
Ergod. Th. & Dynam. Sys. (1986), 6, 81-97
Printed in Great Britain

On strong shift equivalence
over a Boolean semiring

KI HANG KIM AND FRED W. ROUSH

Mathematics Research Group, Alabama State University,
Montgomery, Alabama 36195, USA

(Received 29 October 1984 and revised 1 July 1985)

Abstract. Shift equivalence is the relation between A, B that there exists S, R,
n>0 with RA = BR, AS = SB, SR = A", RS = B". Strong shift equivalence is the
equivalence relation generated by these equations with n = 1. We prove that for
many Boolean matrices strong shift equivalence is characterized by shift equivalence
and a trace condition. However, we also show that if A is strongly shift equivalent
to B, then there exists a homomorphism from an iterated directed edge graph of A
to the graph of B preserving the traces of powers. This yields results on colourings
of iterated directed edge graphs and might distinguish new strong equivalence
classes.

1. Introduction
Two matrices A, B over a semiring are said to be shift equivalent if there exist
matrices R, S with RA = BR, AS = SB, SR = A", RS = Bn, n> 0. They are said to
be strongly shift equivalent if there exists a sequence A, = S,/?,, Ai+1 = /?,S,-, A = Ao,
B = An (For n = l, the equations are equivalent to A = SR and B = RS.) It is
important that R and S need not be square. The relations thus defined, shift
equivalence and strong shift equivalence, will be abbreviated s.e. and s.s.e.

We shall be concerned with two specific semirings: the semiring Z+ of non-negative
integers and the Boolean semiring 93 = {0,1} with the usual multiplication and with
addition being 'logical or' where 1 + 1 = 1. A semiring homomorphism Z+-»93 is
obtained by associating with each matrix A over Z+ its 'Boolean image' where all
positive integer entries have been replaced by 1. Observe that this homomorphism
is compatible with matrix products. Therefore, s.s.e. of Boolean images is a necessary
condition for s.s.e. of matrices over Z\

S.e. over Z+ is used in the study [8] and [9] of subshifts of finite type and from
them of diffeomorphisms. For an n-square (0, l)-matrix A, let X be the set of all
sequences (x,), i e Z, x, e n where n = {1,. . . ,«} such that the (xt, xI+1)-entry of A
is always 1. The shift map is the mapping @: X -» X sending (*,-) to (yt) and yt = x1+1.
Let X be a compact metrizable space. The pair (X, ©) is called a subshift of finite
type. Subshifts (X, ©) and (X\ ©') are said to be topologically conjugate if there is
a homeomorphism / for X and X' such that © ' /=/©.

Williams [8], [9] proved that topological conjugacy of two subshifts is equivalent
to strong shift equivalence over Z+ of their defining matrices.
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It is an open question whether s.e. coincides with s.s.e. over Z+. If they do coincide
then s.e. would completely decide topological conjugacy of subshifts. S.e. is the
more easily computed. In fact, in [5] a decision procedure for s.e. was found in the
case that all eigenvalues are distinct. Additional results are in [1], [7].

S.s.e. is more complicated. Here as a first step we show that over 33 a large class
of matrices has the property that two matrices in it are strong shift equivalent if
and only if they are shift equivalent and the (Boolean) traces of every power of
corresponding indecomposable components are equal. However, there are many
Boolean matrices not covered by this result, especially those of trace zero.

Example. Over Z+ the matrices
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0
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0
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0
, s=
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42
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are shift equivalent. Their Boolean images are strong shift equivalent (theorem 7.1
of this paper) but non-trivially.

First we show how to express all s.e. over 23 as compositions of elementary ones
using operations on rows and columns. Then we show s.s.e. gives an s.s.e. on each
indecomposable component (main diagonal block in a block triangular form). Then
we show the indecomposable case can be reduced to the primitive case (for some
n, A" > 0). In the primitive case, we first duplicate rows and columns to obtain a
Hamiltonian circuit then split the columns along it in turn and add ones. This gives
the matrix of all ones. We extend this back to the indecomposable and general
cases. We show Tr(A) and thus Tr(A") is a strong shift invariant. Here Tr(A)
denotes the trace of A.

In the case of trace zero, we give a necessary condition of a homomorphism of
graphs obtained from our elementary operations.

2. Results from Boolean matrix theory
For brevity, let / denote a Boolean matrix all of whose entries are 1.

Definition. A Boolean matrix A is primitive (aperiodic) if A" = J for some n > 0. It
is indecomposable (irreducible) if

OO

I A"=J.
n = l

Results on Boolean matrices can be found in [4], [6].

