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CLOSURES OF EQUIVALENCE CLASSES OF 
TRIVECTORS OF AN EIGHT-DIMENSIONAL 

COMPLEX VECTOR SPACE 

BY 

D R A G O M I R Z. DJOKOVIC 

ABSTRACT. G. B. Gurevic enumerated all the orbits of GL8(C) 
in A3(C8). There are precisely 23 orbits (including the trivial orbit). 
For each of these orbits, we determine its closure (for the ordinary 
topology). 

Introduction. We shall denote by V an eight-dimensional complex vector 
space with a basis ek, 1 < k < 8, and by G the general linear group of V. The 
elements of the third exterior power A3V will be called trivectors. The action 
of G in V extends canonically to A3V. Explicitly we have 

a - (x Ay Az) = a(x) Aa(y) Aa(z) 

for a e G and x, y, z e V. 
In 1935 it was shown by Gurevic [3] that there are precisely 23 orbits of G 

in A3V, and he has determined their representatives. We shall denote these 
orbits by roman numerals I-XXIII as in [4] and [1]. (In the case when the 
space V has dimension nine the classification problem was solved recently by 
Vinberg and Elasvili [6]). We shall say that two trivectors are equivalent if they 
belong to the same orbit of G. 

The closure of an orbit for the ordinary topology coincides with its Zariski 
closure. It is also well known that a closure of an orbit is a union of this orbit 
and some orbits of lower dimension, see e.g. [5, p. 60]. In this note we shall 
determine the closures of all 23 orbits of G in A3 V. We shall write i —> j if the 
/th orbit lies in the closure of the ith orbit. The negation of i —» j will be 
written as i-fr j . 

Statement of the result. In some arguments we shall need some results of 
our paper [1]. For that reason we shall use the same representatives for the 
orbits I-XXIII as in [1]. The orbit I is the trivial orbit consisting of the zero 
trivector only. The representatives of orbits are listed in Table I where we use 
the notation eijk for ei A e] A ek. We have also listed in this table the dimensions 
of these orbits, see [1]. 
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Table I 

Orbit 

I 
II 
III 
IV 
V 
VI 
VII 
VIII 
IX 
X 
XI 
XII 
XIII 
XIV 
XV 
XVI 
XVII 
XVIII 
XIX 
XX 
XXI 
XXII 
XXIII 

Representative 

0 
6 123 
g 123 + e i 4 5 
e 124 + e 135 + e 236 
e 123 _ t _ e 456 
e 123 + 6 145 + e l 6 7 
e 125 + e 136 + e 147 + e 234 
e 134 + e 256 + e l 2 7 
g125 + e 346 + 6 137 + 6 247 
e 123 "*" g 456 + e l 4 7 + e 257 + e 367 
e 1 2 7 + 6 1 3 8 + e146 + e 2 3 5 

6 128 + 6 137 + e 146 + e 236 + e 245 
g135 "*" 6 246 + e\Al + g 238 
e 138 + 6 147 + 6 156 + 6235 + e 246 
6 128 + g 137 + e l 4 6 + 6 247 + e 256 + 6345 
6 156 + 6 178 + e 234 
e 158 + e l 6 7 + e 234 + e 256 
6 148 + e 157 + e 236 + e 245 + 6347 
e 134 + 6 234 + 6 156 + e 278 
e 137 + e 237 + 6 256 + e 148 + e 345 
e 138 + e l 4 7 + e 245 + 6267 + e 356 
6 128 + e l 4 7 + e 236 + e 257 + 6 358 + e 456 
e 124 + 6 1 3 4 + 6 256 + e 378 + e 157 + e 468 

Dimension 

0 
16 
25 
31 
32 
28 
35 
38 
41 
42 
40 
43 
44 
46 
48 
41 
47 
50 
48 
52 
53 
55 
56 

THEOREM. The closures of the orbits of G in A3V are as indicated in the 
diagram on Fig. 1. (We have i —» / // and only if there is a downward path from i 
to j.) 

REMARK 1. The integer attached to an edge of this diagram is the difference 
between the dimensions of the two orbits represented by the end-points of the 
edge. 

REMARK 2. Given x e A3V there is a unique minimal subspace W of V such 
that x e A3W. We say that the integer dim W is the rank of x. It is clear that 
equivalent trivectors have the same rank and hence one can speak about the 
rank of an orbit. The possible values for the rank are 0, 3, 5, 6, 7 and 8. The 
five curves in the diagram separate the orbits of different ranks. The union of 
all orbits of rank <fc is closed. 

