CLOSURES OF EQUIVALENCE CLASSES OF TRIVECTORS OF AN EIGHT-DIMENSIONAL COMPLEX VECTOR SPACE

DRAGOMIR \(\begin{gathered}BY
Ž. DJOKOVIĆ\end{gathered}\)

Abstract

G. B. Gurevič enumerated all the orbits of $G L_{8}(\mathbb{C})$ in $\Lambda^{3}\left(\mathbb{C}^{8}\right)$. There are precisely 23 orbits (including the trivial orbit). For each of these orbits, we determine its closure (for the ordinary topology).

Introduction. We shall denote by V an eight-dimensional complex vector space with a basis $e_{k}, 1 \leq k \leq 8$, and by G the general linear group of V. The elements of the third exterior power $\Lambda^{3} V$ will be called trivectors. The action of G in V extends canonically to $\Lambda^{3} V$. Explicitly we have

$$
a \cdot(x \wedge y \wedge z)=a(x) \wedge a(y) \wedge a(z)
$$

for $a \in G$ and $x, y, z \in V$.
In 1935 it was shown by Gurevič [3] that there are precisely 23 orbits of G in $\Lambda^{3} V$, and he has determined their representatives. We shall denote these orbits by roman numerals I-XXIII as in [4] and [1]. (In the case when the space V has dimension nine the classification problem was solved recently by Vinberg and Elašvili [6]). We shall say that two trivectors are equivalent if they belong to the same orbit of G.

The closure of an orbit for the ordinary topology coincides with its Zariski closure. It is also well known that a closure of an orbit is a union of this orbit and some orbits of lower dimension, see e.g. [5, p. 60]. In this note we shall determine the closures of all 23 orbits of G in $\Lambda^{3} V$. We shall write $i \rightarrow j$ if the j th orbit lies in the closure of the i th orbit. The negation of $i \rightarrow j$ will be written as $i \nrightarrow j$.

Statement of the result. In some arguments we shall need some results of our paper [1]. For that reason we shall use the same representatives for the orbits I-XXIII as in [1]. The orbit I is the trivial orbit consisting of the zero trivector only. The representatives of orbits are listed in Table I where we use the notation $e_{i j k}$ for $e_{i} \wedge e_{j} \wedge e_{k}$. We have also listed in this table the dimensions of these orbits, see [1].

[^0]Table I

Orbit	Representative	Dimension
I	0	0
II	e_{123}	16
III	$e_{123}+e_{145}$	25
IV	$e_{124}+e_{135}+e_{236}$	31
V	$e_{123}+e_{456}$	32
VI	$e_{123}+e_{145}+e_{167}$	28
VII	$e_{125}+e_{136}+e_{147}+e_{234}$	35
VIII	$e_{134}+e_{256}+e_{127}$	38
IX	$e_{125}+e_{346}+e_{137}+e_{247}$	41
X	$e_{123}+e_{456}+e_{147}+e_{257}+e_{367}$	42
XI	$e_{127}+e_{138}+e_{146}+e_{235}$	40
XII	$e_{128}+e_{137}+e_{146}+e_{236}+e_{245}$	43
XIII	$e_{135}+e_{246}+e_{147}+e_{238}$	44
XIV	$e_{138}+e_{147}+e_{156}+e_{235}+e_{246}$	46
XV	$e_{128}+e_{137}+e_{146}+e_{247}+e_{256}+e_{345}$	48
XVI	$e_{156}+e_{178}+e_{234}$	41
XVII	$e_{158}+e_{167}+e_{234}+e_{256}$	47
XVIII	$e_{148}+e_{157}+e_{236}+e_{245}+e_{347}$	50
XIX	$e_{134}+e_{234}+e_{156}+e_{278}$	48
XX	$e_{137}+e_{237}+e_{256}+e_{148}+e_{345}$	52
XXI	$e_{138}+e_{147}+e_{245}+e_{267}+e_{356}$	53
XXII	$e_{128}+e_{147}+e_{236}+e_{257}+e_{358}+e_{456}$	55
XXIII	$e_{124}+e_{134}+e_{256}+e_{378}+e_{157}+e_{468}$	56

Theorem. The closures of the orbits of G in $\Lambda^{3} V$ are as indicated in the diagram on Fig. 1. (We have $i \rightarrow j$ if and only if there is a downward path from i to j.)

