J. Austral. Math. Soc. (Series A) 38 (1985), 241-254

BERNSTEIN AND JACKSON THEOREMS FOR THE HEISENBERG GROUP

SAVERIO GIULINI

(Received 4 October 1983)

Communicated by G. Brown

Abstract

We describe on the Heisenberg group H_n a family of spaces M(h, X) of functions which play a role analogous to the trigonometric polynomials in T^n or the functions of exponential type in \mathbb{R}^n . In particular we prove that for the space M(h, X), Jackson's theorem holds in the classical form while Bernstein's inequality hold in a modified form. We end the paper with a characterization of the functions of the Lipschitz space Λ'_x by the behavior of their best approximations by functions in the space M(h, X).

1980 Mathematics subject classification (Amer. Math. Soc.): 41 A 17, 43 A 80.

Introduction

Let G be \mathbb{R}^n or the *n*-dimensional torus T^n and $X = L^p(G)$ or $C_0(G)$. For every positive real number h, we consider the subspace of X:

 $M(h, X) = \{ f \in X : \hat{f}(\lambda) = 0 \text{ if } \lambda \in \hat{G} \text{ and } |\lambda| > h \}.$

More explicitly for $G = T^n$, M(h, X) is the space of all trigonometric polynomials of degree equal or less than h, while, if $G = \mathbb{R}^n$, M(h, X) consists of all entire functions of exponential type h in \mathbb{C}^n which, as functions of the variable $x \in \mathbb{R}^n$, lie in X.

It is well known that the following inequalities hold:

a) (Jackson's theorem) for every integer N > 0, there exists a constant C_N such that

$$\inf_{g \in \mathcal{M}(h, X)} \|f - g\|_X \leq C_N \omega_N (1/h, f, X)$$

^{© 1985} Australian Mathematical Society 0263-6115/85 \$A2.00 + 0.00

for every $f \in X$, where ω_N is the N-th modulus of smoothness;

b) (Bernstein's theorem) for every multiindex I and every $f \in M(h, X)$

$$\|D^{I}f\|_{X} \leq h^{|I|} \|f\|_{X}$$

Our goal is to find for G the Heisenberg group H_n a family of spaces M(h, X) $(h \in \mathbb{R}^+)$ which satisfy conditions a) and b). For this purpose we consider the non-trivial representations π_{λ} of the Heisenberg group H_n and we suppose that π_{λ} acts on the Bargmann space \mathscr{H}_{λ} . If $\hat{f}(\lambda)$ is the Fourier transform of a function $f \in X$, we denote by $\{\hat{f}(\lambda)\}_{\alpha,\beta}$ $(\alpha, \beta \in \mathbb{N}^n)$ the matrix entries of $\hat{f}(\lambda)$ with respect to the canonical orthonormal basis in \mathscr{H}_{λ} .

We define the space M(h, X) in the following way:

$$M(h, X) = \left\{ f \in X : \left\{ \hat{f}(\lambda) \right\}_{\alpha,\beta} = 0 \text{ if } (2|\beta| + n)|\lambda| > h^2 \right\}.$$

We prove that for these spaces Jackson's theorem holds in the classical form, while Bernstein's inequality holds in a modified form, with a constant greater than one. Finally we give a characterization of the functions of the Lipschitz spaces Λ_X^r by the behavior of their best approximations by functions of the classes M(h, X).

Notation

The Heisenberg group H_n is the Lie group whose underlying manifold is $\mathbf{R} \times \mathbf{C}^n$ and whose composition law is given by

$$(t, z) \cdot (t', z') = (t + t' + 2 \operatorname{Im} z \cdot \overline{z}', z + z')$$

where $t, t' \in \mathbf{R}$, $z = (z_1, ..., z_n)$, $z' = (z'_1, ..., z'_n) \in \mathbf{C}^n$ and $z \cdot z' = \sum_{j=1}^n z_j \overline{z}'_j$. The complexified Heisenberg Lie algebra $(\mathfrak{h}_n)_{\mathbf{C}}$ is generated by the left-invariant vector fields

$$T = \frac{\partial}{\partial t}, \quad Z_j = \frac{\partial}{\partial z_j} + i\overline{z}_j \frac{\partial}{\partial t}, \quad \overline{Z}_j = \frac{\partial}{\partial \overline{z}_j} - iz_j \frac{\partial}{\partial t} \qquad (j = 1, \dots, n).$$

We denote by V the vector space spanned by Z_j , \overline{Z}_j (j = 1, ..., n). Since the only non-trivial commutation rule is $[Z_j, \overline{Z}_j] = -2iT$, V generates $(\mathfrak{h}_n)_{\mathbb{C}}$ as an algebra (that is H_n is stratified). The natural dilations on $(\mathfrak{h}_n)_{\mathbb{C}}$ are given by

$$\delta_{\epsilon}(T+Z) = \epsilon^2 T + \epsilon Z$$
 $(Z \in V, \epsilon > 0).$

We shall denote also by δ_{ϵ} the corresponding dilations on H_n :

$$\delta_{\varepsilon}(t, z) = (\varepsilon^2 t, \varepsilon z) \qquad (t, z) \in H_n.$$

We define on H_n a homogeneous norm

$$\rho(t, z) = (t^2 + |z|^4)^{1/4}.$$

If D is an invariant differential operator on H_n , we say that D is homogeneous of degree N if

(1)
$$D(f \circ \delta_{\varepsilon}) = \varepsilon^{N} (Df \circ \delta_{\varepsilon}).$$

In particular N = 1 if and only if $D \in V$.