Proof of the theorem: First part. First we justify each edge in our diagram in 
Fig. 1. 

1) We have XXIII - • XXII, X-^IX, V-»IV, III-H, II and II-* I. Since 
XXIII is the open orbit of G, its closure is the whole space A3V. In particular 
this proves that XXIII -> XXII. The reasons in the other four cases are similar. 
For instance X—»IX is proved as follows. The intersection of the orbit X with 
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f XXIII 

Figure 1 

the subspace A3W, where W = (eu ... ,e7), is the open orbit of GL(W) in 
A3W. Since the representative of the orbit IX lies in A3W, and the open orbit 
of GL(W) in A3W is dense in A3W, we conclude that X - ^ I X . 

2) XXII -> XXL For s ^ 0 let ae e G be defined by specifying the images of 
basic vectors as follows: 

el —* seu e2 —» e4, e3 --> —e2> ^4 "~> e _ 1 c 3 , 

e5 -> - e c 6 , e6 -> e5, e7 -> e8, e8 -> e - 1 e 7 . 
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If x is the representative of XXII from Table I then we find that 

aE - x = e141 + el38 + e245 - ee468 + e267 + e356. 

When e —» 0 this trivector has as limit the representative of the orbit XXI, 
which proves our claim. 

3) We have XX -» XIX, XVIII -> XVII, XVII -> XVI, XV -> XIV, XV-^ 
X, XIV -> XIII, XII -> XI, XII -» IX, XI -* VIII, IX -> VIII, VIII -» V, VII -» 
VI, VII -> IV, VI -> III and IV -> III. In each of these 15 cases the proof is the 
same as the one given in 2); one has only to indicate how is ae defined. The 
definition of ae in each case is given in Table II, where we specify the images 
ae(ek) for all basic vectors ek except those for which ae(ek) = ek. 

4) XX -> XVIII. Let ae e G, e + 0, be defined by: 

ei ~~* ei + ee2> e2 """* ~~ ei, e3 "^ e3> c4-^ e4 — se7, 

e5 -> e4, e6 - » e5, e7 -> e6, e8 -> e5 + ee8. 

If JC is the representative of the orbit XX from Table I then 

ae - x = ee236 + (ei + £^2)A (e4~ eei)A (e5 + ees)~~ £145 + ^3 A (^4~ ££7)A £4 

= 6 (^236 + ^245 + ^157 + ^148 + ^34l) + ^\^251 + ^248 ~ «17s) " C ^ T S -

Since e~lae - x also belongs to the orbit XXI, and 

l imCe 'V - x) = e236 + e245 + e 157 + ^148 + ^347 
e—»-0 

is the representative of the orbit XVIII, our claim is proved. 
5) We have XIX -> XVII, XVI-»XI , XIII -> XII and VIII -* VII. The 

proofs in these four cases are similar to the proof in 4). We indicate the 

Table II 

XX—->XIX ex —» e~xe2, £2"* £~^ei> e3^ ee3> e
4^

 ee7> es ~^ ee5? ei~^ e
4 

XVIII—» XVII e2—> ee3, e3-^ e2, e4^> e5, e5 —> —e7, e6-^> - e _ 1 e 4 , e 7 ^ - e 6 

XVII —» XVI ^ 2 ^ 862> e 3 ~ * e _lg3> e 6~* e8> e 8 ^ ~e6 
XV —» XIV ex —> e _ 1e l 5 e2 -* e3, e3 ~^ £~~le4, e4 —> ^ 6 ' e5 ~~~* e2> e6 "^ -e5> e7 ~~* e2g7> e8 " 
XV -» X e2 -* e5, e4 -> - e 7 , e5 -* e6, e6 -» e4, e7 -^ -e2, e8 -» ee8 

XIV —»XIII gj —> ee l5 e2—> e^2' e 3 ^ 8 lg3> g 4 ^ e _ l e4» e5~*e8> e 8 ^ e5 
XII —» XI e3 -^ se4, e4 —» e3, e6 —> e8, e7 —> e _ 1 e 6 , e8 —> e7 