Remark 1. The integer attached to an edge of this diagram is the difference between the dimensions of the two orbits represented by the end-points of the edge.

Remark 2. Given $x \in \Lambda^{3} V$ there is a unique minimal subspace W of V such that $x \in \Lambda^{3} W$. We say that the integer $\operatorname{dim} W$ is the rank of x. It is clear that equivalent trivectors have the same rank and hence one can speak about the rank of an orbit. The possible values for the rank are $0,3,5,6,7$ and 8 . The five curves in the diagram separate the orbits of different ranks. The union of all orbits of rank $\leq k$ is closed.

Proof of the theorem: First part. First we justify each edge in our diagram in Fig. 1.

1) We have XXIII \rightarrow XXII, X \rightarrow IX, V \rightarrow IV, III \rightarrow II and II \rightarrow I. Since XXIII is the open orbit of G, its closure is the whole space $\Lambda^{3} V$. In particular this proves that XXIII \rightarrow XXII. The reasons in the other four cases are similar. For instance $\mathrm{X} \rightarrow \mathrm{IX}$ is proved as follows. The intersection of the orbit X with

Figure 1
the subspace $\Lambda^{3} W$, where $W=\left\langle e_{1}, \ldots, e_{7}\right\rangle$, is the open orbit of $G L(W)$ in $\Lambda^{3} W$. Since the representative of the orbit IX lies in $\Lambda^{3} W$, and the open orbit of $G L(W)$ in $\Lambda^{3} W$ is dense in $\Lambda^{3} W$, we conclude that $X \rightarrow$ IX.
2) XXII \rightarrow XXI. For $\varepsilon \neq 0$ let $a_{\varepsilon} \in G$ be defined by specifying the images of basic vectors as follows:

$$
\begin{aligned}
& e_{1} \rightarrow \varepsilon e_{1}, e_{2} \rightarrow e_{4}, e_{3} \rightarrow-e_{2}, e_{4} \rightarrow \varepsilon^{-1} e_{3}, \\
& e_{5} \rightarrow-\varepsilon e_{6}, e_{6} \rightarrow e_{5}, e_{7} \rightarrow e_{8}, e_{8} \rightarrow \varepsilon^{-1} e_{7} .
\end{aligned}
$$

If x is the representative of XXII from Table I then we find that

$$
a_{\varepsilon} \cdot x=e_{147}+e_{138}+e_{245}-\varepsilon e_{468}+e_{267}+e_{356} .
$$

When $\varepsilon \rightarrow 0$ this trivector has as limit the representative of the orbit XXI, which proves our claim.
3) We have XX \rightarrow XIX, XVIII \rightarrow XVII, XVII \rightarrow XVI, XV \rightarrow XIV, XV \rightarrow $\mathrm{X}, \mathrm{XIV} \rightarrow$ XIII, XII \rightarrow XI, XII \rightarrow IX, XI \rightarrow VIII, IX \rightarrow VIII, VIII \rightarrow V, VII \rightarrow VI, VII \rightarrow IV, VI \rightarrow III and IV \rightarrow III. In each of these 15 cases the proof is the same as the one given in 2); one has only to indicate how is a_{ε} defined. The definition of a_{ε} in each case is given in Table II, where we specify the images $a_{\varepsilon}\left(e_{k}\right)$ for all basic vectors e_{k} except those for which $a_{\varepsilon}\left(e_{k}\right)=e_{k}$.
4) XX \rightarrow XVIII. Let $a_{\varepsilon} \in G, \varepsilon \neq 0$, be defined by:

$$
\begin{aligned}
& e_{1} \rightarrow e_{1}+\varepsilon e_{2}, e_{2} \rightarrow-e_{1}, e_{3} \rightarrow e_{3}, e_{4} \rightarrow e_{4}-\varepsilon e_{7}, \\
& e_{5} \rightarrow e_{4}, e_{6} \rightarrow e_{5}, e_{7} \rightarrow e_{6}, e_{8} \rightarrow e_{5}+\varepsilon e_{8}
\end{aligned}
$$