THEOREM 2.1. [4, p. 185] The following are equivalent for an n-square Boolean
matrix A:

(1) A is indecomposable;
(2) rr:]Ar = J;
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(3) there does not exist a permutation matrix P with PAPT having the block form

B

D.
with main diagonal blocks square.

Definition. The directed graph (d.g.) associated with an n-square Boolean matrix A
has vertices vu... ,vn and a directed edge from t>, to v} if and only if av = 1. A d.g.
is said to be strongly connected if for all vh tj there exists a sequence of vertices
Vi = xu x2 x r + 1 = Vj such that for i < r + 1 , xt is connected to x i + 1 by a directed

edge.

A matrix is indecomposable if and only if its graph is strongly connected. The
following result is equivalent to finding the strong components of a d.g.

In block forms, we assume main diagonal blocks are square whenever the setting
is such that the matrix must be square.

THEOREM 2.2. [4, p. 222] For any Boolean matrix A there exists a permutation matrix
P such that PAPT has a block triangular form

'An 0 • • • 0
A 2 l A 2 2 ••• 0

Anl An2 • • • An

where all main diagonal blocks are indecomposable or zero.

Definition. For a Boolean matrix A, let k be the least positive integer such that
Ak+d = Ak for some d > 0. Then k is the index and the least d > 0 is the period. If
k = 1 then A is periodic. The period is the 'eventual' period.

THEOREM 2.3. [4, p. 188] An indecomposable Boolean matrix of period d has the
form, for some permutation matrix P

0 A12 0 • • • 0
0 0 A 2 3 ••• 0

id, 0 0 • • • 0

If it is periodic, all blocks Au+U Adl can be taken as J.

Definition. A Boolean matrix A is difunctional if each two rows are equal or have
zero inner product. It is regular if AXA = A for some X. Every difunctional matrix
is regular where X = AT.

An n-square Boolean matrix A is called non-singular if it is regular and has row
rank n, that is, no rows are linear Boolean combinations of other rows. It is reflexive
(irreflexive) if au = 1 (a,, =0) for all i. (See [4] and [6].) Every non-singular matrix
A has a unique Thierrin-Vagner inverse X (i.e. AXA = A and XAX = X). There
exists a unique permutation matrix P < A for non-singular A.

Every Boolean matrix A can be factored as BC (B, C rectangular) where B has
at most one 1 per column and C has exactly one 1 per row. Take one row of C for

https://doi.org/10.1017/S0143385700003308 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003308


84 K. H. Kim and F. W. Roush

each 1 entry of A, containing only that entry. Let bv, = 1 only for those j corresponding
to entries of A in row i. If we reverse the product to take CB, we get a matrix often
used below, the matrix of the directed edge graph GE of A. Vertices of GE are in
1-1 correspondence with directed edges of G in the directed graph of A and edges
with joined pairs of edges. This is different from the undirected edge graph.

3. Reduction of s.s.e.
We need the following propositions.

PROPOSITION 3.1. S.s.e. can be broken down into s.s.e. in which R is a permutation
matrix or has the form

[F O]' or [o I]'
where F has at most one 1 per row.

Proof. We can factor any matrix R as a product of matrices with at most one 1 in
each row (column). By introducing permutations we may change to the above form.
Factoring R as RiR2 factors the s.e.

RlR2S = B~R2SRl~SRlR2 = A. •

We introduce a standard s.s.e. as follows: write A = RS where we number the ones
of B as 1 , . . . , k, and /•„• = 1 if and only if j s k and the jih one of B lies in row i,
and sJm = 1 if and only if j < k and the jth one of B lies in column m. Then R (S)
has at most one 1 per row (column). Then SR is difunctional and is therefore regular.

PROPOSITION 3.2. Every Boolean matrix is strongly shift equivalent to a regular
Boolean, in fact one satisfying AATA = A.

Proof. Difunctional Boolean matrices have this property. D

PROPOSITION 3.3. Suppose a Boolean matrix M is periodic having the form with A
non-singular

[A ACl
[BA BACY

i.e. the first r rows and columns form a basis. Then M is strongly shift equivalent to A.

Proof. Clearly

[J] AC^M, [A
Since A is non-singular, there exists a permutation matrix P < A. Let P" = /. But
periodicity implies that Adn+1<A and Adn+l>P"dA = A. Also by periodicity
ACBAAdnl < Adn+l = A. So ACBI < ACBAdn < A. D

Proofs of the next two propositions are in [5].

PROPOSITION 3.4. Two periodic non-singular Boolean matrices are shift equivalent if
and only if they are conjugate by a permutation matrix.
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PROPOSITION 3.5. Shift equivalence over 33 is decided as follows. Every matrix A is
shift equivalent to a periodic power of itself. Two periodic matrices are shift equivalent
if and only if after deletion of dependent rows and columns, they are conjugate by a
permutation matrix.

Next we mention certain row and column operations which are always s.s.e. Here
At* (A*t) denotes the ith row (column) of A.

PROPOSITION 3.6. We can replace A., by two columns whose sum is A., and then take
two copies of Ai*.

