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Abstract

Some generalizations of Sperner's theorem and of the LYM inequality are given to the case when
Al A, are t families of subsets of {1,. . . , m) such that a set in one family does not properly
contain a set in another.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 A 20.

In this note we generalize Sperner's theorem [3] that "a Sperner family (or
clutter, or antichain) of subsets of the finite set {1, . . . , m] contains at most
(fm™2j) sets", to the case where ( £ , , . . . , &, are t families of subsets of
(1, . . . , m) such that a set in one family does not properly contain a set in
another. We also generalize the LYM inequality to the case and give another
interesting inequality.

THEOREM. Let t > 2, m > 2. Let <£,, . . . , (£, be t sets of subsets of {1, . . . , m)
such that

Ai G &t, Aj S <Sy, i =S=j => At does not properly contain Aj.

Let fly be the number of sets of cardinality i in &j and let y, = j8n + • • • + /?„.
Then

(i) 2 7 _ 0 Y , /C) < max(/, m + 1),
001(2,1 + • • • +|<2, |<max(2'V(( m<"/ 2 1)),

(iii) |fi , | + • • • +\&,\ < 2m + st - 2m([m^2])-'s, where s is the number of sub-

sets of {1, . . . , m) which occur in more than one &(.
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REMARKS. 1. All the bounds are best possible. If t > m + 1 then we can take
each &j to consist of all subsets of some given size i. If m + 1 > / we can have
<£, consisting of all subsets of {1, . . . , m), and l^ l = • • • = \&,\ = 0. Then

y, = (?)•
2. (ii) follows from (iii) since, by Sperner's theorem

However, we give another derivation of (ii) as well.

PROOF OF (i). Let

* = 2 Y —,_o '(71)
Then

i

(1) x = 2 2 (the number of maximal chains through a),
7=1flGfij

since the number of maximal chains through a set a of cardinality i is
/(/ - 1) • • • 1. (m - i)(m - i - 1) • • • 1 = m!/(7"). The number of maximal
chains is ml. Therefore

x < ml (the number of times a maximal chain can be counted in (1))

I t if the maximal chain meets only one a G 6E, u • • • U <2r>
m + 1 if the maximal chain meets more than one
a G <£, u • • • U &,, for then each such a must be in the same &,.

< w! max(/, m + 1).

(i) now follows by dividing by ml.

PROOF OF (ii). We use the following result of Kleitman and Greene [2] (which
we have specialized for our purpose). Let X be a real valued function defined on
the subsets of {1, . . . , m). Let S be the set of all maximal chains. If B is any set
of subsets of {1, . . . , m], then

To apply this result, let Â , = (|£j) X (the number of 62,'s containing b). Then

2 ^ 2 K
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If one of the a's in the chain C occurs in more than one (£, then \a < t and there
is only one element in C n (U $,) so we get

max f iTl) < 'I F —ax f iTl)

If each a in C occurs in at most one 6£, then

This proves (ii).

PROOF OF (iii). To prove (iii), first we prove the following lemma which is of
some interest in its own right.

LEMMA. Let T be a family of subsets of {1, . . . , m). Then the probability that a
given set is in T is not greater than the probability that the given set is in a
maximal chain which meets T. ("meets" here means that the maximal chain
contains a member of T.)

PROOF OF THE LEMMA. For 0 < / < m, let /, be the number of sets of T of
cardinality /. Let

a = max
Oo<m 0'

Then for 0 < / < m, tt < ^ ) so SJLQ ', < M S T U O = M2""- Therefore

m Zj 'i f

i -O , ''o

_ 1 /the number of maximal chains which meet \
~ m\\ a member of T of size /0. /

the number of maximal chains which meet T
the total number of maximal chains

The lemma now follows.

Now to return to the proof of (iii). Let S = {a: a lies in more than one of
&u ...,&,} and let T = {a: a e (&, u • • • U &,) \ S}. Then S is a Sperner
family, | 5 | = s and S and Tare incomparable.
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The probability that a set of size / is in a given chain is

Therefore, the probability that a given chain meets 5 is at least

1 s

Since S and T are incomparable, it follows from the lemma that the probabil-

ity that a given maximal chain meets S or T is at least

|S| , \T\
I m \ 2m'

and so it follows that

and therefore

2ms
\T\<

Now we have that

2ms
<2m + st -
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