T(|x|pw1)1/pT(|x + y|pw1)1/p ′

+ w0(t)T(|y|pw1)1/pT(|x + y|pw1)1/p ′

= [Tp(x)(t) + Tp(y)(t)]Tp(x + y)(t)]p/p ′

,

which gives the subadditivity of Tp. Moreover, Tp(ax)(t) = |a|Tp(x)(t) and the proof

is complete.

Let us start with a result to which the idea in the Lp-spaces was given by Gagliardo

[15, Lemma 3.I] and by Rubio de Francia [48].

Lemma 6 Let X be a Banach ideal space on (Ω, µ) and let T : X → X be a bounded

positive sublinear operator. Then there exists u ∈ X, u(t) > 0 µ-a.e. on Ω such that

Tu(t) ≤ Cu(t) for t ∈ Ω µ-a.e., where C = (1 + ε)‖T‖X→X with any ε > 0.2

Proof Take x0 ∈ X with x0(t) > 0 for t ∈ Ω µ-a.e. and put

u(t) =

∞
∑

k=0

C−kTkx0(t), where T0
= Id .

2As usual, for the norm ‖T‖X→X of a sublinear operator T we mean sup‖x‖X≤1
‖Tx‖X .
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Since

∞
∑

k=0

C−k‖Tkx0‖X ≤
∞
∑

k=0

C−k‖T‖k
X→X‖x0‖X =

∞
∑

k=0

(1 + ε)−k‖x0‖X =

(

1 +
1

ε

)

‖x0‖X,

it follows that u ∈ X and ‖u‖X ≤ (1 + 1
ε )‖x0‖X . Moreover, by the positivity of the

operator T, we have

0 < x0(t) ≤ x0(t) + Tx0(t)/C + T2x0(t)/C2 + · · · = u(t) for t ∈ Ω µ-a.e.,

and

Tu(t) ≤
∞
∑

k=0

C−kTk+1x0(t) = C

∞
∑

k=1

C−kTkx0(t)

≤ C
[

x0(t) +

∞
∑

k=1

C−kTkx0(t)
]

= Cu(t).

Now we are ready to state and prove the fundamental factorization theorem in

weighted Banach ideal X(p) spaces.

Theorem 5 For some weight functions v0, v1, w0, w1 on Ω and some p0, p1, q0, q1 ∈
[1,∞), let the operators T0 : (Xv0

)(p0) → (Xv1
)(p1) and T1 : (Xw0

)(q0) → (Xw1
)(q1) be

positive sublinear and bounded with the corresponding norms C0 and C1. Assume that

we have continuous imbeddings X(p1) ⊂ X(p0) and X(q1) ⊂ X(q0) with the norms not

exceeding C2 and C3, respectively. Then:

(i) There exists a positive weight u ∈ X(p0q0) such that

v1T0(uq0 v−1
0 ) ≤ Cq0 uq0 and w1T1(up0 w−1

0 ) ≤ C p0 up0 ,

with C = 2(C
1/q0

0 C
1/q0

2 + C
1/p0

1 C
1/p0

3 ) or, equivalently, we have that

T0 : L∞
v0u−q0

→ L∞
v1u−q0

and T1 : L∞
w0u−p0

→ L∞
w1u−p0

are bounded with norms not exceeding Cq0 and C p0 , respectively.

(ii) There exists a positive weight u ∈ X(p1q1) such that

v1T0(uq1 v−1
0 ) ≤ Dq1 uq1 and w1T1(up1 w−1

0 ) ≤ Dp1 up1

with D = 2(C
1/q1

0 C
1/q1

2 + C
1/p1

1 C
1/p1

3 ) or, equivalently, we have that

T0 : L∞
v0u−q1

→ L∞
v1u−q1

and T1 : L∞
w0u−p1

→ L∞
w1u−p1

are bounded with norms not exceeding Dq1 and Dp1 , respectively.
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Proof (i) Using the given operator T0 we can construct a new positive sublinear

operator S0 by

S0x = [v1T0(|x|q0 v−1
0 )]1/q0 .

Of course, S0 is positive, and by Lemma 5 it is sublinear. The operator S0 is also

bounded from X(p0q0) into X(p1q0) with the norm ≤ C
1/q0

0 . Indeed,

‖S0x‖X(p1 q0) =
∥

∥ [v1T0(|x|q0 v−1
0 )]p1

∥

∥

1
p1q0

X

≤ C
1/q0

0

∥

∥ [v0|x|q0 v−1
0 ]p0

∥

∥

1
p0q0

X

= C
1/q0

0

∥

∥ |x|p0q0
∥

∥

1
p0q0

X
= C

1/q0

0 ‖x‖X(p0q0) .

Similarly, the operator S1 given by

S1x = [w1T1(|x|p0 w−1
0 )]1/p0

is positive, sublinear and bounded from X(p0q0) into X(p0q1) with norm ≤ C
1/p0

1 .

Since we have imbeddings X(p1q0) ⊂ X(p0q0) and X(p0q1) ⊂ X(p0q0), it follows that

the operator S = S0 + S1 is bounded from X(p0q0) into X(p0q0) with norm ≤ C , and

applying Lemma 6 to S we obtain the required estimates.

(ii) The proof here is similar. We should only consider the operators

L0x = [v1T0(|x|q1 v−1
0 )]1/q1 and L1x = [w1T1(|x|p1 w−1

0 )]1/p1 ,

use the embeddings X(p1q1) ⊂ X(p0q1),X(p1q1) ⊂ X(p1q0) and apply Lemma 6 to the

operator L = L0 +L1 which is bounded from X(p1q1) into itself. The proof is complete.

In some cases we do not need the above imbeddings. We can then formulate a

generalization to X(p) spaces of the result of Rubio de Francia type. This result gives

the factorization theorem through weighted L∞ spaces.

Corollary 5 Assume that for some weight functions v, w on Ω and some p0, p1 ∈
[1,∞) the operators

T0 : (Xv)(p0) → (Xv)(p0) and T1 : (Xw)(p1) → (Xw)(p1)

are positive, sublinear and bounded with the corresponding norms C0 and C1. Then

there exists a positive weight u ∈ X(p0 p1) such that

vT0(up1 v−1) ≤ C p1 up1 and wT1(up0 w−1) ≤ C p0 up0 ,

with C = 2(C
1/p1

0 + C
1/p0

1 ). The last estimates mean that the operators

T0 : L∞
vu−p1

→ L∞
vu−p1

and T1 : L∞
wu−p0

→ L∞
wu−p0

are bounded with norms not exceeding C p1 and C p0 , respectively.
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As special cases of Theorem 5 and Corollary 5 we obtain the factorization results

of Hernández (see [17, Theorem 2.1] and [18, Theorem 1]).

Corollary 6 If T0 : Lp0 → Lp0 and T1 : Lp1 → Lp1 are bounded, positive sublinear

operators, then there exists a positive weight u ∈ Lp0 p1 such that T0up1 ≤ Cup1 and

T1up0 ≤ Cup0 or, equivalently, we have that the operators T0 : L∞
u−p1

→ L∞
u−p1

and

T1 : L∞
u−p0

→ L∞
u−p0

are bounded.

In Theorem 5 and Corollaries 5 and 6 there are two operators T0 and T1 but in

applications sometimes as an operator T1 is taken the associated operator T ′
0 (some-

times also called the dual operator in the sense of Köthe) to T0. If T0 ∈ K, then

the associated operator does not always exist. Here by K we denote the class of pos-

itive sublinear operators T defined on L0(µ) with values in L0(µ) and for T ∈ K we

consider the notion of the associated operator T ′ ∈ K.

For T ∈ K, an operator T ′ ∈ K is called associated to T (in the scale of Lp-spaces)

if, for all 1 ≤ p ≤ ∞ and all weights u we have that T : L
p
u → L

p
u is bounded if and

only if T ′ : L
p ′

1/u
→ L

p ′

1/u
is bounded, and the estimates

1

C
‖T‖L

p
u→L

p
u
≤ ‖T ′‖

L
p ′

1/u
→L

p ′

1/u

≤ C‖T‖L
p
u→L

p
u

hold with a constant C > 0 independent of p and u.