Proof. Let S be A after A», is split into two columns and R be the matrix which
adds those two columns and preserves all others. •

PROPOSITION 3.7. If' A*t s A*j, we may delete any set of elements in A*j which are 1
in A*i and then add A*,- to A,».

Proof. Let S be the matrix obtained by possibly changing elements in A»} which
are 1 in A*t to zero. Let R be the matrix such that rv = 1 and otherwise R equals
the identity. Then SR = A and RS is the matrix considered. •

PROPOSITION 3.8. Suppose At* is dependent and is the sum of Ak* for ke K, for some
set K, UK. Then we may delete At*, add A»t to A*kfor ke K, and delete A*{.

Proof. Let S be the matrix which is an (n -1)-square identity with a row inserted
in place i having ones in locations K. Let R be A with row i deleted. Then SR = A,
and RS is the matrix considered. •

Example. It may not be possible to delete the row and columns of a zero main
diagonal block. Consider

This is s.e. to its power

1
1
0
0

"1
1
1
1

0
0
1
0

0
0
1
1

0
0
0
1

0

0
0
1

0
0
0

1.

0

0
0
1

and so to

not to

a
t

Let a)"' denote the (ij)-entry of A".
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THEOREM 3.10. Any s.s.e. between A and B gives an s.s.e. between the irreducible
main diagonal blocks of A, B.

Proof. We put A, B into block triangular form. Let R, S give an s.s.e. Suppose that
rimSmj = rcdsde = 1 for by, bce in the same non-zero main diagonal block of B. Then
Smjbjc^cd is non-zero in Au+l for some u since the (j, c)-block is indecomposable.
So some entry a 1 ^ " = 1. Likewise some entry ad

v*l) = 1. This by the block form of
all powers of A means d, m lie in the same block of A. So this block of B is the
product of a single pair of blocks from R, S. If we take their product in reverse
order we get a single main diagonal block of A, by symmetry. •

COROLLARY 3.11. IfA, B are irreducible (over 93 or Z+) of period d and are strong
shift equivalent, we may take every intermediate matrix in the strong shift equivalence
to be irreducible of period d.

Proof. We can take a single main diagonal block at each step. Since the period is
an s.e. invariant (the period of A equals that of a high power which is periodic) by
proposition 3.7 it is an invariant. •

M. Boyle has observed that the next result considered over Z+ has a topological
interpretation [2]. If all words must have letters xt in a subset Xi+k modulo d, for
s o m e k, then m a p (• • • xkxk+x • • • xk+dxk+d+1 • • • ) to (• • • xkxk • • • xk+dxk+d • • • )•

This gives a topological mapping corresponding to the matrix equation. If we arrange
things so all matrix entries are 0 and 1 it is a conjugacy.

THEOREM 3.12. An indecomposable matrix of period d can be put into the form

0 A, 0 • • • 0

0 0 A 2 ••• 0

0 0 0 • • • Ad_,

Ad 0 0 • • • 0

by conjugating it with a permutation. It is strong shift equivalent to

0 / 0 • • • 0

0 0 / • • • 0

b 0 0 • • • 0

Two matrices of this form are strong shift equivalent if their lower left-hand blocks are.

Proof. The first statement is theorem 2.3 found in Kim [4]. For the second, as an
intermediate step we use the matrices M(k) having the form above with Mu+l(k) = /
for i < k and MKk+l(k) = A, • • • Ak and Mu+l(k) = At for i > fc (and Mni{k) has this
form).

Let R(k) have all blocks zero except Rtiii+l(k) = / for i<k and .R,j+1<fc) = A, for
/>fc (and Rnl(k)). Let S{k) have all blocks zero except Skk(k) = Ai • • • Ak_, and
Su(k) = I for i* k. Then S(k)R(k) = M(k) and R(k)S(k)= M(k-l). This proves
the second statement. Suppose Anl = XY, J3nl = YX. Let Rnl = X, Ru+i = I and other
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blocks be zero. Let S(k) be a block identity matrix with the (k, fc)-block replaced
by Y. Then

S(n)R =

0 / 0
0 0 /

0
0

YX 0 0 0

RS(l) =

0 / 0
0 0 /

0
0

XY 0

•and RS(k) = S(k-\)R. This proves the last statement.

4. Matrices with positive trace
We begin with the following proposition.

PROPOSITION 4.1. The process of splitting column j in two and adding an identical
copy of row i preserves the property of indecomposability of a Boolean matrix if both
new columns are non-zero.

Proof. The graph of the larger matrix is obtained by splitting vertex j and letting
all arrows go out of both copies but dividing the arrows in. Let j u j2 be the new
vertices and k another vertex, and m a vertex with an arrow into j x . Then there
exists a path from j t to k. There exists a path from k to m (if j occurred it could
always be replaced by jx or j 2 ) . And we can go from k to m to y\. This says the
graph of the new matrix is strongly connected, since there exists a path from any
vertex to any other. CD

PROPOSITION 4.2. Every indecomposable Boolean matrix A with a row ( 1 , 1 , . . . , 1)
is strong shift equivalent to J.