If x is the representative of the orbit XX from Table I then

$$
\begin{aligned}
a_{\varepsilon} \cdot x & =\varepsilon e_{236}+\left(e_{1}+\varepsilon e_{2}\right) \wedge\left(e_{4}-\varepsilon e_{7}\right) \wedge\left(e_{5}+\varepsilon e_{8}\right)-e_{145}+e_{3} \wedge\left(e_{4}-\varepsilon e_{7}\right) \wedge e_{4} \\
& =\varepsilon\left(e_{236}+e_{245}+e_{157}+e_{148}+e_{347}\right)+\varepsilon^{2}\left(e_{257}+e_{248}-e_{178}\right)-\varepsilon^{3} e_{278} .
\end{aligned}
$$

Since $\varepsilon^{-1} a_{\varepsilon} \cdot x$ also belongs to the orbit XXI, and

$$
\lim _{\varepsilon \rightarrow 0}\left(\varepsilon^{-1} a_{\varepsilon} \cdot x\right)=e_{236}+e_{245}+e_{157}+e_{148}+e_{347}
$$

is the representative of the orbit XVIII, our claim is proved.
5) We have XIX \rightarrow XVII, XVI \rightarrow XI, XIII \rightarrow XII and VIII \rightarrow VII. The proofs in these four cases are similar to the proof in 4). We indicate the

Table II

	a_{ε}
$\begin{aligned} & \text { XX } \rightarrow \text { XIX } \\ & \text { XVIII } \rightarrow \text { XVII } \\ & \text { XVII } \rightarrow \text { XVI } \\ & \text { XV } \rightarrow \text { XIV } \\ & \text { XV } \rightarrow \text { X } \\ & \text { XIV } \rightarrow \text { XIII } \\ & \text { XII } \rightarrow \text { XI } \\ & \text { XII } \rightarrow \text { IX } \\ & \text { XI } \rightarrow \text { VIII } \\ & \text { IX } \rightarrow \text { VIII } \\ & \text { VIII } \rightarrow \text { V } \\ & \text { VII } \rightarrow \text { VI } \\ & \text { VII } \rightarrow \text { IV } \\ & \text { VI } \rightarrow \text { III } \\ & \text { IV } \rightarrow \text { III } \end{aligned}$	$\begin{aligned} & e_{1} \rightarrow \varepsilon^{-1} e_{2}, e_{2} \rightarrow \varepsilon^{-1} e_{1}, e_{3} \rightarrow \varepsilon e_{3}, e_{4} \rightarrow \varepsilon e_{7}, e_{5} \rightarrow \varepsilon e_{5}, e_{7} \rightarrow e_{4} \\ & e_{2} \rightarrow \varepsilon e_{3}, e_{3} \rightarrow e_{2}, e_{4} \rightarrow e_{5}, e_{5} \rightarrow-e_{7}, e_{6} \rightarrow-\varepsilon^{-1} e_{4}, e_{7} \rightarrow e_{6} \\ & e_{2} \rightarrow \varepsilon e_{2}, e_{3} \rightarrow \varepsilon^{-1} e_{3}, e_{6} \rightarrow e_{8}, e_{8} \rightarrow-e_{6} \\ & e_{1} \rightarrow \varepsilon^{-1} e_{1}, e_{2} \rightarrow e_{3}, e_{3} \rightarrow \varepsilon^{-1} e_{4}, e_{4} \rightarrow \varepsilon e_{6}, e_{5} \rightarrow e_{2}, e_{6} \rightarrow-e_{5}, e_{7} \rightarrow \varepsilon^{2} e_{7}, e_{8} \rightarrow \varepsilon e_{8} \\ & e_{2} \rightarrow e_{5}, e_{4} \rightarrow-e_{7}, e_{5} \rightarrow e_{6}, e_{6} \rightarrow e_{4}, e_{7} \rightarrow-e_{2}, e_{8} \rightarrow \varepsilon e_{8} \\ & e_{1} \rightarrow \varepsilon e_{1}, e_{2} \rightarrow \varepsilon e_{2}, e_{3} \rightarrow \varepsilon \varepsilon^{-1} e_{3}, e_{4} \rightarrow \varepsilon^{-1} e_{4}, e_{5} \rightarrow e_{8}, e_{8} \rightarrow e_{5} \\ & e_{3} \rightarrow \varepsilon e_{4}, e_{4} \rightarrow e_{3}, e_{6} \rightarrow e_{8}, e_{7} \rightarrow \varepsilon^{-1} e_{6}, e_{8} \rightarrow e_{7} \\ & e_{1} \rightarrow e_{3}, e_{3} \rightarrow e_{4}, e_{4} \rightarrow-e_{1}, e_{6} \rightarrow e_{7}, e_{7} \rightarrow e_{6}, e_{8} \rightarrow \varepsilon e_{8} \\ & e_{3} \rightarrow-e_{6}, e_{6} \rightarrow-e_{3}, e_{8} \rightarrow \varepsilon e_{8} \\ & e_{2} \rightarrow \varepsilon e_{3}, e_{3} \rightarrow e_{2}, e_{4} \rightarrow e_{5}, e_{5} \rightarrow \varepsilon^{-1} e_{4} \\ & e_{2} \rightarrow e_{4}, e_{4} \rightarrow-e_{2}, e_{7} \rightarrow \varepsilon e_{7} \\ & e_{1} \rightarrow \varepsilon \varepsilon^{-1} e_{1}, e_{2} \rightarrow \varepsilon e_{2}, e_{3} \rightarrow-\varepsilon e_{7}, e_{4} \rightarrow \varepsilon e_{4}, e_{5} \rightarrow e_{3}, e_{7} \rightarrow e_{5} \\ & e_{4} \rightarrow e_{6}, e_{5} \rightarrow e_{4}, e_{6} \rightarrow e_{5}, e_{7} \rightarrow \varepsilon e_{7} \\ & e_{6} \rightarrow \varepsilon e_{6} \\ & e_{3} \rightarrow e_{4}, e_{4} \rightarrow e_{3}, e_{6} \rightarrow \varepsilon e_{6} \end{aligned}$

