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A NOTE ON THE DISTRIBUTION FUNCTION 
OF ADDITIVE ARITHMETICAL FUNCTIONS 

IN SHORT INTERVALS 

BY 

GUTTI JOGESH BABU AND PAUL ERDÔS 

ABSTRACT. Le t / be an additive arithmetical function having a distri­
bution F. For any sequence 1 ̂  b{n) ^ n, b(n) —+ oo, let 

Qn(b,f)(x) = card{« £ m ^n + b(n) :f(m) ^ x}/b(n). 

In this note, we determine the slowest growing function b so that Qn{b, f) 
tends weakly to F, for various/. 

Introduction. Let / be an additive function. The well known theorem of Erdos 
and Wintner gives the necessary and sufficient conditions for the existence of the 
distribution function off; that is, there exists a distribution function F such that the 
density of integer m satisfying f(m) < x exists and equals F(x). These conditions are 
that the two series 

p F P ^ 

converge, where/'(p) = f(p) if \f(p)\ = 1 and/'(/?) = 1 otherwise. Here and in 
what follows p stands for prime numbers. 

For any sequence 1 ^ b(n) ^ n, of integers, let 

Qn(b, f)(x) = (b(n)yl card{n <m^n + b(n) :f(m) < x}. 

Babu (1981) obtains conditions for the existence of mean values of complex-valued 
multiplicative functions in short intervals, when b(n) = na; where 0 < a < 1. Ap­
plying these results to g(ri) = exp(itf(«)), / additive, it is not difficult to obtain 
results on the existence of limits for Qn(b,f)(x), when b(n) = na. Babu (1982) 
showed the existence of distribution in short interval for LJ, when n ^ b(n) ^ 
exp(a(n)logn/(\oglogn)1/2) with 1 ^ a(n) ^ (loglogw)1/2 and a(n) —^ oo. K.-H. 
Indlekofer (1987) generalizes this result to strongly additive functions belonging to 
the Kubilius class H. In a recent article Hildebrand (1987) proves short interval version 
of Halàsz's Theorem (see Halàsz (1968)) on mean-values for multiplicative functions. 
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There he assumes that the interval length b(n) satisfies log b(n)/ log n —•> 1 as n —» oo. 
Without any further restriction on / , this result cannot be improved. In this note we 
investigate the following problem: To determine as accurately as possible the slowest 
growing function b so that Qn(b,f) converges weakly to F. For related work see Babu 
(1981 and 1982) and Erdos (1935). 

The proofs of Theorems 1-3 below, are easy and given in the next section. Through­
out the paper we assume that the two series in (1) converge. 

THEOREM 1. Iff is bounded and if b(n) —> oo, then Qn(b,f) converges weakly to 
F. 

If / is not bounded then this result no longer holds. To simplify the presentation 
for unbounded / , the remaining results are stated for strongly additive functions f 
satisfying 0 ^f(p) ^ 1. Let 

(1) AOO = 53/Q>) and fy(m)= $] / ( />) . 
p=y p\™,p=y 

It follows easily from the Chinese remainder theorem that unless A(log n)/b(n) —• 0, 
the sequence Qn(b,f) cannot converge weakly to F. On the other hand, by using 
elementary methods we could prove the following. 

THEOREM 2. If A (log n)/b(n) —> 0, then Qn(b,f\ogn) converges weakly to F'. 

We shall show that if f(p) = 0(pe~{) for every e > 0 and further satisfies some 
very mild regularity conditions, then Qn(b, f) converges weakly to F. The conditions 
are given in the next theorem. 

THEOREM 3. Suppose for some dn ^ 1, the sequence {A((\og2n)d")/A(\ogn)} is 
bounded and 

(2) (gn log In) j loglog n —• 0 as n —•» oo, 

where gn — max{/(p) : (\ogn)dn ^ p ^ In}. If A(\ogn)/b(n) —> 0, then Qn(b,f) 
converges weakly to F. 

Thus in this case we have a very satisfactory solution. We shall illustrate Theorem 
3, with some examples. 

EXAMPLE 1. If f(p) = p~\ then A(x) — loglogx + 0(1). The conditions of 
Theorem 3 hold with dn = 1. So Qn(b,f) converges weakly to F if and only if 
(logloglog n)/b(n) —> 0. This result is essentially contained in Erdôs (1935). 

EXAMPLE 2. Iff(p) = (\ogp)/p, then A(x) = logx+0(l). If we take dn = 2'm The­
orem 3, we get that Qn(b, f) converges weakly to F if and only if (loglog n)/b(n) —> 0. 

EXAMPLE 3. If f(p) = p~{ exp((log/?)"), 0 < a < 1/2, then 

(\ogxyaexp((\ogx)a) « A W « (log*r*exp((logxr). 
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The assumptions of Theorem 3 hold with 

dn = (1 +(\oglognra)l/a ^ 1 +a-l(\og\ogn)-a. 