Proof. Suppose we have a set S of rows having all ones. By indecomposability
ay = 1 for some iiS,j&S unless A = J. Since ; e S and every row Am* < A}* we can
add column j to column m. This will add column j to every column. Thus At* is
now ( 1 , 1 , . . . , 1). Continue to obtain J. •

The next example illustrates how we can deal with an indecomposable matrix of
positive trace.

Example. Let

A =

0
1
1
0

Split columns 2, 3 in two and duplicate rows 2, 3 in turn, to obtain

1

0

0

0

0

1

1

0

0

0

0

0

1

1

1

0

0

0

0
1

0

0

0

0

0
1

1

1

1

0
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Now 2 — A-i so add A,» to A2», giving

Since A*4 < A*2 we can add A2» to A4»

1
1

0

0

0

1

1

1

0

1

0

1

1
1

0

0

0

0

. to

1
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0
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1
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0

0

0

A4.:

1

1

1

1

0

0

0
1

0

0

0

0

0

1

0

1

0

0

0
1

1

1

1

0

0

1

1

1

1

0

0
0

0

1

1

1

0

0

0

1

1

1

Now we have a row of all 1 so we can obtain /.

PROPOSITION 4.3. Every indecomposable Boolean matrix with positive trace is strong
shift equivalent to J.

Proof. Let A be indecomposable with aH = 1. We can find a sequence i" = i , , . . . , ik = i
such that aMr+1 = 1 for all r and the i} include every vertex by indecomposability.
For instance for every n take a path from n to n +1 of this nature.

Duplicate rows and columns so that the matrix has as many copies of row and
column i as the sequence does, rearranging them in the order of the sequence. So

Now we in turn split each column j = 2 , 3 , . . . , k — 1 in two columns j u j 2 , the
first having a 1 only in location i, where i =j — 1 and the second equal to column
j . Duplicate row /

Now we note that A*2i< A*x so add A,* to A2]». Inductively we assume by this
process that if i=j — \, Ah* has ones in all locations prior to and including j u j 2 .
Then A*h>A*h since ahh = 1. So add Ah* to Ah*. Then Ah* has ones in locations
prior to and including ( j '+l) i , O'+l)2. Then A*iy>A,h so we obtain a row with all
ones. Now we apply proposition 4.2. •

5. Matrices with a general trace condition
We are ready for general characterization theorems.

THEOREM 5.1. Let A, B be the square Boolean matrices. If A is strong shift equivalent
to B and A,, Bt are the indecomposable components of A, B then with some labelling
such that A, is shift equivalent to Bt we have Tr(A") = Tr{B") for all n > 0 . Here
Tr (A) denotes the trace of A.

Proof. An s.s.e. between A, B gives one between their indecomposable components,
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and between A" and B" since

A" = (SR)n = SR(SR)—1, Bn =

And

Tr (AB) = I afo = I M* = Tr (BA)
so

D

COROLLARY 5.2. S.s.e. does not coincide with s.e. for Boolean matrices.

Remark. However, this does not affect the Z+ or Q+ cases since Tr (An) and Tr (Bn)

will always be equal.

THEOREM 5.3. Let A be an indecomposable Boolean matrix of period d. If Tr (A d ) # 0
then A is strong shift equivalent to

0 / 0 • • • 0
0 0 / • • • 0

J 0 0 • • • 0

Proof. By theorems 2.3 and 5.3 we may assume A has the form

0 / 0 • • • 0
0 0 / • • • 0

X 0 0 • • • 0

where X = Al2 • • • Adx is primitive and has a main diagonal 1 since Ad has as its
main diagonal blocks X and matrices strong shift equivalent to it. If X were
decomposable these blocks would give a place where £™ = 1 A

m is zero.
Now we can take an s.s.e. on X to reduce it to /. Finally, we have

0
0

/
0

0
/

0
0

0 0 0

We can obtain / in the other non-zero blocks by factoring out and remultiplying
matrices of the form

1
0

0

0

1

0

0
0

... o

... o

... o

0 0 0

This proves the theorem. •
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THEOREM 5.4. Let A be a Boolean matrix such that every non-zero indecomposable
component A, of period dt satisfies Tr (Af1) ^ 0. Then A is strong shift equivalent to a
periodic non-singular matrix.

Proof. First we eliminate zero main diagonal blocks using

A

B

C

0
0
E

o'
0
F

=

A

B

C

0 '
0
/

/ o oi
o E F]

This does not change non-zero main diagonal blocks. Next we take s.e. on the main
diagonal blocks to make them periodic.

We can extend any s.s.e. on a main diagonal block to the entire matrix. Let
= Arr.