XII —> IX ex —> e3, e3 —> e4, e4 —> —c1, e6 —» e7, e7 —> e6, e8 —> ec8 

XI —» VIII e3 —» —e6, e6 —> - e 3 , e8 —> ee8 

IX —> VIII e2 —> ee3, e3 —» e2, e4 —> e5, e5 —» e _ 1e 4 

VIII -» V e2 -^ e4, e4 —> —e2, e7 —> ee7 

VII —» VI eY —> e_ 1e1 , e2 -> ec2, e3 —» — ee7, e4 —> ee4, e5 -^ e3, e7 —> e5 

VII—» IV e4 —> e6, e5 —> e4, e6 —>• e5, e7 —» se7 

VI->I I I e6->ee6 

IV -^ III 6o -* 64, e4 -> e^, e6 ^> ee6 
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Table III 

ae 

XIX—»XVII ex —» el + se2, ^2^ ~ei> e5~^* e5~~eei> ee~* e6 + e e8' ei~^ e5> ex^* e6 
XVI —» XI e2 —> e \ — ee5, e3 —> e2 + ee8, e4 —> —e3 + ee7, e5 —» ee4, e7 —> e2, e8 —> e3 

XIII —» XII ^ 2 ^ e2- ee4, e3-> ex + ee3, e 4 - ^ e2, e5 —> e7, e6—> e5, e 7 - ^ e6, e8 —> e6 — ee8 

VIII —> VII ev~> ex + ee4, e2—> —el5 e3—> e 2 - e e 6 , e 4~^ e3 + ee5» e5 ~^ e2> e6~* e3 

definition of ae in each case in Table III by specifying the images ae(ek) 
whenever they are different from ek. 

6) We have XXI -» XX, XVIII -> XV and XVII -> XIV. The proofs of these 
claims are based on some results of [1] which we shall now summarize. There is 
a Z-grading of the simple complex Lie algebra g of type E8 such that the 
homogeneous components gk of g can be identified with the following spaces 
(V* denotes the dual of V): 

g-3 - V*, g_2 - A2 V, g_, = A3 V*, g 0 = V® V* = End( V), 

gi = A3V, g2 = A2V*, g 3 =V. 

Each of these homogeneous components is a g0-module via the restriction of 
the adjoint representation of g. If x e A 3 V and x^O there exist heg0 and 
y e g_! such that 

[x, y] - h, [h, x] = 2x, [h, y] - -2y. 

In particular (x, h, y) is a simple subalgebra of g, isomorphic to sl2(C). The 
eigenvalues of ad h are integers and we denote by g(j; h) the eigenspace of 
ad h for the eigenvalue / e Z. We set 

gk(j;^) = gkng( / ;h ) . 

Now let 

'= Z go(/;h), m= £ g2(/;^). 

From the theory of s/2(C)-modules it follows that [x, /] = m. Note that x e 
g2(2; h) and so x G m. If L is the connected subgroup of G = GL(V) which has 
I as its Lie algebra then the condition [x, I] = m implies that the orbit L • x is 
Zariski open in m. Hence the closure of L • x is the whole space m. We infer 
that every orbit of G in A3V = gl which meets m is contained in the closure of 
the orbit G • x. 

We shall now give the details of the proof of XVIII -> XV. Let x be the 
representative of XVIII from Table I. Then we can choose, see [1], 

h = d i a g ( 2 , 1 , 1 , 1 , 0 , 0 , 0 , - 1 ) , 
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where we idenitfy the elements of g0 = End(V) with their matrices with respect 
to the basis ek, l < / c < 8 . Let us write 

V1 = (e1)9 V2 = (e2,e3,e4), V3 = (e5, e6, e7), V4 = <e8). 

With these notations we have 

gi(2;h) = V1®A2V3 + A 2 V 2 ®V3+V 1 ®V 2 ®V 4 , 

g 1 (3 ; J iHV 1 ®V 2 ®V 3 + A3V2, 

g 1 (4 ;h)=V 1 ®A 2 V 2 

and gx(j; h) = 0 for ; > 4 . (Each of the spaces on the right hand sides of these 
equalities is considered as a subspace of A3 V via the obvious canonical maps.) 
Since 

m = g1(2;h) + g1(3;h) + g1(4;h), 

each of the following six trivectors belongs to m: 

e156> ^127> ^138> ^236> ^245> ̂ 347-

Thus the element 

Y = ^127 + ^138 + ^156 ~ ^236 + ^245 + ^347 

is in m. Let a G G be defined by: 

ex -> el9 e2 -> e4i e3 -> e2, e4 - » e5, e5 - * e3, e6 - » e7, e7 -> e6, e8 - * e8. 

Then it is easy to verify that the trivector a • y is precisely the representative of 
the orbit XV in Table I. Thus the orbit XV meets m and so we have 
XVIII -> XV. 

Now let x be the representative of the orbit XVII. Then by [1] we can 
choose h as 

h = i d i a g ( 7 , 4 , l , l , l , l , - 2 , - 2 ) . 