If follows that Qn(b, f) converges weakly to F if and only if A(log ri)/b(ri) —• 0. 
We could not get such a complete answer, when/(/?) ^ p~a for some a > 0. For 

example if f(p) = p~a, 0 < a < 1, then (logft)1-a/£0z)loglogfl —̂  0 is necessary 
for (2,2(&, / ) to converge weakly to F, but we could prove the weak convergence only 
if (logn)~l+l/a/b(n)(log\ogn)l/a —• 0. We expect that the lower bound is the correct 
one. If f(p) = (log/?)"1, then (log n)/b(n)(loglog n)2 —» 0 is necessary. But we could 
prove the convergence of Qn(b, f) to F only when yflog nj log b(n) —> 0. 

Consider now/(/?) = 1, that is f(n) — uj{n). It was shown in Babu (1982) that 
if b(n) = na(n)(l0ël°znr]/\a(n) -» oo, then the Erdôs-Kac Theorem holds. But it is 
very likely that much more is true. The Chinese remainder theorem only gives that 
(log n)/b(n)(log\og n)2 must tend to zero, but the fact in this case may very well be 
between these extremes. Perhaps it will not be very easy to improve these conditions. 

PROOFS OF THE THEOREMS 

Proof of Theorem 1. Without loss of generality we can assume that \f(m)\ ^ 1. 
Clearly, sup 52 l/C/7^^)! = 2, where the supremum is taken over all sequences 
{m(p)} of non-negative integers. 

Suppose Ylp>k l/(Pm(/7))| ~h 0 uniformly for all sequences {m(p)} of non-negative 
integers. Then there exists e > 0 such that for all integers k ^ 1, Ylp>k l/(Pm(p '^)| > e 

for some sequence {m(p,k)} of non-negative integers. 
It follows that there exist 1 = n$ < n\ < ni < . . . , integers such that, for / ̂  1 

£ \f(pm(p'n'})\ > e. 
rii-.\<p1kni 

So if r = [2/e] + 2, m(p) — m{p, ni) for nt-\ <p 1^ n^ \ Û i fk r and m(p) = 1 for 
p > nr, then 

^ 1 / ( ^ ) 1 > (2 +[2/e])e^2 + e, 
P 

which is impossible. So ^2p>k \f(pm<<p))\ —> 0 uniformly for all sequences {m(p)} of 
non-negative integers. As a consequence we have 

(3) f(m)-fk(m)-^0 

uniformly in m, as k —> oo. 
It is well known that there exists a sequence {Xp } of independent random variables 

(see Babu (1978)) such that ^Xp converges a.e. and both/ and ^Xp have the same 
distribution. Further, if b(n) —• oo, then for all integers k ^ 1, Qn(b,fk) converges 
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weakly to the distribution of Ylp^k^p- ^ n e r e s u l t n o w follows from (3) and the fact 
that J2%P converges a.e. 

Proof of Theorem 2. In view of the proof of Theorem 1, it is enough to show that 
for every <5 > 0, that 

(4) lim suplim sup6(b(n))~l card{n <mf^n + bin) :f\0on(m) —fkim) > <$} = 0. 
k—KX> n—KX> 

The expression in (4) is not more than 

b(n)~~l ] P (f\ogn(m)-fk(m)) 
n<mûn+b(n) 

n + b{n) 
è(b(n)rl Y, / ^ ) ( 

k<p^\ogn 

z—' p b{n) *-^ 
k<p^\ogn pûlogn 

^J2f—+M\ogn)ibin)rl 

P>k y 

—» > as n - > ° ° 

—> 0 as /: —• oo. 

This completes the proof. 

Proof of Theorem 3. By (2), 

0 ^ fim) -f{{iogn)dn)im) ^ (g„ log In)I loglog « 

tends to zero uniformly in m ^ 2M, as n —• oo. As in the proof of Theorem 2, we 
have for any 8 > 0, 

&(«) 
card{« <m^n + bin) : f(\0%nyn)im) -f\ogn(m) > 6} 

< 
fip) t A((logn)*) 

P ^ " bin) 
p>\ogn 

as n —» oo. The result now follows from Theorem 2. 

REFERENCES 

1. G. J. Babu, Probabilistic methods in the theory of arithmetic functions, MacMillan Lectures in 
Mathematics, Series 2, Macmillan Company, New Delhi, 1978. 

2. , On the mean values and distributions of arithmetic functions, Acta Arithmetica 40 (1981), 
63-77. 

https://doi.org/10.4153/CMB-1989-063-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1989-063-5


1989] ADDITIVE ARITHMETICAL FUNCTIONS 445 

3. , Distribution of the values of UJ in short intervals, Acta Math. Acad. Sci. Hungar. 40 (1982), 
135-137. 

4. P. Erdôs, Note on consecutive abundant numbers, J. London Math. Soc, 10 (1935) 128-131. 
5. G. Halâsz, Ûber die Mittelwerte Multiplicativer Zahlentheoretischer Funktionen, Acta Math. Acad. 

Sci. Hungar., 19 (1968) 365^03. 
6. A. Hildebrand, Multiplicative functions in short intervals, Can. J. Math., 39 (1987), 646-672. 
7. K.-H. Indlekofer, Limiting distributions of additive functions in short intervals, (1987) Preprint. 

Department of Statistics, 219 Pond Laboratory 

Pennsylvania State University 

University Park, PA 16802, USA 

Mathematical Institute of the Hungarian Academy of Sciences 

Reàltanoda U 13-15 

1053 Budapest V, Hungary 

https://doi.org/10.4153/CMB-1989-063-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1989-063-5