Note that T ′ is not necessary unique. If T is a linear operator, then as T ′ we can

take the conjugate operator T∗. Also for a linear operator T the operator x 7→ |Tx|
is sublinear and there is no notion of conjugate operator to it but we can instead take

T ′x = |T∗x|.
We are now ready to formulate the factorization theorem in Lp-spaces with the

factorization through the weighted L1 and L∞ spaces for operators T ∈ K for which

an associated operator T ′ ∈ K exists.

Corollary 7 Let 1 < p < ∞. Assume that T ∈ K and for T there exists T ′ ∈ K.

Then T : Lp → Lp is bounded if and only if there exists a weight u ∈ Lp on Ω such that

T : L1
up−1 → L1

up−1 and T : L∞
1/u → L∞

1/u

is bounded.

Proof If T : Lp → Lp and T ′ : Lp ′ → Lp ′

are bounded then, by Corollary 6, there

exists w ∈ Lpp ′

such that

Twp ′ ≤ Cwp ′

and T ′wp ≤ Cwp.

Taking u = wp ′

we have u ∈ Lp and

Tu ≤ Cu and T ′up−1 ≤ Cup−1

or

T : L∞
1/u → L∞

1/u and T : L1
up−1 → T : L1

up−1
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is bounded.

Conversely, if T is bounded in L1
up−1 and in L∞

1/u, then T is also bounded in the

Calderón spaces (L1
up−1 )1/p(L∞

1/u)1−1/p = Lp.

We will show a little later that if for an operator T ∈ K we do not put additional

restrictions, (for example, the existence of an associated operator) then the factoriza-

tion theorem through weighted L1 and L∞ spaces cannot be true.

Before giving this counter-example we would like to show that for some class of

operators we can prove a factorization theorem where the extreme spaces are Lorentz

and Marcinkiewicz spaces determined by weight instead of weighted Lebesgue spaces

L1 and L∞. Lorentz and Marcinkiewicz spaces are natural extreme spaces in the class

of symmetric spaces, cf. [25]. All our spaces here are on (0,∞).

We consider a subclass K∗ of operators T ∈ K for which there exists a constant

C > 0 such that
∫ t

0

(Tx)∗(s) ds ≤ C

∫ t

0

Tx∗(s) ds

for all t > 0 and x ∈ L0(0,∞).

As an example of T ∈ K∗ we can take the Hardy operator Hx(t) =
1
t

∫ t

0
x(s) ds,

Hardy sublinear operator H∗x(t) =
1
t

∫ t

0
x∗(s) ds, maximal operator M, and inte-

gral operator Tx(t) =
∫ ∞

0
k(t, s)x(s) ds with a positive kernel k(t, s) ≥ 0 which is

decreasing in each variable separately.

We recall the definition of Lorentz Λu∗ spaces and Marcinkiewicz Mu∗ spaces. For

the weight function u on (0,∞), the Lorentz space Λu∗ is the space generated by the

norm

‖x‖Λu∗
=

∫ ∞

0

x∗(t)u∗(t) dt,

and the Marcinkiewicz space Mu∗ that by the norm

‖x‖Mu∗
= sup

t>0

1
∫ t

0
u∗(s) ds

∫ t

0

x∗(s) ds.

Theorem 6 Let 1 < p <∞. Assume that T ∈ K∗ and for T there exists an associated

operator T ′ ∈ K. If T : Lp → Lp is bounded, then there exists a positive weight u ∈ Lp

such that

(i) The estimates

1

t

∫ t

0

u∗(s) ds ≤ C1u(t),
1

t

∫ t

0

u∗(s)p−1 ds ≤ C2u(t)p−1

and
∫ ∞

t

u∗(s)

s
ds ≤ C3u(t),

∫ ∞

t

u∗(s)p−1

s
ds ≤ C4u(t)p−1

hold for all t > 0.

(ii) The operators T : Λu∗ p−1 → Λu∗ p−1 and T : Mu∗ → Mu∗ are bounded.

Conversely, if conditions (i) and (ii) are satisfied then T : Lp → Lp is bounded.
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Proof Assume that T : Lp → Lp is bounded. Consider two operators

S0 = T + H∗ + H∗ : Lp → Lp and S1 = T ′ + H∗ + H∗ : Lp ′ → Lp ′

,

where H∗x(t) = x∗∗(t) =
1
t

∫ t

0
x∗(s) ds and H∗x(t) =

∫ ∞
t

x∗(s)
s

ds.

Note that H∗ is bounded in Lp spaces for all 1 < p ≤ ∞ and H∗ is bounded in Lp

spaces for all 1 ≤ p < ∞. Then S0, S1 ∈ K and by Corollary 6 we can find a weight

w ∈ Lpp ′

such that the operators

S0 : L∞
w−p ′ → L∞

w−p ′ and S1 : L∞
w−p → L∞

w−p

are bounded, which can be rewritten by taking u = wp ′

such that u ∈ Lp and

S0 : L∞
1/u → L∞

1/u and S1 : L∞
u1−p → L∞

u1−p

are bounded. Since H∗ : L∞
1/u → L∞

1/u is bounded with norm ≤ A, it follows that

H∗u(t) = u∗∗(t) ≤ Au(t)

for all t > 0, and the first estimate in (i) is proved.

The operator T : L∞
1/u → L∞

1/u is also bounded with norm ≤ B. Therefore

|Tu(t)| ≤ Bu(t) for all t > 0, and so

(Tu)∗(t) ≤ Bu∗(t) for all t > 0.

If we assume that x∗∗(t) ≤ u∗∗(t) for all t > 0, then by the assumption T ∈ K∗ we

obtain

(Tx)∗∗(t) =
1

t

∫ t

0

(Tx)∗(s) ds ≤ C

t

∫ t

0

Tx∗(s) ds

≤ C

t

∫ t

0

Tu∗∗(s) ds ≤ AC

t

∫ t

0

Tu(s) ds ≤ AC

t

∫ t

0

(Tu)∗(s) ds

≤ ABC

t

∫ t

0

u∗(s) ds = ABCu∗∗(t),

and so T : Mu∗ → Mu∗ is bounded with the norm ≤ ABC .

We also have that H∗ : L∞
u1−p → L∞

u1−p is bounded with the norm ≤ D which gives

the second estimate in (i)

1

t

∫ t

0

u∗(s)p−1 ds ≤ Du(t)p−1 for all t > 0.

The operator T ∈ K∗ satisfies the estimate
∫ t

0
(Tx)∗(s) ds ≤ C

∫ t

0
Tx∗(s)ds for all

t > 0. Therefore, by the well-known property of rearrangement (see [25], property

https://doi.org/10.4153/CJM-2005-035-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-035-0


920 E. I. Berezhnoı̆ and L. Maligranda

180) and the boundedness of T in L1
up−1 with the norm ≤ E, we obtain

‖Tx‖Λ
u∗ p−1

=

∫ ∞

0

u∗(t)p−1(Tx)∗(t) dt

≤ C

∫ ∞

0

u∗(t)p−1Tx∗(t) dt ≤ CD

∫ ∞

0

u(t)p−1Tx∗(t) dt

≤ CDE

∫ ∞

0

u(t)p−1x∗(t) dt ≤ CDE

∫ ∞

0

u∗(t)p−1x∗(t) dt

= CDE‖x‖Λ
u∗ p−1

,

and T : Λu∗ p−1 → Λu∗ p−1 is bounded with the norm ≤ CDE.

The boundedness of H∗ : L∞
1/u → L∞

1/u and H∗ : L∞
u1−p → L∞

u1−p gives the third and

the fourth estimate in (i).