Au • •

Arl ••

Aki • •

Ami • •

• 0 • •

• u ••

• 0 • •

• 0 • •

• 0

• 0 •••

. , . . .

• 0

0

0

0

J

1 •

0 •

0 •

. o •

• • o

. . V • • •

•• A k r • • •

Amr

0 • • • 0

0 • • • 0

A . ••• o

That is, in the first factor all blocks Bi} for i, j> r are taken 0 except the main
diagonal blocks which are /. Then if we rearrange the factors, the rth main diagonal
block has VU for UV and the other diagonal blocks have not changed. Therefore,
we can take the block Arr to have the desired form

0
0

J
0

0
/

0 0 0

We introduce a sub-blocking of the entire matrix according to the blocking just given
on the main diagonal blocks. We next make all these sub-blocks consist entirely of
zeros or entirely of ones. To do this, we use the same s.e. as the last one, but we
let V = Arn U = I. We start at the lower right and go up. The row blocking on rows
below r is preserved, since the Atj have this blocking for i > r and they are left-hand
factors of the result. Ar* has also the blocking since Arr is a left-hand factor. This
makes the rows correctly blocked. Then use the s.e. with V = /, U = Arr Columns
after r are unchanged and column r has Arr as a right-hand factor, so is correctly
blocked. The blocking on rows below r is preserved since the Ak, are left-hand
factors. Rows above or equal to r are unchanged. This makes all rows and columns
correctly blocked.

Next we may replace all the blocks within blocks by single entries since they are
identically 1 or 0. This means the main diagonal blocks are permutation matrices:

https://doi.org/10.1017/S0143385700003308 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003308


Strong shift equivalence 91

0
0

0
1

0
0

1 0 0 • • • 0
(Take an s.s.e. where R, S are block identity matrices.)

Now we show that unless the matrix is periodic, we can increase the number of
1 entries. We factor A as, where Emk = A^!mAmk,

Au

An

Akl

... o •••

• • • A r r • • •

• • • A k r • • •

• • • A m r • • •

0 • • • 0

0 • • • 0

Akk • • • 0

0 •• • Amm

I •

0 •

0 •

0 •

• • 0 • • •

1—
1

• • E k r • • •

.. o ...

0 • •

0 • •

1—
1

Emk • •

• 0

• 0

• 0

. !

That is, in the first factor we take all off main diagonal blocks Atj i, j^k as 0. In
the second factor we put an E{j in these locations and also in the single location Ekr.
Other off-main diagonal blocks are 0. If we reverse the factorization we do not
change the main diagonal blocks, or any row above row k, and row fc is increased
or stays the same. To the block A^ we have added

EkrArs = Al~kAkrArs.

Therefore by continuing this process we may assume

Ate ^ AkkAkrArs,

for s < r < fc. We may go down the rows until this holds for every block in the matrix.
In particular,

Aics = AllA^Ass (Ey = (Auy
lAjj),

by counting numbers of ones. These two equations, with main diagonal entries being
permutations imply periodicity. In particular A2 = PA where P is the permutation
matrix whose main diagonal blocks are the Akk. So Am = Pm~lA. This completes
the proof. •

6. Distinguishing irreflexive primitives
We begin with the following definition.

Definition. For a square Boolean matrix A we say that A is expandable to C if by
repeatedly splitting columns of A and duplicating rows we can obtain C. If at each
stage after the columns are split but before rows are duplicated the columns of A
contain at most one 1 we call the expansion a point expansion (p.e.). If A< B and
on every irreducible component B, of B and for all m, Tr (AT) = Tr (B?) where A,
is the submatrix of A in the same location as B, we say that we have a trace
equivalence (t.e.).

Remark. Every expansion is a strong shift equivalence.
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In this section we go over some possible means of distinguishing Boolean matrices
that are shift equivalent.

LEMMA 6.1. Suppose E<Fisa t.e. and F, is an expansion of Fand Ex a corresponding
p.e. ofE, with £ , < Fv Then Ex < F, is a t.e.

Proof. Indecomposable blocks of F^ correspond to those of F. So we may restrict
attention to an indecomposable block, and assume F, Ft are indecomposable. But
since E, Ex are s.s.e. if Tr (Em) = 1, then Tr (ET) = 1. •

LEMMA 6.2. Suppose E < F and F, is an expansion ofF. Then there exists F2 obtained
by replicating rows and columns of F and F2< F2 such that E2 is a p.e. of E.

Proof. At each stage of the expansion of F to Fx, replicate the rows and columns
of the expanded matrix enough times so that we can put the 1 entries in a column
of E in distinct columns of the expanded matrix from F. If columns are left over,
take 0 columns in the expansion of E. •

THEOREM 6.3. Let A, B be two square Boolean matrices. If A is strong shift equivalent
to B then there exists an iterated p.e. C of A such that for some conjugated block form
DofB, C<D and this is a t.e.