Table III

	a_{ε}
XIX \rightarrow XVII	$e_{1} \rightarrow e_{1}+\varepsilon e_{2}, e_{2} \rightarrow-e_{1}, e_{5} \rightarrow e_{5}-\varepsilon e_{7}, e_{6} \rightarrow e_{6}+\varepsilon e_{8}, e_{7} \rightarrow e_{5}, e_{8} \rightarrow e_{6}$
XVI \rightarrow XI	$e_{2} \rightarrow e_{1}-\varepsilon e_{5}, e_{3} \rightarrow e_{2}+\varepsilon e_{8}, e_{4} \rightarrow-e_{3}+\varepsilon e_{7}, e_{5} \rightarrow \varepsilon e_{4}, e_{7} \rightarrow e_{2}, e_{8} \rightarrow e_{3}$
XIII \rightarrow XII	$e_{2} \rightarrow e_{2}-\varepsilon e_{4}, e_{3} \rightarrow e_{1}+\varepsilon e_{3}, e_{4} \rightarrow e_{2}, e_{5} \rightarrow e_{7}, e_{6} \rightarrow e_{5}, e_{7} \rightarrow e_{6}, e_{8} \rightarrow e_{6}-\varepsilon e_{8}$
VIII \rightarrow VII	$e_{1} \rightarrow e_{1}+\varepsilon e_{4}, e_{2} \rightarrow-e_{1}, e_{3} \rightarrow e_{2}-\varepsilon e_{6}, e_{4} \rightarrow e_{3}+\varepsilon e_{5}, e_{5} \rightarrow e_{2}, e_{6} \rightarrow e_{3}$

definition of a_{ε} in each case in Table III by specifying the images $a_{\varepsilon}\left(e_{k}\right)$ whenever they are different from e_{k}.
6) We have XXI \rightarrow XX, XVIII \rightarrow XV and XVII \rightarrow XIV. The proofs of these claims are based on some results of [1] which we shall now summarize. There is a Z-grading of the simple complex Lie algebra g of type E_{8} such that the homogeneous components g_{k} of g can be identified with the following spaces (V^{*} denotes the dual of V):

$$
\begin{aligned}
& g_{-3}=V^{*}, \quad g_{-2}=\Lambda^{2} V, \quad g_{-1}=\Lambda^{3} V^{*}, \quad g_{0}=V \otimes V^{*}=\operatorname{End}(V), \\
& g_{1}=\Lambda^{3} V, \quad g_{2}=\Lambda^{2} V^{*}, \quad g_{3}=V .
\end{aligned}
$$