The Haar measure on H_n is Lebesgue measure on $\mathbb{R} \times \mathbb{C}^n$. Let X denote either $L^p(H_n)$ or $C_0(H_n)$. The subspace $Y \subset X$ is defined as the space of all infinitely differentiable f such that $Df \in X$ for every invariant differential operator D. We set

(2)
$$f_{(\varepsilon)} = \varepsilon^{-2(n+1)} f \circ \delta_{1/\varepsilon} \qquad (\varepsilon > 0)$$

Clearly, if $f \in L^1(H_n)$ one has

$$\int_{H_n} f_{(\epsilon)} = \int_{H_n} f,$$

and, if $f \in Y$ and D is an invariant differential operator homogeneous of degree N,

(3)
$$Df_{(\varepsilon)} = \varepsilon^{-N} (Df)_{(\varepsilon)}.$$

In defining Fourier transforms for H_n (see [4]) we are concerned only with the infinite-dimensional irreducible unitary representations of H_n . These representations can be considered as acting on the Bargmann space \mathscr{H}_{λ} ($\lambda > 0$) which consist of all holomorphic functions F in \mathbb{C}^n such that

$$\left\|F\right\|^{2} = \left(\frac{2\lambda}{\pi}\right)^{n} \int_{\mathbb{C}^{n}} \left|F(w)\right|^{2} \exp\left(-\frac{2\lambda}{w}\right)^{2} dw < +\infty.$$

The monomials

$$F_{\alpha,\lambda}(w) = (\sqrt{2\lambda}w)^{\alpha}/\sqrt{\alpha!}, \qquad \alpha \in \mathbf{N}^n,$$

form an orthonormal basis for the Hilbert space \mathscr{H}_{λ} . For $\lambda \in \mathbf{R}^* = \mathbf{R} - \{0\}$ the representations π_{λ} on $\mathscr{H}_{|\lambda|}$ are given by

$$(\pi_{\lambda}(t,z)F)(w) = F(w-\bar{z})\exp(i\lambda t + 2\lambda(w\cdot z - |z|^2/2))$$

if $\lambda > 0$, and $\pi_{\lambda}(t, z) = \pi_{|\lambda|}(-t, -\overline{z})$ if $\lambda < 0$; these exhaust all non-trivial irreducible unitary representations of H_n . The Fourier transform of a L^1 -function f is the operator valued function

$$\hat{f}(\lambda) = \int_{H_n} f(u) \pi_{\lambda}(u) du$$

Let \mathscr{F}_{λ} be the linear span of $\{F_{\alpha,\lambda}\}_{\alpha\in\mathbb{N}^n}$ and let \mathscr{R} be the set of all families $S = \{S(\lambda)\}_{\lambda\in\mathbb{R}^*}$ of linear operators $S(\lambda)$: $\mathscr{F}_{\lambda} \to \mathscr{H}_{\lambda}$. The matrix of $S(\lambda)$ is defined

$$\{S(\lambda)\}_{\alpha,\beta} = (S(\lambda)F_{\alpha,\lambda}, F_{\beta,\lambda})_{\mathscr{H}_{\lambda}}.$$

If $f \in S(H_n)$, the Schwartz space, the Plancherel formula

$$||f||_{2}^{2} = c_{n} \int_{\mathbf{R}^{*}} ||\hat{f}(\lambda)||_{HS}^{2} |\lambda|^{n} d\lambda$$

holds, where $\|\cdot\|_{HS}$ is the Hilbert Schmidt norm and $c_n = 2^{n-1}/\pi^{n+1}$. Then we can extend the Fourier transformation to an isometry from $L^2(H_n)$ onto the Hilbert space \mathcal{L}^2 , where

$$\mathscr{L}^{2} = \left\{ S = \{ S(\lambda) \} \in \mathscr{R} \colon \|S(\lambda)\|_{HS} < +\infty \text{ for almost all } \lambda \right.$$

and
$$\int_{\mathbf{P}^{*}} \|S(\lambda)\|_{HS}^{n} |\lambda|^{n} d\lambda < +\infty \right\}.$$

More generally let $S'(H_n)$ be the conjugate dual of $S(H_n)$; we define (see [4])

$$S(h_n) = \{ S \in \mathscr{R} : S = \hat{f} \text{ for some } f \in S(H_n) \},\$$

and we topologize it to be homeomorphic to $S(H_n)$. Let $S'(h_n)$ be the conjugate dual of $S(h_n)$. By polarization of the Plancherel formula we can extend the Fourier transformation to an isomorphism between $S'(H_n)$ and $S'(h_n)$ which we also denote by $\hat{}$. If $\{R(\lambda)\} \in \mathcal{R}$, we shall say that $\{R(\lambda)\} \in S'(h_n)$ if the map

$$S \to \int_{\mathbf{R}^*} \sum_{\alpha \in \mathbf{N}^n} \left| \left(R(\lambda) F_{\alpha,\lambda}, S(\lambda) F_{\alpha,\lambda} \right)_{\mathscr{H}_{\lambda}} \right| |\lambda|^n \, d\lambda$$

is defined and continuous from $S(h_n)$ to C (see [5], Chapter 2).