Proof. We first show this relationship is transitive. Suppose C is an iterated p.e. of
A, D is a conjugate block form of B, C ^ D, E is an iterated p.e. of B, F is a
conjugated block form of G, E < F. We take £, to be a conjugated block form of
E which is an expansion of D corresponding to the expansion E of B. Then we
can take the corresponding conjugated block form Fx of F, and E^ s Fx and Ft is
a conjugated block form of G.

We replicate all rows and columns of Eu Fy and call these E2, F2, where there
exists a p.e. E3 of D such that F3 < E2. Now we take a p.e. C3 of C corresponding
to E3 of D. Then C3 is a p.e. of A and C3 =s F2.

Now we show the inequalities are t.e. We have in turn that E < F is a t.e., £, s F,
is, being a block form of it. So is E2 < F2. And since E3 s E2 is, E3 < E2 < F2 is. And
since C < D is, C3 < £3 is.

It remains to show that one step s.s.e.'s have this form. For SR = A, RS = B, factor
R as in proposition 3.2. So we may as before deal with two cases (i) a column of
A is split in two and the rows duplicated, (ii) for two column rows of A we add
the rows. If we take a block form in (ii) we may assume the dimension is unchanged,
so that A < B gives the required form.

Assume (i). Let A*, be split into v, w. By taking a larger block form we may
assume we have k copies of each column in B having k ones. Now we take a p.e.
C of A in which we put the fcth one in a column corresponding to the fcth copy of
that column in B. If columns are left over (for v, w) then put zero columns in A
We do this first for the columns and then duplicate all the rows correspondingly.
Then the p.e. C of A satisfies C < B.

By lemma 6.1 we have a t.e. This proves the theorem. •

COROLLARY 6.4. Any matrix over Z+ representing A is strong shift equivalent over
Z+ to a matrix less than or equal to a block form of B.
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Proof. Any p.e. can be done over Z+. •

Definition. A homomorphism from a graph with vertex and edge set (Vly E,) to
(V2, E2) consists of a map f{Vx)-* V2 such that if (v,w)e E^ then (f(v),f(w)) e E2.

Remark. In many cases, no subset of the vertices of B can yield a t.e.

THEOREM 6.5. Let A, B be two Boolean matrices. Let A be s.s.e. to B. Let Ro = R+ n 5
where S<^U is a subring containing 1 and some x e (0,1). Let C be a matrix over Ro

whose Boolean form is A. Then there exists a matrix D s.s.e. to C over Ro and having
a conjugated Boolean block form of B in which each block is entirely zero or entirely
non-zero.

Proof. Every s.s.e. can be factored in terms of transformations and transpose transfor-
mations. It suffices to duplicate the effect of these constructions: (1) for two equal
columns add the rows and delete the column, (2) split a column in two and add
the rows, since transformations can be factored in terms of permutations, (3) if a
row or a column is zero delete the row and the column. For (1) let columns v, w
have the same Boolean form. For sufficiently small S, the vectors v — Sw, w-Sv
have the same Boolean form. Take S e Ro with this property. Then we can solve

[u z]

where u, z have the same Boolean image as v, w. Then replace v, w by u, z and apply

8]Si
lj

to the rows. For (2), split the column for (non-zero entries use x,l—x) and duplicate
the rows. Step (3) carries over immediately. •

COROLLARY 6.6. Let A be strong shift equivalent to B over 93. Then there exist C, D
over Z+ such that C has Boolean image A, D has Boolean image a Boolean block
form of B where all blocks are entirely zero or entirely non-zero such that C is strong
shift equivalent to D over Z+.

Proof. Take Ro = <Q+, take multiples of C, D. •

PROPOSITION 6.7. Let A, B be Boolean matrices. If A is strong shift equivalent to B
then there exists a graph homomorphism from an iterated directed edge graph E"(A)
to B such that the inclusion of the image of A in B preserves the trace of every power
of each irreducible component.

Proof. For matrices over Z+, this is a restatement of the Curtis-Hedlund-Lyndon
theorem [3]. But by corollary 6.2, if A is s.s.e. over 93 to B then we can get a strong
shift equivalence over Z+ if we replace B by a block form Bt. But there exists an
epimorphism from the graph of Bx to that of B. Composing this with that from the
graph of A to the graph of B gives the required mapping. •

This result also follows directly from theorem 6.3.
Other invariants which do not seem to provide additional information are the

trace of Boolean tensor product A®- • -® A and symmetric tensor powers. (S.s.e.
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is preserved by all homomorphisms) and s.s.e. types of various Boolean
modules.