Assume that conditions (i) and (ii) are satisfied. Then it is enough to show that any

Lp space can be described from Λu∗ p−1 and Mu∗ by the real method of interpolation

(the K-method of interpolation). We have

Mu∗ = (L1, L∞)Φ1 ;K with Φ1 = L∞
1
v
, v(t) =

∫ t

0

u∗(s) ds,

and the first with the third estimate in (i) ensures that Φ1 is a quasi-power parameter,

that is, the Calderón operator

S f (t) =

∫ ∞

0

min
(

1,
t

s

)

| f (s)|ds

s

is bounded in L∞
1/v (see [10, p. 387] for the definition and examples). In fact,

S f (t) =

∫ t

0

| f (s)|ds

s
+ t

∫ ∞

t

| f (s)|ds

s2

≤ ‖ f ‖L∞

1
v

(

∫ t

0

v(s)
ds

s
+ t

∫ ∞

t

v(s)
ds

s2

)

= ‖ f ‖L∞

1
v

(

∫ t

0

u∗∗(s) ds + t

∫ ∞

t

u∗∗(s)
ds

s

)

≤ C1‖ f ‖L∞

1
v

(
∫ t

0

u∗(s) ds + t

∫ ∞

t

u∗(s)

s
ds

)

≤ C1‖ f ‖L∞

1
v

(

v(t) + C3tu∗(t)
)

≤ C1(1 + C3)‖ f ‖L∞

1
v

v(t).

The second and the fourth estimate in (i) ensure that Φ0 = L1
u∗(t)p−1

t

is a quasi-power
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parameter. In fact,

∫ ∞

0

u∗(t)p−1

t
S f (t) dt =

∫ ∞

0

u∗(t)p−1

t

(

∫ t

0

| f (s)|ds

s
+ t

∫ ∞

t

| f (s)|ds

s2

)

dt

=

∫ ∞

0

(
∫ ∞

s

u∗(t)p−1

t
dt

)

| f (s)|ds

s

+

∫ ∞

0

(

∫ s

0

u∗(t)p−1 dt
)

| f (s)|ds

s2

≤ C4

∫ ∞

0

u∗(s)p−1| f (s)|ds

s
+ C2

∫ ∞

0

u∗(s)p−1| f (s)|ds

s

= (C2 + C4)‖ f ‖L1

u∗(t)p−1

t

.

We also have

Λu∗ p−1 = (L1, L∞)Φ0;K .

The last identification of the spaces follows from the estimates

‖x‖Λ
u∗ p−1

=

∫ ∞

0

x∗(t)u∗(t)p−1 dt

≤
∫ ∞

0

(

∫ t

0

x∗(s) ds
)

u∗(t)p−1 dt

t

= ‖x‖Φ0;K =

∫ ∞

0

(
∫ ∞

s

u∗(t)p−1

t
dt

)

x∗(s) ds

≤ C4

∫ ∞

0

u∗(s)p−1x∗(s) ds = C4‖x‖Λ
u∗ p−1

.

Using now a generalization of the Holmstedt formula with quasi-power parameters

Φ0, Φ1, proved by Dmitriev–Ovchinnikov (1979) and Brudnyı̆–Krugljak (1981) (see

[10, Corollary 7.1.1, p. 466] and [41, p. 30] in the discrete case),

K
(

t, a; (A0,A1)Φ0;K , (A0,A1)Φ1 ;K

)

≈ K
(

t,K(·, a; A0,A1); Φ0,Φ1

)

we obtain

K(t, x; Λu∗ p−1 ,Mu∗) ≈ K
(

t, x : (L1, L∞)Φ0 ;K , (L1, L∞)Φ1 ;K

)

≈ K
(

t,K(s, x; L1, L∞); L1
u∗(s)p−1

s

, L∞
1

su∗(s)

)

≈ K
(

t,

∫ s

0

x∗(u) du; L1
u∗(s)p−1

s

, L∞
1

su∗(s)

)

= K
(

t, x∗∗(s); L1
u∗ p−1 , L∞

1
u∗

)

.
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Thus, for θ = 1 − 1
p

,

‖x‖(Λ
u∗ p−1 ,Mu∗ )θ,p ≈ ‖x∗∗‖(L1

u∗ p−1
,L∞

1
u∗

)θ,p

≈ ‖x∗∗‖L
p
w

= ‖x∗∗‖Lp ≈ ‖x∗‖Lp = ‖x‖Lp ,

where the first equality comes from the fact that

w(t) =
(

u∗(t)p−1
) 1−θ( 1

u∗(t)

) θ

= u∗(t)1−1/p
( 1

u∗(t)

) 1−1/p

= 1.

Thus (Λu∗ p−1 ,Mu∗)θ,p = Lp with equivalent norms and the proof is complete.

Corollary 8 If 1 < p < ∞ and estimates in (i) are satisfied, then (Λu∗ p−1 ,Mu∗)θ,p =

Lp and so Lp is an interpolation space between Λu∗ p−1 and Mu∗ . In particular, since

u(t) = t−1/p with 1 < p <∞ satisfies estimates in (i) we obtain (Lp,1, Lp,∞)1−1/p,p =

Lp and so Lp is an interpolation space between Lorentz space Lp,1 and the Marcinkiewicz

weak Lp-space Lp,∞.

Let us consider the factorization theorem of Schur type, that is, a factorization

through weighted L1 and L∞ spaces. We will show the failure of a Schur type factor-

ization theorem even for powers in symmetric spaces for the positive sublinear Hardy

operator.

A symmetric space X on (0,∞) is a Banach ideal space on (0,∞) with the ad-

ditional property that x∗(t) ≤ y∗(t) for every t > 0 and y ∈ X imply x ∈ X

and ‖x‖X ≤ ‖y‖X , where x∗ denotes the decreasing rearrangement of |x| (see [25]

for definition and properties). The fundamental function ϕX(t) of X is defined by

ϕX(t) = ‖χ(0,t)‖X, t > 0.

Given λ > 0, the dilation operator σλ given by σλx(t) = x(t/λ), t > 0, is well

defined in every symmetric space X and ‖σλ‖X→X ≤ max(1, λ). The classical Boyd

indices of X are defined by (cf. [2, 25, 27])

αX = lim
λ→0

ln ‖σλ‖X→X

lnλ
, βX = lim

λ→∞

ln ‖σλ‖X→X

lnλ
.

In general, 0 ≤ αX ≤ βX ≤ 1. For other properties of symmetric spaces and also the

Lorentz and Marcinkiewicz spaces we refer to [2, 25, 27].

Theorem 7 Let 0 < θ < 1, X be a symmetric space on (0,∞) and for weights u,

v on (0,∞) we have u(t)1/θv(t)1/(1−θ) = 1 for all t > 0. Consider the sublinear

Hardy operator H∗x(t) = x∗∗(t) =
1
t

∫ t

0
x∗(s) ds. Then both H∗ : Xu → Xu and

H∗ : L∞
v → L∞

v are bounded if and only if u(t) ≈ v(t) ≈ constant and βX < 1.

Proof If the Hardy sublinear operator H∗ : L∞
v → L∞

v is bounded, then

(10)
( 1

v

)∗∗
(t) =

1

t

∫ t

0

( 1

v

)∗
(s) ds ≤ C1

1

v(t)
for all t > 0.
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From the Semenov imbedding theorem (see [25, Theorem 5.7]),

sup
t>0

ϕX(t)

t

∫ t

0

x∗(s) ds ≤ ‖x‖X for all x ∈ X,

and the boundedness of H∗ : Xu → Xu, we obtain that

sup
t>0

ϕX(t)

t

∫ t

0

(uH∗x)∗(s) ds ≤ C0‖xu‖X for all x ∈ X.

Using the assumption on weights and (10) we have

∫ t

0

(uH∗x)∗(s) ds =

∫ t

0

(v−
θ

1−θ H∗x)∗(s) ds

≥
∫ t

0

[

C1

(

H∗
( 1

v

))
θ

1−θ

H∗x
] ∗

(s) ds

= C1

∫ t

0

H∗x(s)
(

H∗
( 1

v

)

(s)
)

θ
1−θ

ds

from which we obtain

(11) sup
t>0

ϕX(t)

t

∫ t

0

H∗x(s)
[

H∗
( 1

v

)

(s)
]

θ
1−θ

ds ≤ C0

C1

‖xu‖X for all x ∈ X.