We observe that, if $f, g \in S'(H_n)$,

(4)
$$\widehat{\overline{Z_{j}f}(\lambda)}F_{\alpha,\lambda} = -(2|\lambda|(\alpha_{j}+1))^{1/2}\widehat{f}(\lambda)F_{\alpha+e_{j},\lambda}, \\ \widehat{\overline{Z_{j}f}(\lambda)}F_{\alpha,\lambda} = (2|\lambda|\alpha_{j})^{1/2}\widehat{f}(\lambda)F_{\alpha-e_{j},\lambda}, \qquad \text{if } \lambda > 0$$

(where $\{e_j\}_{j=1,...,n}$ is the canonical basis for \mathbb{R}^n , if $\lambda < 0$ we must reverse the right sides) and

$$(5) D(f * g) = f * Dg$$

(where D is any left invariant differential operator).

Moduli of smoothness in H_n

Moduli of smoothness in H_n were studied by I. R. Inglis [6]. The results of this Section are analogous to the results obtained by P. M. Soardi [7] in \mathbb{R}^n in the non-isotropic case.

For every integer N and every $0 \le \theta \le 1$ we define

$$\Delta_{u,\theta}^{N}f(u') = \sum_{j=0}^{N} (-1)^{N+j} {N \choose j} f(u' \cdot \delta_{j+\theta}u), \quad u, u' \in H_n, f \in X.$$

We set $\Delta_{u,0}^N f = \Delta_u^N f$ and we remark that $\Delta_u^{N+1} f = \Delta_{u,1}^N f - \Delta_u^N f$.

DEFINITION 1. For every $h \in \mathbf{R}^+$ and $N \in \mathbf{N}$, the function

$$\omega_N(h, f, X) = \sup_{\rho(u) \leqslant h} \left\| \Delta_u^N f \right\|_X$$

is called the N-th modulus of smoothness.

For ease of notation we shall write $\omega_N(h, f)$ and $\|\cdot\|$ instead of $\omega_N(h, f, X)$ and $\|\cdot\|_X$. Since H_n is stratified the space of left-invariant operators which are homogeneous of degree N is exactly the linear span of the monomials $X_1X_2 \cdots X_N$, where $X_i = Z_j$ or \overline{Z}_k $(i = 1, \dots, N; j, k = 1, \dots, n)$. We denote by V_N the set of all differential monomials in Z_j and \overline{Z}_k $(j, k = 1, \dots, n)$. Obviously $V = V_1$.

LEMMA 1. Suppose $D \in V_N$. There exists a constant C = C(D) such that for every h > 0 and $f \in X$

$$||f - g|| + h^N ||Dg|| \leq C\omega_N(h, f)$$

for some $g \in Y$.

PROOF. We choose $\phi \in S(H_n)$ such that $\int_{H_n} \phi = 1$ and $\operatorname{supp} \phi \subseteq \{u \in H_n: \rho(u) \leq 1/N^2\}$. We define

$$P = \frac{1}{N!} \sum_{j=1}^{N} (-1)^{N+j} {N \choose j} j^{N} \phi_{(j)},$$
$$Q = \sum_{j=1}^{N} (-1)^{N+j} {N \choose j} P_{(j)}$$

(for the definition of $\phi_{(j)}$ and $P_{(j)}$ see (2)). Obviously $\int_{H_n} P = 1$, $\int_{H_n} Q = (-1)^{N+1}$ and supp $Q \subseteq \{u \in H_n: \rho(u) \leq 1\}$. We define $g = (-1)^{N+1} f * Q_{(h)}$. By changing variables one sees that

$$g(u) - f(u) = \int_{\rho(v) \leq h} h^{-2(n+1)} P\left(\delta_{1/h} v^{-1}\right)$$
$$\cdot \sum_{j=0}^{N} (-1)^{N+j} {N \choose j} f\left(u \cdot \delta_{j} v\right) dv.$$

Then

$$\|f - g\| \leq \int_{\rho(v) \leq h} |P_{(h)}(v^{-1})| \|\Delta_v^N f\| dv$$

$$\leq \|P\|_1 \omega_N(h, f).$$

Furthermore

$$Q_{(h)} = \left(\frac{1}{N!}\right) \sum_{r,s=1}^{N} (-1)^{r+s} \binom{N}{r} \binom{N}{s} r^{N} \phi_{(hrs)},$$

and by (1),

$$DQ_{(h)} = \frac{h^{-N}}{N!} \sum_{r,s=1}^{N} (-1)^{r+s} {N \choose r} {N \choose s} (D\phi_{(s)})_{(hr)}.$$