Definition. A Boolean module over a set S is a subspace W of a Boolean vector
space and a transformation / : W-» W such that / (0) = 0, / ( x + y) =/(x)+/(>>) for
all x, ye W and that whenever two polynomials in S are equal the two polynomials
in / are equal. Two modules Mu M2 are strong shift transforms (s.s.t.) if and only
if there exist/ : M1 -> M2 and g:M2^Mx such that for all z € Mu y e M2; / (g( }0) = xy,
g(/(z)) = xz. Modules linked by a sequence of s.s.t. are strong shift equivalent.

This concept turns out to be equivalent to shift (not strong shift) equivalence. In
the Z case modules can yield shift equivalence invariants of interest.

THEOREM 6.8. Let Fn denote the n-square Boolean matrix which is the complement
of the identity, ftJ = 0 if and only if i = j . For all n > 3, the matrices Fn are strong shift
equivalent.

Proof. For n > 4, we have Fn is strong shift equivalent to Fk if n < k < ("). The proof
is as follows. Let Fk be indexed on subsets X, Y of {1 ,2 , . . . , n) having exactly 2
elements. Let S be the k x n matrix such that SXJ = 1 if and only ifj&X. Let R be
the n x k complement of the transpose of S. Then SR has (X, Y)-entry 1 if and
only if for some j £X, je Y. This happens if and only if X ^ Y. So SR = Fk. And
RS has (i,j')-entry 1 if and only if for some set X in the family, ieX andjZX.
This is false if i =j. We can choose the family of sets to include all subsets {i, i+1}
modulo n. Then the sets containing i are {i, i + l} and {i, / —1} and j will not be in
both. So Fn is s.s.e. to F4 because for n > 4 , (£)> n. •

Example. Suppose we want to 4-colour the directed edge graph of the complete
graph K6. Let XU...,X6 be the 6 subsets {1, 2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}.
Colour an edge from vt to vj any colour j such that j e Xh j & Xj. Then any edge
from Vj to vk will have a different colour.

Definition. For a graph G = (£, V), let F(G) have vertices all pairs Sf, STa V such
that for all x e!?, y e ST; (x, y)e E such that if is maximal with respect to given ST
and 3~ is maximal with respect to given y. The edges of F(G) are all sequences
(Sfu 5",), (Sf2, ST2) such that S^ n J 2 ^ 0 . Let Fx{G) denote this construction where
maximality is omitted.

THEOREM 6.9. There exists a homomorphism E(H)-> G for any directed graph H if
and only if there exists a homomorphism H-» F(G).

Proof. Given f:H^F(G) (H-^F^G)) let e be any edge r^s where f(r) = tfx, 5 ,
and /(s) = Sf2, ST2. Then let g(e) be any vertex in 5 , n y2. Then if e! -> e in £(H),
g(e.) e y, so (g(e1), g(e)) e ^ x f . c f i

Conversely, let g be a homomorphism from E{H) to G. For a vertex x,eH,
let 5̂ 0, ST0 be the edges of H leading into and out of x,. Let ifx = g(^0),
^", = g(5"0). Then every vertex of gCŜ o) joins every vertex of g(3~o). Choose a
maximal family g(^ 0 )cy , g ( f o ) c j . Let f{xx) = &>, 5T. If (*,,}>)e£ where
f{y) = ?*, V2 then (x,,>')e^0 so then g (x , , ^ )e^ and g(x1 ( j)6^2 by
definition so ST n £f2 ¥= 0 . •
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THEOREM 6.10. For any non-zero matrix A with trace zero, there exists a continuous
map commuting with <S from the subshift given by A to the shift given by

0
0
1

1

0
0

r
i
0

There also exists a homomorphism E"{G{A))-+ G{B).
Proof. The second statement implies the first. Theorem 6.8 implies the existence of
a homomorphism E"{Kn) to E(K4) and therefore E"{G(A)) to K4 where Km

denotes the m point complete graph.
Next we show that there is a map E3(K4)-* K3. We will show K4c F\(K3). The

function F, is monotone on graphs under inclusion. In F(K3), we have the subset
of pairs Sf, ST; at = (12,3), a2 = (13, 2), a3 = (23,1), and a4 = (1,23). These give the
graph where au a2, a3 and K3 and a4-» au a2, a3 and a3-» a,.

In Fi(X3), we have the subset of pairs as = {a3,a4axa2), a6=(a4alt a2a3), a7 =
(a4a2, a^aj, and ag = (a4a3, axa2). Then a6, a7, a8 are a K3, a5-*a6, a-,, at, and a6,
a7-*as.

In F,(K3), we have a K4 given by a9 = (a6a7, a5as), a10 = (asa6, a7as), au = (a5a7,
a6a%), and ai2 = {asaB, a6a7).