Writing 

Vi = <6i>, V2 = (e2), V3 = (e3, e4, es, e6>, V4 = <e7, e8>, 

we have 

g 1 (2 ;h)=V 1 ®V3®V4+V 2 ®A 2 V 3 , 

g l ( 3 ; h)= V1®A2V3 + V x®V 2®V 4 , 

gi(4;h) = V 1®V 2®V 3 . 

Thus 

y = ^167 + ^138 + ^145 + ^234 ~ ^256 6 m, 
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and let aeG be defined by: 

e4 -> e5, e5 -> e6, e6 -» e4, ek-^ek (fc j= 4, 5, 6). 

Then a • y is precisely the representative of the orbit XIV, and so XVII—> 
XIV. 

Finally let x be the representative of the orbit XXI. By [1] we can choose h 
as 

h =4 diag(4, 4, 4 , 1 , 1 , 1 ,1,-2) . 

Writing 

Vx =(eu e2, e3>, V2 = <e4, e5, e6, e7), V3 = <e8), 

we find that 

g1(2;h) = A 2 V 1 ®V 3 +V 1 ®A 2 V 2 , 

g 1 (3 ;h ) -A 2 V 1 ®V 2 , 

g1(4;h) = A3V1. 
Thus 

y = e 138 + e238 + e 147 + e256 + e345 G m, 

and let aeG be defined by: 

e7 -^ e8, e8 -> e7, ek -^ ek (fc ^ 7, 8). 

Then a • y is the representative of the orbit XX, and so we have shown that 
XXI -» XX. 

The cases l)-6) cover all edges of our diagram in Fig. 1. 

Proof of the theorem: Second part. Recall that the closure of an orbit is a 
union of that orbit and certain orbits of smaller dimension. To conclude the 
proof of the theorem it remains to show that 

xix -k x, x-£xi, V-AVI, 

XVIII-> XIX, XV-A XVI, and VII ^ V . 

All of these claims but the first can be proven by using arithmetical 
invariants r, p l5 p2, ax, a2, cr3 of trivectors introduced by Gurevic [2, 3]. The 
first of these invariants is just the rank of the trivector. The remaining five 
invariants are also dimensions of certain subspaces of V attached canonically to 
a trivector. It is immediate from his definitions of these invariants that they are 
upper semi-continuous. Thus if we have a convergent sequence of trivectors 
(xk) and lim xk = y then for each of the above invariants, say r, we have 
r(jck)>r(y) for sufficiently large fc. Of course, the equivalent trivectors have 
the same invariants and the six invariants above distinguish all 23 orbits of G 
in A3V, see [3]. 
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Table IV 

Orbit 

XIX 
XVIII 
XVI 
XV 
XI 
X 
VII 
VI 
V 

Invariants 

(8, 8, 8; 8, 2, 2) 
(8, 8, 8; 7, 4,1) 
(8, 8, 8; 4, 1,1) 
(8, 8, 7; 5, 2,0) 
(8, 6, 3; 1,0,0) 
(7, 7, 7; 0,0,0) 
(7 ,4 ,1 ; 0,0,0) 
(7, 1,1; 0,0,0) 
(6, 6,0; 0,0,0) 

For each of the relevant orbits we list in Table IV the values of the six 
invariants by writing them as a sixtuple (r, p1? p2; <ru a2, <T3). This table is 
extracted from [3] but the reader should be warned that the designation of the 
23 orbits of G in [3] is different from our notations. 

The upper semi-continuity of the invariants and Table IV show that X - ^ 
XI, V-A VI, XVIII -f> XIX, XV ^ XVI and VII -/>\. 

In order to show that XIX -j> X we shall again rely on the results of our 
paper [1]. 

For any x e g l 5 x ^ 0 , let heg0 and y e g ^ be chosen so that [x,y] = 
K [h, x] = 2x and [h, y] = -2y hold. Then using the notation introduced in the 
previous section, we have 

dim(Ker(adx)ng_2)= £ [N^-N^U+ 2)1 
J so 

where we write Nk(j) = dim gk(j; h). 

When x = xx is the representative of the orbit XIX we find that the above 
dimension is 1. On the other hand, when x = x2 is the representative of the 
orbit X we find that N_2(j) = 0 for all / > 0 and so the above dimension is 0. 
Hence the restriction (ad x^lg_2 is singular, while (ad x2)|g_2 is non-singular. 
Clearly this implies that XIX ^ X . 

This completes the proof of the theorem. 
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