A change of variables shows that

$$f * DQ_{(h)} = (h^{-N}/N!) \sum_{s=1}^{N} (-1)^{s} {N \choose s} \int_{\rho(v) \le h} \sum_{r=1}^{N} (-1)^{r} {N \choose r}$$
$$\cdot f(u \cdot \delta_{r} v) (D\phi_{(s)})_{(h)} (v^{-1}) dv.$$

Since $\int_{\rho(v) \leq h} (D\phi_{(s)})_{(h)}(v^{-1}) dv = 0$, we have

$$\begin{split} h^{N} \|Dg\| &= h^{N} \|fDQ_{(h)}\| \\ &\leq \frac{1}{N!} \sum_{s=1}^{N} {N \choose s} \int_{\rho(v) \leq h} \left| \left(D\phi_{(s)} \right)_{(h)} (v^{-1}) \right| \|\Delta_{v}^{N} f\| dv \\ &\leq \frac{1}{N!} \sum_{s=1}^{N} {N \choose s} \|D\phi_{(s)}\|_{1} \omega_{N}(h, f). \end{split}$$

LEMMA 2. Let N be a positive integer and $0 \le \theta \le 1$. There exists a positive constant C, not depending on θ , such that for every $f \in X$, $g \in Y$ and h > 0

$$\left\|\Delta_{u,\theta}^{N}f\right\| \leq C\left(\|f-g\|+\rho(u)^{N}\sum_{D \in V_{N}}\|Dg\|\right).$$

PROOF. Since

$$\left\|\Delta_{u,\theta}^{N}f\right\| \leq \left\|\Delta_{u,\theta}^{N}(f-g)\right\| + \left\|\Delta_{u,\theta}^{N}g\right\| \leq 2^{N}\left\|f-g\right\| + \left\|\Delta_{u,\theta}^{N}g\right\|,$$

we have to evaluate $\Delta_{u,\theta}^N g$ when $g \in Y$. Suppose $v = (0, z_1, \ldots, z_n) \in \exp V$; we observe that

$$\frac{d^m}{ds^m}(g(u^{\prime\prime}\cdot\delta_s v))\Big|_{s=j}=\left[\left(\sum_{k=1}^n(z_kZ_k+\bar{z}_k\overline{Z}_k)\right)^mg\right](u^{\prime\prime}\cdot\delta_j v).$$

_

246

We set

(6)
$$\sum_{k=1}^{n} \left(z_k Z_k + \overline{z}_k \overline{Z}_k \right) = E(v).$$

Moreover there exist a constant C' > 0 and an integer M such that any $u \in H_n$ can be expressed as

(7)
$$\begin{aligned} u &= v_1 \cdot \ldots \cdot v_M \text{ where } v_i = (0, w_i) \in \exp V \text{ and } \rho(v_i) \leq \\ C'\rho(u) \quad (i = 1, \ldots, M; \text{ see [3], Lemma 1.40).} \end{aligned}$$

Therefore an application of Taylor's theorem to the function $s \to g(u'' \cdot \delta_s v_i)$ $(u'' \in H; i = 1, ..., M)$ yields: (8)

$$g(u' \cdot \delta_{j+\theta}u) - g(u') = \sum_{i=1}^{M} g(u' \cdot \delta_{j+\theta}(v_1 \cdot \ldots \cdot v_{i-1}) \cdot \delta_{j+\theta}v_i)$$

-g(u' \cdot \delta_{j+\theta}(v_1 \cdot \dots \dots v_{i-1}))
= $\sum_{i=1}^{M} \sum_{m=1}^{N-1} \frac{(j+\theta)^m}{m!} [E(v_i)^m g](u' \cdot \delta_{j+\theta}(v_1 \cdot \ldots \cdot v_{i-1}))$
+ $\frac{(j+\theta)^N}{(N-1)!} \int_0^1 (1-s)^{N-1}$
 $\cdot [E(v_i)^N g](u' \cdot \delta_{j+\theta}(v_1 \cdot \ldots \cdot v_{i-1} \cdot \delta_s v_i)) ds.$

By the inequality $\rho(u \cdot v) \leq \rho(u) + \rho(v)$ (see [2]), we have

(9)
$$\rho(v_1 \cdots v_{i-1}\delta_s v_i) \leq \sum_{k=1}^{i} \rho(v_k) \leq C' M \rho(u) \qquad (i = 1, \dots, M).$$

Furthermore

$$\begin{bmatrix} E(v_i)^m g \end{bmatrix} (u' \cdot \delta_{j+\theta}(v_1 \cdot \ldots \cdot v_{i-1})) = \sum_{k=0}^{N-m} \frac{(j+\theta)^k}{k!} \begin{bmatrix} E(v_{i-1})^k (E(v_i)^m g) \end{bmatrix} \cdot (u' \cdot \delta_{j+\theta}(v_1 \cdot \ldots \cdot v_{i-2}))$$

+ remainder term.