Assume first that limt→∞( 1
v
)∗(t) = 0.

For any ε > 0 we can find a set Aε ⊂ {s > 0 : 1
v(s)

< ε} such that its measure

m(Aε) = 1. For the functions xε = χAε we have

sup
t>0

ϕX(t)

t

∫ t

0

H∗xε(s)
[

H∗
( 1

v

)

(s)
]

θ
1−θ

ds

≥ ϕX(1)

∫ 1

0

min
(

s,m(Aε)
)

s

[

H∗
( 1

v

)

(s)
]

θ
1−θ

ds

= ϕX(1)

∫ 1

0

[ 1

s

∫ s

0

( 1

v

)∗
(ξ) dξ

]
θ

1−θ

ds

≥ ϕX(1)

∫ 1

0

( 1

v

)∗
(s)

θ
1−θ ds

and putting it into (11) we get

ϕX(1)

∫ 1

0

( 1

v

)∗
(s)

θ
1−θ ds ≤ C0

C1

‖uχAε‖X =
C0

C1

∥

∥

∥

∥

1

v
θ

1−θ

χAε

∥

∥

∥

∥

X

≤ C0

C1

ε
θ

1−θϕX(1)

or
∫ 1

0

( 1

v

)∗
(s)

θ
1−θ ds ≤ C0

C1

ε
θ

1−θ ,
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which gives that 1
v(s)

= 0 a.e. But this is impossible.

If limt→∞( 1
v
)∗(t) = c > 0, then by (10)

1

v(t)
≥ c

C1

for all t > 0

which means that v is bounded.

Assume that limt→0+ ( 1
v
)∗(t) = ∞. For any k, n ∈ N let Ak = {t > 0 : 2k <

u(t) ≤ 2k+1} and Bn = {t > 0 : ( 1
v
)∗(t) > 2n}.

Let us choose k ∈ N such that m(Ak) > 0. For any n ∈ N, n > k, we can find

Dn ⊂ Ak such that 0 < m(Dn) < m(Bn). Putting xn = χDn
into (11), we obtain the

estimates

sup
t>0

ϕX(t)

t

∫ t

0

H∗xn

[

H∗
( 1

v

)

(s)
]

θ
1−θ

ds

≥ sup
t>0

ϕX(t)

t

∫ t

0

H∗xn

[( 1

v

)∗
(s)

]
θ

1−θ

ds

≥ ϕX

(

m(Dn)
)

m(Dn)

∫ m(Dn)

0

min
(

s,m(Dn)
)

s

[( 1

v

)∗
(s)

]
θ

1−θ

ds

=
ϕX

(

m(Dn)
)

m(Dn)

∫ m(Dn)

0

[( 1

v

)∗
(s)

]
θ

1−θ

ds

≥ ϕX

(

m(Dn)
)

(2n)
θ

1−θ

and

‖xnu‖X ≤ 2k+1‖χDn
‖X = 2k+1ϕX

(

m(Dn)
)

,

which give

(2n)
θ

1−θϕX

(

m(Dn)
)

≤ 2k+1ϕX

(

m(Dn)
)

,

and we come to a contradiction.

If limt→0+ ( 1
v
)∗(t) = c < ∞, then ‖ 1

v
‖L∞ = c, and we obtain estimation of v

from below. Hence, the weight v is equivalent to a constant, and so the weight u is

also equivalent to a constant, which means that Xu = X. By using the theorem on

boundedness of the H∗ operator in a symmetric space X (cf. [25, Theorem 6.6]) we

have that this is equivalent with the condition βX < 1. This result gives also the

reverse implication and the proof is complete.

Corollary 9 Let X be a symmetric space on (0,∞) with βX = 1. Then for every

1 < p < ∞ there are no weights u, v such that H∗ : L∞
v → L∞

v is bounded and

H∗ : Xu → Xu is also bounded, and (Xu)1/p(L∞
v )1−1/p = X(p).

Proof Since ‖σλ‖X(p)→X(p) = ‖σλ‖1/p
X→X it follows that βX(p) =

1
p
βX < 1 and by

using the theorem on boundedness of the H∗ operator in a symmetric space X (cf.
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[25, Theorem 6.6]) we have that H∗ : X(p) → X(p) is bounded and H∗ : X → X is

unbounded.

Assume that for H∗ we can find weights u, v such that H∗ : L∞
v → L∞

v is bounded

and H∗ : Xu → Xu is also bounded, and (Xu)1/p(L∞
v )1−1/p = X(p).

Since the equality X(p) = (Xu)1/p(L∞
v )1−1/p gives (Xu)1/p(L∞

v )1−1/p = X(p) =

X1/p(L∞)1−1/p, by Theorem 3,

u1/pv1−1/p
= u1−θvθ ≈ 1 or u

1
θ v

1
1−θ ≈ 1.

By Theorem 7 we come to the conclusion that βX < 1, which is a contradiction with

the assumption on X that βX = 1.

Corollary 9 gives the following

Remark 3 The Schur test for the sublinear Hardy operator H∗ in the X(p) spaces

with β(X) = 1 through the weighted X and weighted L∞ spaces does not hold even

for θ = 1 − 1/p.

This example of the Hardy positive sublinear operator shows that without any

additional assumptions on the operator the factorization theorem through weighted

L1 and weighted L∞ spaces cannot be true.

4 On the Failure of the Factorization Theorem for the Volterra Oper-
ator in Some Calderón–Lozanovskiı̆ Spaces

We will show here that the factorization theorem of the Rubio de Francia type is not

true in general in Calderón–Lozanovskiı̆ spaces for a simple integral operator such

as the Volterra operator (sometimes also called the integration operator) V x(t) =
∫ t

0
x(s) ds.

Let us formulate the main factorization problem: Let ϕ ∈ U, four weights u0, u1,

v0, v1 and a bounded positive linear (or sublinear) operator

(12) T : ϕ(L1
u0
, L∞

u1
) → ϕ(L1

v0
, L∞

v1
)

be given. Can we find four weights w0,w1, h0, h1 such that

(13) ϕ(L1
u0
, L∞

u1
) = ϕ(L1

w0
, L∞

w1
), ϕ(L1

v0
, L∞

v1
) = ϕ(L1

h0
, L∞

h1
)

and

(14) T : L1
w0

→ L1
h0
, T : L∞

w1
→ L∞

h1

are bounded?

The answer to this problem is negative already for the Volterra operator. We will

find a function ϕ ∈ U and four weights u0, u1, v0, v1 for which (12) is true for the

Volterra operator but it is not possible to find weights satisfying (13) and (14). By the
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interpolation property of the Calderón–Lozanovskiı̆ construction we have that the

assumptions (13) and (14) imply boundedness in (12).

We need first some lemmas.

Lemma 7 Let ϕ ∈ U and weights u0, u1, v0, v1 on (0,∞) be given. For t > 0 put

w0(t) = ess sup
0<s≤t

1

u0(s)
, w1(t) =

∫ t

0

1

u1(s)
ds.

If ϕ(w0,w1) ∈ ϕ(L1
v0
, L∞

v1
), then for the Volterra operator V x(t) =

∫ t

0
x(s) ds we have

‖V‖ϕ(L1
u0
,L∞

u1
)→ϕ(L1

v0
,L∞

v1
) <∞.

Proof If x ∈ ϕ(L1
u0
, L∞

u1
) and the norm is < 1, then

|x| ≤ ϕ(|x0|, |x1|), with ‖x0‖L1
u0
≤ 1, ‖x1‖L∞

u1
≤ 1.

Thus, by Lemma 4 and the definition of weights, we have

|V x| ≤ V (|x|) ≤ V
(

ϕ(|x0|, |x1|)
)

≤ ϕ
(

V (|x0|),V (|x1|)
)

= ϕ

(
∫ t

0

1

u0(s)
|x0(s)|u0(s) ds,

∫ t

0

|x1(s)| ds

)

≤ ϕ

(

w0(t)

∫ t

0

|x0(s)|u0(s) ds, ‖x1u1‖L∞

∫ t

0

1

u1(s)
ds

)

≤ ϕ
(

w0(t)‖x0u0‖L1 ,w1(t)‖x1u1‖L∞

)

≤ ϕ
(

w0(t),w1(t)
)

.

