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A CHARACTERIZATION OF THE FINITE SIMPLE
GROUPS PSp(4, q), G:(q), Di(q), I

PAUL FONG and W.J. WONG?

Suppose that G is the projective symplectic group PSp(4,g), the Dickson
group G,(g), or the Steinberg “triality-twisted”” group Dj(q), where ¢ is an
odd prime power. Then G is a finite simple group, and G contains an
involution j such that the centralizer C(j) in G has a subgroup of index 2
which contains j and which is the central product of two groups isomorphic
with SL(2,q,) and SL(2,q,) for suitable q,, g, We wish to show that con-
versely the only finite simple groups containing an involution with this
property are the groups PSp(4,q), Gi(g), Di(g). In this first paper we shall
prove the following result.

THEOREM. Let G be a finite group with subgroups L, L, such that L,
SL(2,q), L,~SL(2,q,), [Li,L,]=1, L, N L, = <j>, where j is an involution, and
|C(7): L\L,| =2. Suppose that G+ C(j)O(G).  Then one of the following holds:

(a) ¢ =¢qy and L,, L, are not normal in C(j).
(b) ¢1=qy and L,, L, are both normal in C(j).
(c) One of the numbers q,, q, is the cube of the other.

Furthermore, in each case, C(j) is uniquely determined to within isomorphism.

Here O(G) denotes the largest normal subgroup of odd order in G, and the
condition G # C(§)O(G) is obviously satisfied if G 'is simple. The groups PSp(4,q),
G,(q), D3(q) satisfy the hypotheses of the theorem, and belong to the cases (a), (b),
(c) respectively. By the unmiqueness statement of the theorem, C(j) ts isomorphic with
the centralizer of an involution in PSp(4,q), G.(q) or Di(q), where q=min{q, q,}.
In case (a) it follows that G must be isomorphic with- PSp(4,q) [18]. In the
sequel to this paper it will be shown that, in cases (b), (c), G must be isomorphic
with G,(q), D3i(q) respectively [12].
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The proof of the theorem is begun by a study of the possible fusions
of involutions of C(j) in G, which shows that either (a) holds and the
structure of C(j) is uniquely determined, or else L, and L, are both normal
in C(j) and the structure of C(j) is again uniquely determined. In the latter
case we use the Brauer-Wielandt theorem, a knowledge of the irreducible
representations of SL(2,q) over finite fields, and results and methods
of Brauer concerning groups with prescribed S,-groups, first to show that
¢, and g, are powers of the same prime p, and then to show that (b) or
(c) holds provided (g,¢,)* divides the order of C(X,), where X, is a S,-group
of L,, b=1 or 2, ¢g,=min{g,¢}. By using the theory of blocks of group
characters we show that if (b) does not hold then (g,¢,)® divides the order
of G, and hence (g,¢,)* divides the order of C(X;), where X; is a S,-group
of Lg, =1 or 2. Finally, by forming a (B, N)-pair, we construct a sub-
group G of G of known order and show by means of a result of Brauer
that G induces a group of collineations of a Desarguesian projective plane
of order gp, containing the little projective group PSL(3,gg). This gives
an inequality between orders which implies that g = b, completing the proof
of the theorem.

§1. In this section we fix notation for L = SL(2,q), where q= p™ for
an odd prime p, and set down some facts about its automorphisms and
representations. Let

q—¢=2%, q+¢=2v

where ¢ = 4+ 1, «=2, and %, v are odd. L contains elements ¢, ¢ of order
g— e, g+ ¢ respectively. Indeed, we may take

) )
0= N o= if ¢
7t —dép 2
2 I
p=( ”), az( ) if «
-y 2 7!

Here 7 is a primitive root of F,, 6 is a non-square in F,, and 2+ p#/—3é

i
—
-

and

il

—1.

or A+ w/—1 is a generator for the group of elements in Fpz of Finorm 1
respectively in the cases e =1, ¢ = —1. Set

. au 002
a=p% t=a""
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so that ¢ and ¢ have orders 2* and 4 respectively. The involution

generates the center of L. We have
1.1 Ci(p) =<p> if o' & <P,
For g € L denote by C#(g) the projective centralizer of g in L, i.e.
Cig)={reL: ¢g" =g or gj}.
Ci(g) is a subgroup of L with C,(g) as a subgroup of index 1 or 2. Then
(1. 2) Cilz) = <o, b,
where b is an element satisfying the relations
br=j, o"=p7

Indeed, we may take

< y) if e=-—1,
p —2

where in the case ¢ = —1, 22+ p2 = —1. We have
1. 4) N (KpD) =<p, 0y if o' & ().