Repeating this process we obtain

$$g(u' \cdot \delta_{j+\theta}u) = \sum_{s_M=0}^{N-1} (j+\theta)^{s_M} \sum_{s_{M-1}=0}^{s_M} \cdots \sum_{s_1=0}^{s_2} \left(s_1! \prod_{k=2}^{M} ((s_k - s_{k-1})!) \right)^{-1} \\ \cdot \left[E(v_1)^{s_1} E(v_2)^{s_2-s_1} \cdots E(v_M)^{s_M-s_{M-1}} g \right] (u') \\ + \text{ remainder terms} \\ = \sum_{s_M=0}^{N-1} (j+\theta)^{s_M} Q_{s_M}(u,u') + R(u,u',j+\theta),$$

[7]

where $R(u, u', j + \theta)$ consists of all remainder terms, hence it can be written as a sum of terms like

(10)
$$(j+\theta)^N \int_0^1 (1-s)^{N-1-k} w^{\alpha} \overline{w}^{\beta} [Dg](u' \cdot u(s)) ds$$

where $D \in V_N$ and $0 \leq k \leq N-1$; $w = (w_1, \dots, w_n) \in C^{nM}$ with $v_i = (0, w_i)$ and $|w_i| \leq C'\rho(u)$ by (8); $\alpha, \beta \in \mathbb{N}^{nM}$ and $|\alpha| + |\beta| = N$; $\rho(u(s)) \leq (j + \theta)C'M\rho(u)$ by (9). Now

$$\begin{aligned} \Delta_{u,\theta}^{N} g(u') &= \sum_{j=0}^{N} (-1)^{N+j} {N \choose j} g(u' \cdot \delta_{j+\theta} u) \\ &= \sum_{s_{M}=0}^{N-1} \sum_{j=0}^{N} (j+\theta)^{s_{M}} (-1)^{N+j} {N \choose j} Q_{s_{M}}(u,u') \\ &+ \sum_{j=0}^{N} (-1)^{N+j} {N \choose j} R(u,u',j+\theta). \end{aligned}$$

Since $\sum_{j=0}^{N} j^{k}(-1)^{j} {N \choose j} = 0$ if k < N, the first term in the previous sum is 0; it follows from (10) that

$$||R(u,\cdot,j+\theta)|| \leq C''(j+\theta)^N \rho(u)^N \sum_{D \in V_N} ||Dg||.$$

Because $0 \leq \theta \leq 1$, finally we obtain

(11)
$$\left\|\Delta_{u,\theta}^{N}g\right\| \leq C^{\prime\prime\prime}\rho(u)^{N}\sum_{D \in V_{N}}\left\|Dg\right\|,$$

where C''' depends only on N.

We can summarize Lemmas 1 and 2 in the following statement: let N be a positive integer; there exist two constants C_1 and C_2 such that for every $f \in X$ and h > 0

(12)
$$C_1\omega_N(h,f) \leq \inf_{g \in Y} \left(\|f - g\| + h^N \sum_{D \in V_N} \|Dg\| \right) \leq C_2\omega_N(h,f).$$

The second member of (12) is the analogue in H_n of the classical Peetre K-functional (see also [7]).

COROLLARY 1. Let $\varepsilon > 0$, then

$$\omega_N(\epsilon h, f) \leq C(N)(1 + \epsilon^N)\omega_N(h, f).$$

PROOF. Obvious from (12).

COROLLARY 2. Let N be a positive integer. There exists a constant C such that

$$\left\|\Delta_{u,\theta}^{N}f\right\| \leq C\omega_{N}(\rho(u),f)$$

for every $f \in X$, $u \in H_n$ and $0 \le \theta \le 1$.

LEMMA 3. Let K and k be two positive integers such that $K \ge k$. We suppose $g \in X$ and $Dg \in X$ for every $D \in V_i (i \le k)$. Then

$$\left\|\Delta_{u}^{K}g\right\| \leq C(k)\rho(u)^{k}\sum_{D \in V_{k}}\omega_{K-k}(\rho(u), Dg).$$

PROOF. If we set $\theta = 0$ and N = 1 in formula (8), we get

$$\begin{aligned} \Delta_{u}^{K}g(u') &= \sum_{j=1}^{K} (-1)^{K+j} \Big(g \big(u' \cdot \delta_{j} u \big) - g \big(u' \big) \Big) \\ &= \sum_{i=1}^{M} \sum_{j=1}^{K} j \big(-1 \big)^{K+j} \binom{K}{j} \int_{0}^{1} \Big[E(v_{i})g \Big] \Big(u' \cdot \delta_{j} \big(v_{1} \cdot \ldots \cdot v_{i-1} \cdot \delta_{s} v_{i} \big) \Big) \, ds \\ &= \sum_{i=1}^{M} \sum_{j=0}^{K-1} (-1)^{j+K-1} \binom{K-1}{j} \\ &\cdot \int_{0}^{1} \Big[E(v_{i})g \Big] \Big(u' \cdot \delta_{j+1} \big(v_{1} \cdot \ldots \cdot v_{i-1} \cdot \delta_{s} v_{i} \big) \Big) \, ds. \end{aligned}$$