Hence V x ∈ ϕ(L1
v0
, L∞

v1
) and

‖V‖ϕ(L1
u0
,L∞

u1
)→ϕ(L1

v0
,L∞

v1
) ≤ ‖ϕ(w0,w1)‖ϕ(L1

v0
,L∞

v1
) <∞.

Let ψ(t) =
t

ln(1+t)
for t > 0. This is a concave function on (0,∞) with

limt→0+ ψ(t) = 1. Then the function ψ given by

(15) ψ(s, t) = sψ(t/s) =
s

ln(1 + s
t
)

belongs to U.

Lemma 8 For the function ψ from (15) we can find weights u0, u1, v0, v1 on (0,∞)

such that for the Volterra operator V x(t) =
∫ t

0
x(s) ds we have

‖V‖L1
u0
→L1

v0
= ∞, ‖V‖L∞

u1
→L∞

v1
<∞

and

‖V‖ψ(L1
u0
,L∞

u1
)→ψ(L1

v0
,L∞

v1
) <∞.

Proof Choose weights u1, v0 such that
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(i)
∫ t

0
1

u1(s)
ds <∞ for all t > 0,

(ii)
∫ ∞

t
v0(s) ds <∞ for all t > 0,

(iii) Θ(t) :=
∫ t

0
1

u1(s)
ds

∫ ∞
t

v0(s) ds is an increasing function and limt→∞ Θ(t) = ∞
and put

u0(t) = v1(t) =
1

Θ(t)

∫ ∞

t

v0(s) ds =
1

∫ t

0
1

u1(s)
ds
.

For general weights u, v the norms of an operator V between weighted L1 and

weighted L∞ spaces are known:

‖V‖L1
u→L1

v
= ess sup

t>0

1

u(t)

∫ ∞

t

v(s) ds

and

‖V‖L∞

u →L∞

v
= ess sup

t>0

v(t)

∫ t

0

1

u(s)
ds.

In our case of special weights we obtain

‖V‖L1
u0
→L1

v0
= ess sup

t>0

1

u0(t)

∫ ∞

t

v0(s) ds = ess sup
t>0

Θ(t) = ∞,

‖V‖L∞

u1
→L∞

v1
= ess sup

t>0

v1(t)

∫ t

0

1

u1(s)
ds = 1.

Therefore the first two conditions on V are satisfied. To show the third one we use

Lemma 7.

Since u0 is a decreasing function it follows that

w0(t) = ess sup
0<s≤t

1

u0(s)
=

1

u0(t)
=

∫ t

0

1

u1(s)
ds = w1(t),

and so

ψ
(

w0(t),w1(t)
)

= ψ(1, 1)w1(t) =
1

ln 2
w1(t).

If x0(t) > 0 a.e. on (0,∞), then

ψ
( x0(t)

v0(t)
,

1

v1(t)

)

=
x0(t)

v0(t) ln
(

1 + x0(t)
v0(t)

v1(t)
) ≥ 1

v1(t)
= w1(t).

Thus,

ψ(w0,w1) =
1

ln 2
w1 ≤ ψ

( x0

v0

,
1

v1

)

∈ ψ(L1
v0
, L∞

v1
)

and, according to Lemma 7, the operator V is bounded from ψ(L1
u0
, L∞

u1
) into

ψ(L1
v0
, L∞

v1
).
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As function x0(t) > 0 for which ‖x0‖L1 ≤ 1 we can take, for example,

x0(t) =
1

3

∞
∑

k=−∞
min(1, 2−2k)χ(2k,2k+1).

Theorem 8 Let ψ and weights u0, u1, v0, v1 on (0,∞) be the same as in Lemma 8.

There are no weights w0, w1, h0, h1 on (0,∞) that satisfy

ψ(L1
w0
, L∞

w1
) = ψ(L1

u0
, L∞

u1
), ψ(L1

h0
, L∞

h1
) = ψ(L1

v0
, L∞

v1
)

and the Volterra operator V is bounded between

V : L1
w0

→ L1
h0

and V : L∞
w1

→ L∞
h1
.

Proof Assume conversely that such weights exist. For the function ψ we have

ρψ(a) = lim sup
t→∞

ψ(at, 1)

ψ(t, 1)
= lim sup

t→∞

at ln(1 + t)

t ln(1 + at)
= a.

Therefore, if ψ(L1
w0
, L∞

w1
) = ψ(L1

u0
, L∞

u1
), then, by Theorem 4 and Lemma 3 with

θ = 1, we have w0 ≈ u0. Similarly, since ψ(L1
h0
, L∞

h1
) = ψ(L1

v0
, L∞

v1
) then again by,

Corollary 4 with θ = 1, we have h0 ≈ v0. According to Lemma 8

‖V‖L1
w0
→L1

h0

= ‖V‖L1
u0
→L1

v0
= ∞,

which is a contradiction.

Immediately from Lemma 8 and Theorem 8 we have the following example:

Example 2 Let ψ(s, t) =
s

ln(1+ s
t
)
. We can find weights u0, u1, v0, v1 on (0,∞) such

that the factorization theorem for the Volterra operator V from the space ψ(L1
u0
, L∞

u1
)

into ψ(L1
v0
, L∞

v1
) does not hold.

Remark 4 Theorem 8 and Example 2 are still true if we take any function ψ ∈ U

which satisfies two conditions:

lim
s→0+

ψ(s, 1) = c > 0 and ρψ(a) = lim sup
t→∞

ψ(at, 1)

ψ(t, 1)
= a

for all a > 0.

The failure of the factorization theorem for the operator V was given for the func-

tion ψ with the property that lims→0+ ψ(s, 1) = c > 0 (see Corollary 9 and Re-

mark 4). We will also present a result for when the function ψ satisfies

lims→0+ ψ(s, 1) = 0. It is enough to prove a lemma corresponding to Lemma 8.
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For fixed 0 < θ < 1, let

ψθ(t) =











tθ if 0 ≤ t ≤ τ (θ),

linear if τ (θ) ≤ t ≤ 1,

ψ(t) if t > 1,

where ψ(t) =
t

ln(1+t)
and τ = τ (θ) is a point in (0, 1) such that ψθ is concave on

(0,∞), i.e., ψ ′(1) < ψ(1)−τ
1−τ < θτ θ. Such a point exists since ψ ′(1) = 1/ ln 2 −

1/[2(ln 2)]2 < 1/ ln 2 = ψ(1) and limτ→0+
ψ(1)−τ

1−τ = ψ(1), limτ→0+ τ θ−1 = ∞. Let

(16) ψθ(s, t) = tψθ(s/t) with the above function ψθ(t).

Then ψθ ∈ U, lims→0+ ψθ(s, 1) = 0 and ρψθ(a) = a for all a > 0.

Lemma 9 Let 0 < θ < 1 be fixed and let the function ψθ ∈ U be given by (16).

Then there exist weights u0, u1, v0, v1 on (0,∞) such that, for the Volterra operator

V x(t) =
∫ t

0
x(s) ds, we have

‖V‖L1
u0
→L1

v0
= ∞, ‖V‖L∞

u1
→L∞

v1
= 1

and

‖V‖ψθ(L1
u0
,L∞

u1
)→ψθ(L1

v0
,L∞

v1
) ≤ 2.

Proof For fixed α ∈ (0, 1) define weights u0, v0 by

u0(t) = min
(

t, τ (θ)
)α

and v0(t) = τ (θ)1−αt−2.

Then

‖V‖L1
u0
→L1

v0
= ess sup

t>0

1

u0(t)

∫ ∞

t

v0(s) ds

= ess sup
t>0

[

min
(

t, τ (θ)
)−α

τ (θ)1−αt−1
]

= ess sup
t>0

max
(( τ (θ)

t

) 1−α
,
τ (θ)

t

)

= ∞.