Each of these homogeneous components is a g_{0}-module via the restriction of the adjoint representation of g. If $x \in \Lambda^{3} V$ and $x \neq 0$ there exist $h \in g_{0}$ and $y \in g_{-1}$ such that

$$
[x, y]=h, \quad[h, x]=2 x, \quad[h, y]=-2 y .
$$

In particular $\langle x, h, y\rangle$ is a simple subalgebra of g, isomorphic to $s l_{2}(C)$. The eigenvalues of ad h are integers and we denote by $g(j ; h)$ the eigenspace of ad h for the eigenvalue $j \in Z$. We set

$$
g_{k}(j ; h)=g_{k} \cap g(j ; h) .
$$

Now let

$$
l=\sum_{j \geq 0} g_{0}(j ; h), \quad m=\sum_{i \geq 2} g_{2}(j ; h) .
$$

From the theory of $s l_{2}(C)$-modules it follows that $[x, l]=m$. Note that $x \in$ $g_{2}(2 ; h)$ and so $x \in m$. If L is the connected subgroup of $G=G L(V)$ which has l as its Lie algebra then the condition $[x, l]=m$ implies that the orbit $L \cdot x$ is Zariski open in m. Hence the closure of $L \cdot x$ is the whole space m. We infer that every orbit of G in $\Lambda^{3} V=g_{1}$ which meets m is contained in the closure of the orbit $G \cdot x$.

We shall now give the details of the proof of XVIII \rightarrow XV. Let x be the representative of XVIII from Table I. Then we can choose, see [1],

$$
h=\operatorname{diag}(2,1,1,1,0,0,0,-1),
$$

where we idenitfy the elements of $g_{0}=\operatorname{End}(V)$ with their matrices with respect to the basis $e_{k}, 1 \leq k \leq 8$. Let us write

$$
V_{1}=\left\langle e_{1}\right\rangle, \quad V_{2}=\left\langle e_{2}, e_{3}, e_{4}\right\rangle, \quad V_{3}=\left\langle e_{5}, e_{6}, e_{7}\right\rangle, \quad V_{4}=\left\langle e_{8}\right\rangle .
$$

With these notations we have

$$
\begin{aligned}
& \mathrm{g}_{1}(2 ; h)=V_{1} \otimes \Lambda^{2} V_{3}+\Lambda^{2} V_{2} \otimes V_{3}+V_{1} \otimes V_{2} \otimes V_{4}, \\
& \mathrm{~g}_{1}(3 ; h)=V_{1} \otimes V_{2} \otimes V_{3}+\Lambda^{3} V_{2}, \\
& \mathrm{~g}_{1}(4 ; h)=V_{1} \otimes \Lambda^{2} V_{2}
\end{aligned}
$$

and $g_{1}(j ; h)=0$ for $j>4$. (Each of the spaces on the right hand sides of these equalities is considered as a subspace of $\Lambda^{3} V$ via the obvious canonical maps.) Since

$$
m=g_{1}(2 ; h)+g_{1}(3 ; h)+g_{1}(4 ; h),
$$

each of the following six trivectors belongs to m :

$$
e_{156}, e_{127}, e_{138}, e_{236}, e_{245}, e_{347}
$$

Thus the element

$$
y=e_{127}+e_{138}+e_{156}-e_{236}+e_{245}+e_{347}
$$

is in m. Let $a \in G$ be defined by:

$$
e_{1} \rightarrow e_{1}, e_{2} \rightarrow e_{4}, e_{3} \rightarrow e_{2}, e_{4} \rightarrow e_{5}, e_{5} \rightarrow e_{3}, e_{6} \rightarrow e_{7}, e_{7} \rightarrow e_{6}, e_{8} \rightarrow e_{8}
$$

Then it is easy to verify that the trivector $a \cdot y$ is precisely the representative of the orbit XV in Table I. Thus the orbit XV meets m and so we have XVIII \rightarrow XV.