Now

$$\begin{split} \left\|\Delta_{v_{1}\cdots v_{i-1}\cdot\delta_{s}v_{i},1}^{K-1}E(v_{i})g\right\| &\leq C'\rho(u)\sum_{D\in V}\left\|\Delta_{v_{1}\cdots v_{i-1}\cdot\delta_{s}v_{i},1}^{K-1}Dg\right\| \quad (by\ (6)\ and\ (7))\\ &\leq C''\rho(u)\sum_{D\in V}\omega_{K-1}(CM\rho(u),Dg) \quad (by\ (9)\ and\ Corollary\ 2)\\ &\leq C'''\rho(u)\sum_{D\in V}\omega_{K-1}(\rho(u),Dg) \quad (by\ Corollary\ 1). \end{split}$$

Therefore

Repeating this process, we obtain the thesis.

Jackson and Bernstein theorems

Before proving the main theorems we observe that given a radial Schwartz function f in H_n (in the sense that f(t, z) = f(t, |z|)) we have $\{\hat{f}(\lambda)\}_{\alpha,\beta} \equiv 0$ if $\alpha \neq \beta$ and

(13)
$$\{\hat{f}(\lambda)\}_{\alpha,\alpha} = \int_{\mathbf{R}\times\mathbf{C}^n} f(t,z) e^{i\lambda t} l^0_{\alpha}(2|\lambda||z|^2) dt dz$$

where l_{α}^{0} is the Laguerre function of type 0 and degree α [4].

DEFINITION 2. Let h > 0. We denote by M(h, X) the class of all functions $f \in X$ such that

$$\{\hat{f}(\lambda)\}_{\alpha,\beta} = 0 \quad \text{if } (2|\beta|+n)|\lambda| > h^2.$$

THEOREM 1. Let N be a positive integer. For every $f \in X$ and every h > 0 there exists a function $g_h \in M(h, X)$ such that

$$\|f-g_h\| \leq C(N)\omega_N(1/h,f),$$

where C(N) is a constant which depends only on N.

PROOF. Let $\phi: \mathbf{R} \to \mathbf{R}$ be an even C^{∞} -function such that $\phi(0) = 1$ and supp $\phi \subset [-1, 1]$. We consider $S \in \mathcal{R}$ such that

$$\{S(\lambda)\}_{\alpha,\beta} = \begin{cases} \phi((2|\alpha| + n)|\lambda|) & \text{if } \alpha = \beta, \\ 0 & \text{otherwise}, \end{cases}$$

for every $\lambda \in \mathbb{R}^*$. Then $S(\lambda)$ is the Fourier transform of a function in $S(H_n)$ (see [4], Theorem 1). Obviously $G \in M(1, X)$. We consider

$$K = \sum_{j=1}^{N} \left(-1\right)^{N+j} {N \choose j} G_{(j/h)}$$

and $g_h = (-1)^{N+1} f * K$. We observe that $g_h \in M(h, X)$. Moreover

$$f * K(u) = \int_{H_n} G(v) \sum_{j=1}^N {N \choose j} f\left(u \cdot \delta_{j/h} v^{-1}\right) dv.$$

Since $\lim_{\lambda \to 0} {\{\hat{G}(\lambda)\}}_{\alpha,\alpha} = 1$ for all α , by (13) and the Lebesgue dominated convergence theorem we have $\int_{H_{\alpha}} G = 1$. Thus

$$g_h(u) - f(u) = (-1)^{N+1} \int_{H_n} G(v) \Delta^N_{\delta_{1/h}v} f(u) dv$$

and

(14)
$$||g_h - f|| \leq \int_{H_n} |G(v)| ||\Delta^N_{\delta_{1/h}v} f|| dv.$$

From Corollary 1 it follows that

$$||g_{h} - f|| \leq C'(N) \omega_{N}(1/h, f) \int_{H_{n}} |G(v)| (1 + \rho(v))^{N} dv$$

= $C(N) \omega_{N}(1/h, f).$

THEOREM 2. Let h be a positive number and D be a left-invariant differential operator with degree of homogeneity N. There exists a constant C(D) such that $||Df|| \leq C(D)h^N ||f||$ for every $f \in M(h, X)$.