Choose as weight u1 a function which satisfies

∫ 0

0

1

u1(s)
ds ≥ 1

τ (θ)u0(t)
for t ∈

(

0, τ (θ)
]

and u1(t) = τ (θ)−α for t > τ (θ). Let

1

v1(t)
=

{

f (t)
∫ t

0
ds

u1(s)
if 0 < t ≤ τ (θ),

∫ t

0
ds

u1(s)
if t > τ (θ),
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where f (t) is a function that for 0 < t ≤ τ (θ) satisfies

f (t) ≥ max
( 1

τ (θ)v0(t)
∫ t

0
u1(s) ds

,
( v0(t)

u0(t)

) θ/(1−θ))

.

As u1 and f we can take for example, on (0, τ (θ)],

u1(t) = t1−α/
(

ατ (θ)
)

and f (t) = τ (θ)α−1tθ(1−α)/(1−θ).

Then

‖V‖L∞

u1
→L∞

v1
= ess sup

t>0

v1(t)

∫ t

0

1

u1(s)
ds

= max
(

ess sup
0<t≤τ (θ)

1

f (t)
, 1

)

≤ max
(

τ (θ)θ/(1−θ), 1
)

= 1.

Consider the functions

x0(t) =

{

1
v0(t)

if 0 < t ≤ τ (θ),
1

u0(t)
if t > τ (θ),

and x1(t) =
1

v1(t)
. Then

‖x0‖L1
v0

= τ (θ) + 1, ‖x1‖L1
v1

= 1,

and for 0 < t ≤ τ (θ),

ψθ

( 1

u0(t)
,

∫ t

0

ds

u1(s)

)

= u0(t)−θ
(

∫ t

0

ds

u1(s)

) 1−θ

≤ f (t)1−θv0(t)−θ
(

∫ t

0

ds

u1(s)

) 1−θ

= ψθ

( 1

v0(t)
, f (t)

∫ t

0

ds

u1(s)

)

= ψθ

( 1

v0(t)
,

1

v1(t)

)

= ψθ
(

x0(t), x1(t)
)

.

For t > τ (θ),

ψθ

( 1

u0(t)
,

∫ t

0

ds

u1(s)

)

= ψθ

( 1

u0(t)
,

1

v1(t)

)

= ψθ
(

x0(t), x1(t)
)

.

Thus, by similar considerations as those in Lemma 7, we find that

‖V‖ψθ(L1
u0
,L∞

u1
)→ψθ(L1

v0
,L∞

v1
) ≤ 1 + τ (θ) ≤ 2.
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and Lemma 9 is proved.

Analogously as in the proof of Theorem 8 and using instead of Lemma 8 the just

proved Lemma 9, we can formulate a similar theorem under the assumption that

lims→0+ ψ(s, 1) = 0.

Theorem 8 ′ Let ψ and weights u0, u1, v0, v1 on (0,∞) be the same as in Lemma 9.

There are no weights w0, w1, h0, h1 on (0,∞) that satisfy

ψ(L1
w0
, L∞

w1
) = ψ(L1

u0
, L∞

u1
), ψ(L1

h0
, L∞

h1
) = ψ(L1

v0
, L∞

v1
)

and so that the Volterra operator V is bounded between

V : L1
w0

→ L1
h0

and V : L∞
w1

→ L∞
h1
.

5 Factorization of the Averaging Operator

We shall now consider a factorization theorem for the averaging operator on [0,∞).

Let

AIx(t) =
1

|I|

∫

I

x(s) dsχI(t), where I = [a, b] with a, b > 0.

We can easily see that

‖AI‖L1
u→L1

u
=

1

|I|

∫

I

u(s) ds ess sup
t∈I

1

u(t)

and

‖AI‖L∞

v →L∞

v
=

1

|I|

∫

I

1

v(s)
ds ess sup

t∈I

v(t).

We show that the analogue of the factorization theorem of Muckenhoupt’s Ap-con-

dition (cf. [39]) for the operator A and the space ψ(L1
u, L

∞
v ) does not hold.

Theorem 9 Let ψ ∈ U be such a function that lims→0+ ψ(s, 1) = c > 0 and ρψ(a) =

lim supt→∞
ψ(at,1)
ψ(t,1)

= a for all a > 0. If u(t) =
∑∞

k=0 2kχ[k,k+1)(t) for t ≥ 0, then for

the averaging operator AI we have

sup
I

‖AI‖ψ(L1
u,L

∞)→ψ(L1
u,L

∞) = C <∞,

and there are no weights w0, w1, h0, h1 on (0,∞) that satisfy the conditions

ψ(L1
w0
, L∞

w1
) = ψ(L1

u, L
∞), ψ(L1

h0
, L∞

h1
) = ψ(L1

u, L
∞)

with

sup
I

‖AI‖L1
w0
→L1

h0

<∞, sup
I

‖AI‖L∞

w1
→L∞

h1
<∞.
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Proof We have

sup
I

‖AI‖L1
u→L1

u
=

1

|I|

∫

I

u(s) ds ess sup
t>0

1

u(t)

≥ sup
n∈N

1

n

∫ n

0

u(s) ds ess sup
t∈[0,n]

1

u(t)
= sup

n∈N

2n − 1

n
= ∞.

Of course, supI ‖AI‖L∞→L∞ = 1. We show that

sup
I

‖AI‖ψ(L1
u,L

∞)→ψ(L1
u,L

∞) = C <∞.

If |I| ≤ 1 and I ∩ [i, i + 1) 6= ∅, then 2i−1 ≤ u(t) ≤ 2i+1 for all t ∈ I and

sup
I

‖AI‖ψ(L1
u,L

∞)→ψ(L1
u,L

∞) ≤ 4.

If |I| > 1, then for all ‖x0‖L1
u
≤ 1 and ‖x1‖L∞ ≤ 1, we have

AI

(

ψ
(

|x0(t)|, |x1(t)|
))

≤ ψ
(

AI

(

|x0(t)|
)

,AI

(

|x1(t)|
))

≤ ψ
(

AI(|x0(t)|), 1
)

.

Since u(t) ≥ 1 it follows that a =
1
|I|

∫

I
|x0(s)| ds ≤ 1

|I|
∫

I
|x0(s)|u(s) ds ≤ 1

|I| < 1 and

so ψ(a, 1) ≤ ψ(1, 1). Thus, choosing x0(t) > 0 a.e. we obtain

AI

(

ψ
(

|x0(t)|, |x1(t)|
))

≤ ψ(1, 1) ≤ ψ(1, 1)

c
ψ

(

|x0(t)|, 1
)

which means that

sup
I

‖AI‖ψ(L1
u,L

∞)→ψ(L1
u,L

∞) ≤
ψ(1, 1)

c

for |I| > 1. Thus C = max(4, ψ(1,1)
c

).

The rest of the proof is similar to the proof of Theorem 8.

6 The Failure for the Hardy Operator of the Factorization and the
Schur Lemma in Some Reflexive Orlicz Spaces

The Schur lemma for an integral operator Kx(t) =
∫

k(t, s)x(s) ds with a positive

kernel k(t, s) ≥ 0 saying that the operator K is bounded in Lp(1 < p < ∞) if and

only if there exists a positive function u such that

Kuq(t) ≤ Cuq(t) and K
′

up(t) ≤ Cup(t),

where 1/p + 1/q = 1 and K
′

is the formal associate operator. We can rewrite this in

factorization form: there exists a positive function u such that

K : L1
up → L1

up and K : L∞
u−p ′ → L∞

u−p ′
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is bounded. The last statement is a factorization theorem for the operator K.

Theorem 8 shows that a similar factorization theorem for the Volterra operator

between weighted Orlicz spaces LM is not possible, but these Orlicz spaces are not

reflexive. We will show below that the classical Hardy operator Hx(t) =
1
t

∫ t

0
x(s) ds,

which is a bounded operator in any reflexive Orlicz space LM , has in some of them,

no factorization through weighted L1 and weighted L∞ spaces.

