
A NOTE ON CONVERGENCE FIELDS 

I. D. BERG 

The purpose of this note is to show that the (bounded) convergence field of 
a conservative matrix is closed under a certain diagonalization procedure. 

As an application of the above result we establish a conjecture of Hill and 
Sledd in (1) and obtain a result of Lorentz originally proved in (2). 

First wre introduce some notation and definitions, most of which are standard. 
Let lœ denote the Banach space of bounded sequences with the supremum 

norm and let c denote the closed subspace of lœ consisting of convergent 
sequences. 

If A = (du) is a conservative matrix, that is Ax Ç c for x € c, we define 
the norm of A by 

IMII = supX^ Wij\ = sup {||4*||/ | |tf | |}. 
i 3 xelœ 

We assume all matrices to be conservative and of norm 1 unless otherwise 
stated. 

We denote by B(A) the (bounded) convergence field of A. That is, 

B(A) = {x\x £ L and Ax £ c}. 

If x G B(A), we define lim Ax by 

lim Ax — lim ^ atj x(j). 
i j=l 

Let Z + denote the positive integers. All indices will be taken from Z + unless 
otherwise noted. 

If x G lœ and n G Z+ , we define the sequence Tn x by 

\x(p) for p > n, 
Tnx(p) = 0 p < n. 

We note that if x G B(A), then limw lim ATnx always exists. Indeed for 
N> My 

llim A TM x — lim A T? 

But 

V * | < I 12 Uni a*J )\\x 
\j=M \ i I / 

3=1 

lim atj < SUpX \aij\ = IMII-
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We also note that if x G B(A), then for fixed p, limn [{ATnx)(p)\ = 0. 
Now we come to our principal result. 

THEOREM 1. Let A be a conservative matrix. Let xn, n = 1, 2, . . . , be a set of 
sequences in B(A) such that 

(1) \\xn\\ < 1 for each n, 
(2) limm lim A Tm xn = 0 for each n. 

For each n let Mn G Z + be given. Then there exists y G B(A) and for each n 
there exists kn G Z + such that 

y(P) = XniP) for kn < p < kn + Mn. 

Proof. For each q G Z+ and p G Z + such that 1 < p < 2q+1 choose 
r(q,p) G Z+such that 

(1) r(q,pi) < r(q,p2) if p1 < p2, 
(2) r(qh pi) < r(q2, pi) if q\ < q2, 
(3) r ( g , 2 « + l ) - r(g, 2*) > If,. 
(4) If we define yq by 

2"' 0 < Z + 1 

3^ff ' •• " *• r(q,p) %q 7 > ^ -* r(q,p) %q> 
P=! p=2q+l 

then \\Ayq\\ < 4 - 2 ^ . 
Note that 

/> < K f l , l ) . 
for£ > r(g, 2*+!), 

r(g,2«) < £ < r ( g , 2 « + l ) . 

The set yqi q = 1, 2, . . . , forms a set of non-overlapping finite sequences. 
If we define y G lœ by 

:yO) =Z):y<zM> 
<z=i 

we see that 

Since Ayq G c and 

(4y)(») = (g^«)(»)-

converges in lœ, Ay G £ and y is the desired sequence. 
A few details regarding the existence of the set r(g, p) may be in order. For 

a given xq G B(A) and satisfying the hypotheses of our theorem, given N G Z + 

and given € > 0, there exists J such that for j > J , 
(1) \(ATjXq)(n)\ < 1 for a l l» , 
(2) lim (ATjXq)\ < e, 
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and, in accordance with our remark preceding Theorem 1, 
(3) \(ATjXq)(n)\ < eîorn < N. 
Now let e = 4rQ. By the above observations we may choose r(q, 1) so large 

and r(q, p), p = 2, . . . , 2Q+1, so rapidly increasing that 
(1) |lim ATrUtP) xq\ < 4r* for p = 1, . . . , 2«+1, and 
(2) if \(ATriqtP) xq)(n)\ > 4r\ then 

max sup\(ATT(q>j) xq)(m)\ < 2 
i<p—1 rn>n 

For such a set of r(q, p) we see that 

V=294 

for p = 2, 

< 2-2" 

2 ,«+i 

^41 2 ^ 2 qTT(qtP) ; 
#=29+1 

< 2-2~ 

If, in addition, we choose r(q, 2q + 1) so that r(g, 2s + 1) - r(q, 2«) > Mq, 
and if we choose inductively r (q, 1 ) for each q > 1 so that r (ç, 1 ) > r (q — 1, 2Q), 
we have the desired set r(g, p). 

This completes the proof. 

The conditions on the xn hypothesized are easy to satisfy. 
We define b = (1, 1 , 1 , . . .). 
If A is co-regular, that is, limw l im^4rn5 = p ^ 0 , and if x £ B(A), 

\\x\\ < 1, thenlimwlim ATn(x — aô) = 0 for properly chosen scalar a, \a\ < 1/p. 
Observe that it is by no means necessary that the various xn in the theorem 

be distinct. Hence if A is not co-regular, that is limn lim A Tn ô = 0, then 
xn = ô satisfies our hypotheses. 

We now consider an application of our theorem. 
Following Hill and Sledd in (1) we say that x 6 Zp if x G l^ and 

n=r+p—1 

lim 23 x(n) 
r—>oo w=r 

exists. We define Z by Z = KJP ZP where closure is in the supremum norm. 
We let uap denote the ultimately almost periodic sequences; that is, x € uap 

if for e > 0 there exists K G Z + such that 

sup 
V>K 

*(P) —Jl^n^P^nP) < e 

for suitable q G Z+, real 0n, and complex an. Hill and Sledd call this space the 
almost periodic sequences and denote it by ap. 

We let ac denote the space of almost convergent sequences, that is, the space 
of sequences such that each sequence possesses a unique Banach (translation-
invariant) limit. Lorentz proved in (2, Theorem 1) that a necessary and 
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sufficient condition that x be in ac with Banach limit 5 is that 

-j r+p-l 

lim - ^ x(n) = s 
V V n=r 

hold uniformly in r. 
It is known that uap C ac (2, p. 173) and that Z C ac (1, p. 743). 
Hill and Sledd conjectured (1, p. 754) that neither uap nor Z were B(A) 

for any regular A. (A regular matrix is a conservative matrix that preserves 
limits.) Lorentz proved in (2, §7) that ac is not B(A) for any regular A. 

We have the following corollary to our Theorem, which establishes slight 
generalizations of the above. 

COROLLARY. Let A be conservative. Neither Z, uap, nor ac is B{A). 

Proof. If A is co-regular, assume that B(A) includes any one of the above 
three spaces. Then B(A) includes the space of all periodic sequences. Let yn 

consist of alternate blocks of zeros and ones, each block of length n. Suppose 
that limw lim ATm b = 1/p. Choose scalars ani fin so that if we define xn by 
xn = fin(jn — <xn b), then ||a;n|| = 1 and limw lim ATmxn - 0. Since | t tn | < |p|f 

IA.I > T^\ • 
Hence 

lim sup l^O) - xn(q)\ > • , . 
P,Q l " I " \P\ 

Now apply our theorem to this set of xn with Mn = 4w to obtain a sequence 
y G B{A). A glance at Lorentz's criterion makes it clear that y (£ ac. 

If A is not co-regular, we take xn = <5 for even w and xn = 0 for odd n. 
Taking Mn = n in our theorem, we construct 3; £ i?G4) such that y d ac. 

Since ac D uap and ac Z) ^ , our desired result is obtained. It is also clear 
by considering y directly that y & ac, y Q uap, and y d Z. 

This completes the proof. 
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