PROOF. Let $\phi \in C_c^{\infty}([0, +\infty))$ such that $\phi(x) = 1$ if $x \in [0, 1]$. We define S and G as in Theorem 1. Since $f \in M(h, X)$ we have $f * G_{(1/h)} = f$; hence f is a C^{∞} -function in H_n such that (by (3) and (5))

$$f * (DG)_{(1/h)} = h^{-N}D(f * G_{(1/h)}) = h^{-N}Df$$

and

$$||Df|| \leq h^{N} ||DG||_{1} ||f|| = C(D)h^{N} ||f||_{1}$$

REMARK. Suppose $f \in M(h, X)$; then $\hat{f}(\lambda) = 0$ if $|\lambda| > h^2/n$ and for such λ 's $Df(\lambda) = 0$, for every invariant differential operator D. Therefore to avoid triviality we suppose $|\lambda| \le h^2/n$. If N is the degree of homogeneity of D, by (4) we have $\{Df(\lambda)\}_{\alpha,\beta} = 0$ if $|\beta| > N + (k^2/|\lambda| - n)/2$. Namely

$$Df \in M(\sqrt{(2N/n+1)}, X)$$

(while in the abelian case we have $Df \in M(h, X)$ if $f \in M(h, X)$).

Suppose n = 1. Let $\phi \in C_c^{\infty}(\mathbb{R}^*)$ and supp $\phi \subset (0, h^2]$. Let $S \in \mathscr{R}$ be such that

$$\{S(\lambda)\}_{\alpha,\beta} = \begin{cases} \phi(\lambda) & \text{if } \alpha = \beta = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Then $S = \hat{f}$ for some $f \in S(H_1)$ and $f \in M(h, X)$. By formula (4)

$$\left\{\left(\overline{Z}^{N}f\right)^{\hat{}}(\lambda)\right\}_{0,N}=\left(\left(2|\lambda|\right)^{N}N!\right)^{1/2}\left\{\hat{f}(\lambda)\right\}_{0,0}$$

By the Plancherel formula we can choose a sequence of functions ϕ_k such that

$$||f_k||_2 = 1$$
 and $||\overline{Z}^N f_k||_2 \to (N!2^N)^{1/2} h^N$ as $k \to \infty$.

Hence the constant C(D) of Theorem 2 is not necessarily equal to 1. This contrasts with the abelian case, and with the situation for compact Lie groups (see [1], Lemma 2).

Lipschitz spaces

We can apply the results of the previous sections to obtain a characterization of the Lipschitz spaces $\Lambda'_X(H_n)$ by the behavior of their best approximation by functions of the classes M(h, X).

DEFINITION 3. Suppose r > 0 and N = [r] + 1. We say that the function f belongs to the Lipschitz space $\Lambda'_X(H_n)$ if $f \in X$ and there exists a constant M = M(f) such that

$$\|\Delta_u^N f\| \leq M\rho(u)'$$

for every $u \in H_n$.

The space Λ'_X becomes a Banach space if we put

$$\|f\|_{\Lambda'_{Y}} = \|f\| + M_{f},$$

where M_f is the lower bound of all M's for which (16) is satisfied (compare with [3], Chapter 5-C).

THEOREM 3. The function f belongs to $\Lambda'_X(H_n)$ if and only if there exists A > 0 and a family of functions $g_h \in M(h, X)$, $h \ge 1$, such that

 $||f-g_h|| \leq A/h^r.$

Moreover, if $0 \le k < r$ and $D \in V_k$, there exist two constant C_1, C_2 such that

(17)
$$||Df|| \leq C_1(||f|| + A)$$

(18)
$$h^{k-r}\omega_N(h, Df) \leq C_2(||f|| + A)$$
 for every integer $N > r$;

(obviously if k = 0 we must replace Df with f in (18)).

PROOF. We suppose $f \in \Lambda'_X$. If we set N = [r] + 1 in Theorem 1, it follows by (14) and (15) that

(19)
$$\|f - g_h\| \leq M \int_{H_n} \rho(\delta_{1/h} v)' |G(v)| dv$$
$$= M h^{-r} \int_{H_n} \rho(v)' |G(v)| dv = A h^{-r}$$

Vice versa we consider a sequence $g_{2^j} \in M(2^j, X)$ for which inequality (16) holds and we define

$$Q_0 = g_1, \quad Q_j = g_{2^j} - g_{2^{j-1}} \qquad (j = 1, 2, ...).$$

Obviously $Q_j \in M(2^j, X)$ and by definition (20) $||Q_0|| = ||g_1|| < ||f|| + A$,

$$|Q_j|| \le ||f - g_{2^j}|| + ||f - g_{2^{j-1}}|| \le A(2^r + 1)/2^{rj}, \quad j = 1, 2, \dots,$$

If $D \in V_k$, it follows from Theorem 2 that

(21)
$$||DQ_j|| \leq C(D)2^{kj}||Q_j|| \leq C'A2^{(k-r)j}, \quad j = 1, 2, ...,$$

 $||DQ_0|| \leq C'(||f|| + A).$

In view of (20) $f = \sum_{j=0}^{\infty} Q_j$ in the sense of X. Moreover the estimates (21) show that the series $\sum_{j=0} DQ_j$ converges in X to Df, if $D \in V_k$ (k < r). Hence $Df \in X$ and (17) holds.