Theorem 10 There exist reflexive Orlicz spaces LM on (0,∞) for which there are no

weights u0, u1, v0, v1 on (0,∞) that satisfy

ϕ(L1
u0
, L∞

u1
) = ϕ(L1, L∞) = LM , ϕ(L1

v0
, L∞

v1
) = ϕ(L1, L∞) = LM

and such that the Hardy operator H is bounded between

H : L1
u0
→ L1

v0
and H : L∞

u1
→ L∞

v1
.

In particular, the Schur lemma does not hold for the Hardy operator H in some reflexive

Orlicz spaces.

Proof Since the Orlicz space LM is reflexive, it follows that the function M and its

complementary M∗ satisfy the ∆2-condition, that is, M(2t) ≤ CM(t) and M∗(2t) ≤
CM∗(t) for all t > 0. For a new Orlicz function M1 defined by

M1(t) =

∫ t

0

M(s)

s
ds, t > 0,

we have that M1 is strictly increasing on (0,∞). Furthermore M1 is equivalent to M

since M(t/2) ≤ M1(t) ≤ M(t) for all t > 0, and so LM1 = LM .

The important step now is a construction of the function M or ϕ with ϕ(t) =

ϕ(t, 1) = M−1(t) for which ρϕ(a) from Theorem 4 is not equivalent to a power

function for all a > 0. Such constructions we will do later on in Examples 2 and 3

but we continue our proof with the function M having such a property.

Assume conversely that we can find weights u0, u1, v0, v1 on (0,∞) that satisfy

ϕ(L1
u0
, L∞

u1
) = ϕ(L1, L∞) = LM1 , ϕ(L1

v0
, L∞

v1
) = ϕ(L1, L∞) = LM1 ,

and the Hardy operator H : L1
u0
→ L1

v0
and H : L∞

u1
→ L∞

v1
is bounded.

Then neither u1 nor v1 is equivalent to a constant function. If u1 is equivalent to

a constant function, then, observing that ϕ(s, 1) = M−1
1 (s) is strictly increasing, we

can use Theorem 4, which gives that u0 is equivalent to a constant function, and con-

sequently the Hardy operator will be bounded in L1, which is not the case. Similarly

with v1.

Assume now that both weights u1 and v1 are not equivalent to a constant function.

Then, again by Theorem 4, we obtain that

uθ0u1−θ
1 ≈ 1 and vθ0v1−θ

1 ≈ 1,
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where θ is the number such that ρϕ(a) ≈ aθ for all a > 0. Thus any ϕ ∈ U such that

ρϕ(a) has different indices αϕ 6= βϕ gives a counterexample.

We now only need to give an example of such a function. We give below three

such examples, but the proofs we put into Appendix A at the end of the paper.

Example 3 Let 0 < θ0 < θ1 < 1 and 1 = a1 < a2 < a3 < · · · be a sequence such

that the quotient an+1

an
is increasing to infinity. Put ϕ(t) = tθ1 for 0 ≤ t ≤ 1 and

ϕ(t) =

{

( t
a2n−1

)θ0ϕ(a2n−1) if a2n−1 ≤ t ≤ a2n,

( t
a2n

)θ1ϕ(a2n) if a2n ≤ t ≤ a2n+1.

Then ϕ is a quasi-concave function on (0,∞), i.e., ϕ is increasing and ϕ(t)
t

is de-

creasing on (0,∞). It is well known that there exists a concave function ϕ̃ such that

ϕ(t) ≤ ϕ̃(t) ≤ 2ϕ(t) (see [25]). Moreover,

ρϕ(a) = max(aθ0 , aθ1 )

for any a > 0 and the indices are αϕ = θ0, βϕ = θ1.

Example 4 For small α > 0 and
√

2α < θ ≤ 1 −
√

2α let

ϕ(t) =

{

tθ if 0 ≤ t ≤ e,

tθ+α sin(ln ln t) if t ≥ e.

Then ϕ is a quasi-concave function on (0,∞), ρϕ(a) = max(aθ−
√

2α, aθ+
√

2α) and

the indices are αϕ = θ −
√

2α, βϕ = θ +
√

2α.

Example 5 (cf. [35, pp. 93–94] for t near zero) For k > 0 and p >
√

2k + 2 let

M(t) =

{

t p if 0 ≤ t ≤ e,

t p+k sin(ln ln t) if t ≥ e.

Then M is a convex increasing function on (0,∞), ρM(a) = max(ap−
√

2k, ap+
√

2k)

and the indices are αϕ = θ −
√

2k, βϕ = θ +
√

2k.

A Proofs of the Statements in Examples 3, 4 and 5

Proof in Example 3 From the definition of ϕ we have

ϕ(t) =











tθ0

(

∏n
k=1

a2k−1

a2k−2

) θ1−θ0

if a2n−1 ≤ t ≤ a2n,

tθ1

(

∏n
k=1

a2k−1

a2k

) θ1−θ0

if a2n ≤ t ≤ a2n+1,

for n = 1, 2, . . . , where a0 = a1 = 1.
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We show that ϕ is a quasi-concave function on (0,∞). If either a2n−1 ≤ s <
t ≤ a2n or a2n ≤ s < t ≤ a2n+1, then clearly ϕ(s) < ϕ(t) and ϕ(t)

t
< ϕ(s)

s
. In the

remaining case, a2n−1 ≤ s ≤ a2n < t < a2n+1, we have

ϕ(s) =

( s

a2n−1

) θ0

ϕ(a2n−1) = sθ0

(

n
∏

k=1

a2k−1

a2k−2

) θ1−θ0

≤ aθ0

2n

(

n
∏

k=1

a2k−1

a2k−2

) θ1−θ0

< tθ1

(

n
∏

k=1

a2k−1

a2k

) θ1−θ0

=

( t

a2n

) θ1

ϕ(a2n) = ϕ(t)

and

ϕ(t)

t
= tθ1−1

(

n
∏

k=1

a2k−1

a2k

) θ1−θ0

< aθ1−1
2n

(

n
∏

k=1

a2k−1

a2k

) θ1−θ0

≤ sθ0−1
(

n
∏

k=1

a2k−1

a2k

) θ1−θ0

=
ϕ(s)

s

and this shows that the functionϕ is increasing and ϕ(t)
t

is decreasing on (0,∞). Note

that

ϕ ′
−(a2n) = θ0aθ0−1

2n

(

n
∏

k=1

a2k−1

a2k

) θ1−θ0

< θ1aθ1−1
2n

(

n
∏

k=1

a2k−1

a2k

) θ1−θ0

= ϕ ′
+(a2n),

which means that the function ϕ is not concave on (0,∞).

Let a > 1. We want to show that

(17) lim inf
t→∞

ϕ(at)

ϕ(t)
= aθ0 and lim sup

t→∞

ϕ(at)

ϕ(t)
= aθ1 .

Consider several cases, where n = 2, 3, . . . is arbitrary but fixed:

1. If t, at ∈ [a2n, a2n+1], then ϕ(at)
ϕ(t)

= aθ1 ≥ aθ0 and so lim supt→∞
ϕ(at)
ϕ(t)

≥ aθ1 .

2. If t, at ∈ [a2n−1, a2n], then ϕ(at)
ϕ(t)

= aθ0 ≤ aθ1 and so lim inft→∞
ϕ(at)
ϕ(t)

≤ aθ0 .

3. If t ∈ (a2n−2i, a2n−2i+1], i = 1, 2, . . . , n and at ∈ [a2n, a2n+1], then

ϕ(at)

ϕ(t)
= aθ1

(

∏n
k=1

a2k−1

a2k
∏n−i

k=1
a2k−1

a2k

) θ1−θ0

= aθ1

(

n
∏

k=n−i+1

a2k−1

a2k

) θ1−θ0

≤ aθ1

https://doi.org/10.4153/CJM-2005-035-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-035-0


936 E. I. Berezhnoı̆ and L. Maligranda

and

ϕ(at)

ϕ(t)
= aθ1

(

n
∏

k=n−i+1

a2k−1

a2k

) θ1−θ0

= aθ0

(

a
a2n−2i+1

a2n−2i+2

n
∏

k=n−i+2

a2k−1

a2k

) θ1−θ0

≥ aθ0

( at

a2n−2i+2

n
∏

k=n−i+2

a2k−1

a2k

) θ1−θ0

≥ aθ0

( a2n

a2n−2i+2

n
∏

k=n−i+2

a2k−1

a2k

) θ1−θ0

≥ aθ0

( a2n−2i+3

a2n−2i+2

· a2n−2i+5

a2n−2i+4

· · · a2n−1

a2n−2

) θ1−θ0

≥ aθ0 .