Now let x be the representative of the orbit XVII. Then by [1] we can choose h as

$$
h=\frac{1}{3} \operatorname{diag}(7,4,1,1,1,1,-2,-2) .
$$

Writing

$$
V_{1}=\left\langle e_{1}\right\rangle, \quad V_{2}=\left\langle e_{2}\right\rangle, \quad V_{3}=\left\langle e_{3}, e_{4}, e_{5}, e_{6}\right\rangle, \quad V_{4}=\left\langle e_{7}, e_{8}\right\rangle,
$$

we have

$$
\begin{aligned}
& \mathrm{g}_{1}(2 ; h)=V_{1} \otimes V_{3} \otimes V_{4}+V_{2} \otimes \Lambda^{2} V_{3}, \\
& \mathrm{~g}_{1}(3 ; h)=V_{1} \otimes \Lambda^{2} V_{3}+V_{1} \otimes V_{2} \otimes V_{4}, \\
& g_{1}(4 ; h)=V_{1} \otimes V_{2} \otimes V_{3} .
\end{aligned}
$$

Thus

$$
y=e_{167}+e_{138}+e_{145}+e_{234}-e_{256} \in m,
$$

and let $a \in G$ be defined by:

$$
e_{4} \rightarrow e_{5}, e_{5} \rightarrow e_{6}, e_{6} \rightarrow e_{4}, e_{k} \rightarrow e_{k} \quad(k \neq 4,5,6)
$$

Then $a \cdot y$ is precisely the representative of the orbit XIV, and so XVII \rightarrow XIV.

Finally let x be the representative of the orbit XXI. By [1] we can choose h as

$$
h=\frac{1}{3} \operatorname{diag}(4,4,4,1,1,1,1,-2) .
$$

Writing

$$
V_{1}=\left\langle e_{1}, e_{2}, e_{3}\right\rangle, \quad V_{2}=\left\langle e_{4}, e_{5}, e_{6}, e_{7}\right\rangle, \quad V_{3}=\left\langle e_{8}\right\rangle,
$$

we find that

$$
\begin{aligned}
& g_{1}(2 ; h)=\Lambda^{2} V_{1} \otimes V_{3}+V_{1} \otimes \Lambda^{2} V_{2}, \\
& g_{1}(3 ; h)=\Lambda^{2} V_{1} \otimes V_{2}, \\
& g_{1}(4 ; h)=\Lambda^{3} V_{1} .
\end{aligned}
$$

Thus

$$
y=e_{138}+e_{238}+e_{147}+e_{256}+e_{345} \in m,
$$

and let $a \in G$ be defined by:

$$
e_{7} \rightarrow e_{8}, e_{8} \rightarrow e_{7}, e_{k} \rightarrow e_{k} \quad(k \neq 7,8) .
$$

Then $a \cdot y$ is the representative of the orbit XX, and so we have shown that XXI \rightarrow XX.

The cases 1)-6) cover all edges of our diagram in Fig. 1.
Proof of the theorem: Second part. Recall that the closure of an orbit is a union of that orbit and certain orbits of smaller dimension. To conclude the proof of the theorem it remains to show that

$$
\begin{array}{cc}
\mathrm{XIX} \nrightarrow \mathrm{X}, & \mathrm{X} \nrightarrow \mathrm{XI}, \quad \mathrm{~V} \nrightarrow \mathrm{VI}, \\
\mathrm{XVIII} \nrightarrow \mathrm{XIX}, & \mathrm{XV} \nrightarrow \mathrm{XVI}, \quad \text { and } \quad \mathrm{VII} \nrightarrow \mathrm{~V} .
\end{array}
$$

All of these claims but the first can be proven by using arithmetical invariants $r, \rho_{1}, \rho_{2}, \sigma_{1}, \sigma_{2}, \sigma_{3}$ of trivectors introduced by Gurevič [2,3]. The first of these invariants is just the rank of the trivector. The remaining five invariants are also dimensions of certain subspaces of V attached canonically to a trivector. It is immediate from his definitions of these invariants that they are upper semi-continuous. Thus if we have a convergent sequence of trivectors $\left(x_{k}\right)$ and $\lim x_{k}=y$ then for each of the above invariants, say τ, we have $\tau\left(x_{k}\right) \geq \tau(y)$ for sufficiently large k. Of course, the equivalent trivectors have the same invariants and the six invariants above distinguish all 23 orbits of G in $\Lambda^{3} V$, see [3].