Finally, we show there is a map E4{K3)^> C where C is the graph of a matrix
strong shift equivalent to B, using B.2 s B»3,

"o
1
1

1

0
0

1
1

0

F{C) has vertices bu b2, b3, b4 given by (12,3), (23,1), (1,23), (2,13). We have
&,-«-»fc,-+i, b3, bi^bi, b2. F\(C) has vertices, among others bs = (b3,b4b2bi), b7 =
(b4b2,b3bi), b6 = (b4b3,b2bi), bs = (b4b3bub2). Then bj-*b, if j>i, b-,^^ if i # 7 .
F]{C) has vertices, among others bi2 = {b7, bgb6bs), bn = (bgb7,b6b5), b i o =
(bgb6, b7bs), b9 = (bsb6b5,b7). Then bX2<*bl0*-*bu*±b9+*bl2 and bl2-»bu, bl0^>b9.

In Ft (C) , we have a X3, (b1 2bu, bl0b9), (b10b9, bl2bu), and (fc12fcio, bnb9).

a
7. Conclusion
S.s.e. of most Boolean matrices is decided by s.e. and traces of all powers of all
irreducible components. Two matrices are Boolean strong shift equivalent if and only
if some matrices over Z+ having block forms of them as images are. The question of
continuous mappings between subshifts commuting with S can be decided from
their Boolean images.

Dual edge graphs F( G) give a possible method of solving the problems involved.
A major question remains: for A, B over 93 primitive and Tr (A") = Tr (B") all n,

are A, B strong shift equivalent! If the answer is false it could give new s.s.e. invariants.

https://doi.org/10.1017/S0143385700003308 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003308


96 K. H. Kim and F. W. Roush 

THEOREM 7.1. Two Boolean matrices of size at most 3 x 3 are strong shift equivalent 
if and only if they are shift equivalent and the traces of all powers of corresponding 
main diagonal indecomposable blocks are equal. 
Proof. This follows from theorem 5.4 except for primitives of trace zero (none exist 
for 2 x 2). There are these conjugacy classes of trace zero primitives 

"0 1 l ] |"0 1 l ] |"0 1 l" 
0 0 1 , 0 0 1 , 1 0 1 . 
1 0 OJ [ 1 1 OJ [ 1 1 0 

The first two are strong shift equivalent by adding column 1 to column 2. We show 
the last two are. 

We take 9 x 9 matrices of 3 x 3 blocks and repeatedly factor a 3 x 3 matrix out of 
h row (column) block on the left (right) and multiply in into the column (row) 
block on the right (left), after initial conjugation. 

Let 
"0 1 l ] |"0 1 l ] [ l 1 l l |"l 1 l" 

A = 0 0 1 , B = 1 0 1 , J= 1 1 1 , X = 0 0 1 
1 1 oJ L1 1 0 J [ 1 1 l j [ l 1 0_ 

"l i i ] [ i i o] |"i i l ] To i i" 
Y = 0 1 0 , U= 1 1 0 , V= 1 1 0 , W= 0 1 1 

0 0 l j |_0 0 l j [ 1 1 l j |_1 1 0 

"I 1 0 ] |"i i i" 
K= 1 1 0 , A2 = 1 1 0 , B2 = J. 

1 1 l j [ 0 1 1 

These are conjugate: 
~ 0 B B~\ [ 0 A A' 

0 0 B , A 0 A . 
B B oJ [A A 0 

The first matrix is s.s.e. in turn to 

0 B2 B2~\ [ 0 / /"] [ 0 J J~\ [ 0 / J~ 

0 0 B , 0 0 B , 0 0 B , 0 0 / 
I B 0 J [/ B oJ [J B oJ [J B2 0 

"o / / ] [ 0 J J" 
0 0 1, 0 0 / , A. 
J J oJ | y / 0 

The second matrix is s.s.e. to (using V = VK, XA = A2, Y2 = Y, YX = X, XW = A2, 
UA= W, AX= V, AYV = KY'= KV = /), 

0 A2 A2~\ [ 0 XW XW~\ [ 0 W Wl |"0 UA W 
1 0 A , 1 0 A , X 0 A , X 0 A 
I A 0 j [ / A 0 J [X A 0 J [X A 0 
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0 U W~\ [ 0 U UA~\ [ 0 U U 
AX 0 A2 , AX 0 XA , AX 0 X 
x / o J [ x J o J [AX A 0 

"o u if] To K K~\ [ 0 K K~\ [ 0 KY K 

V O X , V O X , Y V O Y X , V 0 X 

V A oJ |_V A O J [ V A 0 J [V AY 0 
"0 J x l [ 0 J K 1 \ 0 J K 

V 0 X , A Y V 0 A Y X , J 0 V 

V AY O J V / 0 L V 1 0 

0 / / ] [ 0 J / ] [ 0 / f 
J 0 V , J 0 V , J 0 V 

KV K oJ [J K oJ [/ K 0 
" 0 / J ] [ O J J ] [ 0 J / 

J 0 K V , / 0 J , J 0 / . • 
/ / 0 J [j I oJ [/ / 0 
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