4. If t ∈ [a2n−2i−1, a2n−2i], i = 0, 1, 2, . . . , n − 1 and at ∈ [a2n, a2n+1], then

ϕ(at)

ϕ(t)
= aθ1tθ1−θ0

(

∏n
k=1

a2k−1

a2k
∏n−i

k=1
a2k−1

a2k
· a2n−2i

) θ1−θ0

= aθ1tθ1−θ0

(

n
∏

k=n−i+1

a2k−1

a2k

1

a2n−2i

) θ1−θ0

= aθ1

( t

a2n−2i

n
∏

k=n−i+1

a2k−1

a2k

) θ1−θ0

≤ aθ1

and

ϕ(at)

ϕ(t)
= aθ1

( t

a2n−2i

n
∏

k=n−i+1

a2k−1

a2k

) θ1−θ0

= aθ0

( at

a2n−2i
· a2n−2i+1

a2n−2i+2

· a2n−2i+3

a2n−2i+4

· · · a2n−1

a2n

) θ1−θ0

≥ aθ0

( a2n

a2n−2i

· a2n−2i+1

a2n−2i+2

· a2n−2i+3

a2n−2i+4

· · · a2n−1

a2n

) θ1−θ0

= aθ0

( a2n−2i+1

a2n−2i
· a2n−2i+3

a2n−2i+2

· · · a2n−1

a2n−2

) θ1−θ0

≥ aθ0

5. If t ∈ [a2n−2i, a2n−2i+1], i = 1, 2, . . . , n, and at ∈ [a2n−1, a2n], then

ϕ(at)

ϕ(t)
= aθ0tθ0−θ1

( a1·a3···a2n−1

a0·a2···a2n−2

) θ1−θ0

( a1·a3···a2n−2i−1

a0·a2·····a2n−2i

) θ1−θ0

= aθ0tθ0−θ1

( a2n−2i+1

a2n−2i+2

· a2n−2i+3

a2n−2i+4

· · · a2n−3

a2n−2

· a2n−1

) θ1−θ0

= aθ0

( a2n−2i+1

t
· a2n−2i+2

a2n−2i+3

· · · a2n−1

a2n−2

) θ1−θ0

≥ aθ0
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and

ϕ(at)

ϕ(t)
= aθ0tθ0−θ1

( a2n−2i+1

a2n−2i+2

· a2n−2i+3

a2n−2i+4

· · · a2n−3

a2n−2

· a2n−1

) θ1−θ0

= aθ0

( a2n−1

t
· a2n−2i+1

a2n−2i+2

· a2n−2i+3

a2n−2i+4

· · · a2n−3

a2n−2

) θ1−θ0

≤ aθ1 .

6. If t ∈ [a2n−2i−1, a2n−2i], i = 1, 2, . . . , n − 1, and at ∈ [a2n−1, a2n], then

ϕ(at)

ϕ(t)
= aθ0

(

∏n
k=1

a2k−1

a2k−2

∏n−i
k=1

a2k−1

a2k−2

) θ1−θ0

= aθ0

(

n
∏

k=n−i+1

a2k−1

a2k−2

) θ1−θ0

≥ aθ0

and

ϕ(at)

ϕ(t)
= aθ0

( a2n−2i+1 · a2n−2i+3 · · · a2n−1

a2n−2i · a2n−2i+2 · · · a2n−2

) θ1−θ0

= aθ0

( a2n−1

a2n−2i

· a2n−2i+1

a2n−2i+2

· a2n−2i+1

a2n−2i+2

· · · a2n−3

a2n−2

) θ1−θ0

≤ aθ0

( a2n−1

a2n−2i

) θ1−θ0

≤ aθ0

( at

t

) θ1−θ0

= aθ1 .

From all these cases we see that (17) is true and the proof of Lemma 2 is complete.

Proof in Example 4 The function ϕ is quasi-concave on (0,∞). It is enough to see

that for t ≥ e,

ϕ ′(t) =
ϕ(t)

t
[θ + α(sin ln ln t + cos ln ln t)] =

ϕ(t)

t

[

θ +
√

2α sin
(

ln ln t +
π

4

)]

and
(

ϕ(t)/t
) ′

=
ϕ(t)

t

[

θ − 1 +
√

2α sin
(

ln ln t +
π

4

)]

.

We show now that ρϕ(a) = max(aθ−
√

2α, aθ−
√

2α). If a > 1 and t > e, then

ϕ(at)

ϕ(t)
= aθ+α sin(ln ln(at))tα[sin(ln ln(at))−sin(ln ln t)]

= aθ+α sin(ln ln(at))t2α sin[(ln ln(at)−ln ln t)/2] cos[(ln ln(at)+ln ln t)/2]

= aθ+α sin[ln ln(at)]t2α sin[ln(1+ln a/ ln t)/2] cos[ln ln t+ln(1+ln a/ ln t)/2].

Since for |u| ≤ 1
2

we have ln(1 + u) = ub(u) where |b(u)| ≤ 2 and by the Lagrange

mean-value theorem,

cos(x + h) = cos x + c(x, h)h with |c(x, h)| ≤ 1,
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it follows that for large t and all a > 1,

cos
[

ln ln t +
1

2
ln

(

1 +
ln a

ln t

)]

= cos
[

ln ln t +
1

2

ln a

ln t
b(a, t)

]

= cos(ln ln t) +
1

2

ln a

ln t
b(a, t)c(a, t)

= cos(ln ln t) +
1

2

ln a

ln t
d(a, t),

where |d(a, t)| ≤ 2. Thus

ϕ(at)

ϕ(t)
= aθ+α sin[ln ln(at)]t2α sin((1+ln a/ ln t)/2[cos[ln ln t)+d(a,t) ln a/2 ln t]

= aθ+α sin[ln ln(at)]+2α ln t
ln a

sin sin((1+ln a/ ln t)/2[cos[ln ln t)+d(a,t) ln a/2 ln t].

Since

lim
t→∞

ln t

ln a
2 sin

ln(1 + ln a
ln t

)

2
= 1

it follows that
ϕ(at)

ϕ(t)
= aθ+α sin[ln ln(at)]+α cos[ln ln(at)]+e(a,t),

where limt→∞ e(a, t) = 0 and so

lim sup
t→∞

ϕ(at)

ϕ(t)
= aθ+α lim supt→∞

{sin[ln ln(at)]+cos[ln ln(at)]}

= aθ+α lim supu→∞
(sin u+cos u)

= aθ+
√

2α

and

lim inf
t→∞

ϕ(at)

ϕ(t)
= aθ−

√
2α.

The proof is complete.

Proof in Example 5 For t ≥ e we have

M ′(t) =
M(t)

t

[

p +
√

2p sin
(

ln ln t +
π

4

)]

,

and

M ′′(t) =
M(t)

t2

{

[p − 1 +
√

2k sin
(

ln ln t +
π

4

)][

p − 1 +
√

2k sin
(

ln ln t +
π

4

)]

−
√

2k

ln t
sin

(

ln ln t − π

4

)}

.

Also M ′(e−) = pep−1 ≤ (p + k)ep−1 = M ′(e−). Therefore we can show that M

is increasing, convex on (0,∞) and the proof of the fact that ρM(a) = max(aθ−
√

2k,

aθ−
√

2k) for all a > 0 is similar to Example 3.
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Math. 37(1989), 23–33.

[7] , The Lions problem for Gustavson–Peetre functor. Publ. Math. 34(1990), 175–180.
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