We consider $u \in H_n$ and we choose a positive integer K such that $2^{-(K+1)} < \rho(u) \le 2^{-K}$. If N > r - k > 0 and $D \in V_k$ using inequalities (11) (with $\theta = 0$) and (21) we obtain

(22)
$$\left\|\Delta_{u}^{N}DQ_{j}\right\| \leq C(N)\rho(u)^{N}\sum_{D'\in V_{N}}\left\|D'DQ_{j}\right\| \leq C'\rho(u)^{N}A2^{j(N+k-r)}.$$

Obviously

$$\left\|\Delta_{u}^{N}Df\right\| \leq \sum_{j=0}^{K} \left\|\Delta_{u}^{N}DQ_{j}\right\| + \sum_{j=K+1}^{+\infty} \left\|\Delta_{u}^{N}DQ_{j}\right\| = J_{1} + J_{2}.$$

Now

$$J_{1} \leq C''(||f|| + A) \sum_{j=0}^{K} 2^{j(N+k-r)} \rho(u)^{N}$$

$$\leq C'''(||f|| + A) 2^{K(N+k-r)} \rho(u)^{N} \leq C'''(||f|| + A) \rho(u)^{r-k}$$

(the first inequality follows from (22) and the third one from the choice of K); moreover

$$J_{2} \leq 2^{N} \sum_{j=M+1}^{+\infty} \|Q_{j}\| \leq AC' \sum_{j=M+1}^{+\infty} 2^{j(k-r)}$$
$$= AC'' 2^{(M+1)(k-r)} \leq AC'' \rho(u)^{r-k}.$$

These estimates prove (18); if we set k = 0, it follows that $f \in \Lambda'_X$.

REMARK. It follows from Theorem 3 that $f \in \Lambda^r_X$ implies $Df \in \Lambda^s_X$ where s = r - k > 0 if $D \in V_k$. Now, let $k \ge 0$ and N > r - k > 0. We can define on Λ^r_X the following norms

$$\|f\|_{(N,k)} = \|f\| + \sup_{D \in V_k} \sup_{h > 0} \omega_N(h, Df) / h^{r-k} \qquad \left(\|f\|_{([r]+1,0)} = \|f\|_{\mathcal{A}'_X} \right),$$
$$\|f\|_{(\bullet)} = \|f\| + \sup_{h > 0} h^r \inf_{g_h \in \mathcal{M}(h, X)} \|f - g_h\|.$$

These norms are equivalent. In fact, let M be an integer such that M > r > kand $D \in V_k$. It follows from (14) and Lemma 3 that

$$\begin{split} \|f - g_{h}\| &\leq C'h^{-k} \int_{H_{n}} |G(v)| \rho(v)^{k} \sum_{D \in V_{k}} \omega_{M-k}(\rho(v)/h, Df) \, dv \\ &\leq C'h^{-k} \sup_{D \in V_{k}} \omega_{M-k}(1/h, Df) \int_{H_{n}} |G(v)| \rho(v)^{k} (1 + \rho(v))^{N-k} \, dv \\ &\leq C''h^{-k} \sup_{D \in V_{k}} \omega_{M-k}(1/h, Df). \end{split}$$

If we set M - k = N > r - k we obtain

$$h^{r} \inf_{g_{h} \in \mathcal{M}(h, X)} \|f - g_{h}\| \leq C^{"} h^{r-k} \sup_{D \in V_{k}} \omega_{N}(1/h, Df).$$

Therefore

$$||f||_{(*)} \leq C'' ||f||_{(N,k)}$$

for every pair of integers N and k such that $k \ge 0$, N > r - k > 0. On the other hand, it follows from (18) that

$$h^{k-r}\omega_N(h, Df) \leq C'\Big(\|f\| + \sup_{\varepsilon>1} \varepsilon' \inf_{g_\varepsilon \in M(\varepsilon, X)} \|f - g_\varepsilon\|\Big) \leq C'\|f\|_{(*)}.$$

References

- D. I. Cartwright and P. M. Soardi, 'Best conditions for the norm convergence of Fourier series', J. Approx. Theory 38 (1983), 344-353.
- [2] J. Cygan, 'Subadditivity of homogeneous norms on certain nilpotent Lie group', Proc. Amer. Math. Soc. 83 (1981), 69-70.
- [3] G. B. Folland and E. M. Stein, *Hardy spaces on homogeneous groups* (Mathematical Notes 28, Princeton Univ. Press, Princeton, N. J., 1982).
- [4] D. Geller, 'Fourier analysis on the Heisenberg group', Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 1328-1331.
- [5] D. Geller, 'Local solvability and homogeneous distributions on the Heisenberg group', Comm. Partial Differential Equations 5 (1980), 475-560.
- [6] I. R. Inglis, 'Bernstein's theorem and the Fourier algebra of the Heisenberg group', Boll. Un. Mat. It., to appear.
- [7] P. M. Soardi, 'On non-isotropic Lipschitz spaces', Harmonic analysis (Lecture Notes in Math. 992, Springer-Verlag, Berlin, 1983).

Dipartimento di Matematica Università di Milano Via Saldini 50 20133 Milano Italy