Table IV

Orbit	Invariants
XIX	$(8,8,8 ; 8,2,2)$
XVIII	$(8,8,8 ; 7,4,1)$
XVI	$(8,8,8 ; 4,1,1)$
XV	$(8,8,7 ; 5,2,0)$
XI	$(8,6,3 ; 1,0,0)$
X	$(7,7,7 ; 0,0,0)$
VII	$(7,4,1 ; 0,0,0)$
VI	$(7,1,1 ; 0,0,0)$
V	$(6,6,0 ; 0,0,0)$

For each of the relevant orbits we list in Table IV the values of the six invariants by writing them as a sixtuple ($r, \rho_{1}, \rho_{2} ; \sigma_{1}, \sigma_{2}, \sigma_{3}$). This table is extracted from [3] but the reader should be warned that the designation of the 23 orbits of G in [3] is different from our notations.

The upper semi-continuity of the invariants and Table IV show that $\mathrm{X} \rightarrow$ $\mathrm{XI}, \mathrm{V} \nrightarrow \mathrm{VI}, \mathrm{XVIII} \nrightarrow \mathrm{XIX}, \mathrm{XV} \nrightarrow \mathrm{XVI}$ and $\mathrm{VII} \nrightarrow \mathrm{V}$.

In order to show that XIX $\nrightarrow \mathrm{X}$ we shall again rely on the results of our paper [1].

For any $x \in g_{1}, x \neq 0$, let $h \in g_{0}$ and $y \in g_{-1}$ be chosen so that $[x, y]=$ $h,[h, x]=2 x$ and $[h, y]=-2 y$ hold. Then using the notation introduced in the previous section, we have

$$
\operatorname{dim}\left(\operatorname{Ker}(\operatorname{ad} x) \cap g_{-2}\right)=\sum_{j \geq 0}\left[N_{-2}(j)-N_{-1}(j+2)\right]
$$

where we write $N_{k}(j)=\operatorname{dim} g_{k}(j ; h)$.
When $x=x_{1}$ is the representative of the orbit XIX we find that the above dimension is 1 . On the other hand, when $x=x_{2}$ is the representative of the orbit X we find that $N_{-2}(j)=0$ for all $j \geq 0$ and so the above dimension is 0 . Hence the restriction $\left.\left(\operatorname{ad} x_{1}\right)\right|_{g-2}$ is singular, while $\left.\left(\operatorname{ad} x_{2}\right)\right|_{g-2}$ is non-singular. Clearly this implies that XIX $\nrightarrow \mathrm{X}$.

This completes the proof of the theorem.

References

[^1]5. J. E. Humphries, Linear algebraic groups, Springer-Verlag, New York, 1975.
6. E. B. Vinberg and A. G. Elašvili, Classification of trivectors of a nine-dimensional space, Trudy Sem. Vekt. Tenz. Analizu, M.G.U. No. XVIII (1978), 197-233.

Rutgers University,
New Brunswick, N.J. 08903
and
University of Waterloo,
Waterloo, Ontario, N2L 3G1

[^0]: Received by the editors June 27, 1981.
 This work was supported in part by NSERC Grant A-5285.
 1980 AMS Subject Classification Numbers: Primary 15A75; Secondary 20G20.
 (C) Canadian Mathematical Society, 1983.

[^1]: 1. D. Ž. Kjoković, Classification of trivectors of an eight-dimensional real vector space to appear in Linear and Multilinear Algebra.
 2. G. B. Gurevič, Sur les trivecteurs dans l'éspace à sept dimensions, Dokl. Akad. Nauk SSSR, III (1934), 567-569.
 3. G. B. Gurevič, Classifications des trivecteurs ayant le rang huit, Dokl. Akad. Nauk SSSR, II (1935), 355-356.
 4. G. B. Gurevič, Foundations of the theory of algebraic invariants, Noordhoff, Groningen 1964.