The subgroup @ =<a,b) is a generalized quaternion group of order 2**!,
and is an S,-subgroup of L. We also have- -

(1. 5) Cuie") =<a> if o & D
and
oo, a%(tﬁ-@) _i
so that
(1. 6) NiKa®) = <ayy if o"& .

The automorphism group Aut(L) is isomorphic to the projective semili-
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near group PI'L(2,q) by [11]l. Thus the outer automorphism group Out(L)
is given by

Out(L) =~ PI'L(2, q)/ PSL(2, ),

which is the direct product of the group PGL(2,q)/PSL(2,q) of order 2 and
a cyclic group of order »n, where ¢= »™ and p is the characteristic of the
Galois field F,. The latter group arises from the automorphisms of L
induced by field automorphisms of F,. Referring to elements of Out(L)
as automorphism classes, we have

(1A) If ¢ is not a square, then L has exactly one automorphism class
T, of order 2. If ¢ is a square, then L has exactly three automorphism
classes Ty, T, T; of order 2.

We denote the class of inner automorphisms of L by T,; the identity
automorphism 6, is a representative of this class. The class 7, of outer
automorphisms corresponding to elements of PGL(2,q) not in PSL(2,q) may
be represented by the automorphism 6, of order 2 defined by

(1.7 0,: g—> k™'gk,

where

—1
( ) if e=—1,
1

and § is a non-square in F,. If we choose 6 =7% then in the case ¢ =1
(1. 8) 0,: e—>p7Y a—>al, b— ba.

In the case e = —1, we find that 6,: p— o™, b—>bp’ for some integer i.

Then 6,: bp™— (bp™)p*~?*™, so that by replacing b by bp™ for suitable m,

we may assume that either 6,: 5—>ba or 6,: b—~b. The latter is impossible,

since the element g of (1. 3) would be 0 so that 22 = —1, which is impos-

sible. Hence we may assume that (1. 8) holds in the case ¢ = —1 as well.
For any ¢ € Aut(L), define

CCul)={ge L: g° =g},
Ci0)={ge L: g° =g or gj}.
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C#(0) is a subgroup of L containing C,(f) as a subgroup of index 1 or 2.
We have

1. 9) Cr(0)) =<a>, Ci(0y) = oy 2>.

If ¢ is a square, say ¢ =7% then ¢e=1. For ge F, we write g=§,
so that g§—j is the automorphism of F, of order 2. If g=(8;) €L, let
§=(B;). Then

(1. 10) 0,: g7

defines an automorphism of L of order 2 belonging to an automorphism
class T, distinct from T, and 7,. We have

(1. 11) 0,: a—>a’y, b—b,

where we note that a” = ja or ja—' according as to whether » =1 (mod 4)
or r=—1 (mod 4). Also

(1. 12) CL(0:) = SL(2,7), Ci(0:) =<KCL(6:), 9,
where g is an element whose spuare may be taken to be j.

Finally we represent the class 7, by the automorphism 6; of L which
is 6, followed by 6,. (652 is then the inner automorphism

1 -1 —% (r-1)
(1. 13) (0:)2: g—>a’ ga )
and
(1. 14) 0;: a—>a", b—ba.

(1B) All automorphisms of order 2 in T, are conjugate in Aut(L).

Proof. This is the well-known fact that all involutions in PGL(2,q),
but not in PSL(2,q), are conjugate.

(1C) Let g be a square. Then all automorphisms of order 2 in T,
are conjugate in Aut(L).

Proof. For z & L denote by 6, the automorphism of L given by
0,0 g—27(g")z

Let 2={ze L: (6,)*=1}. If y e GL(2,q) induces the automorphism » on
L, then
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7720,m = Oy

L -1
where w = (det y)? y-zy € L. Thus

1
L rm1
2 r

)
z¥ = (det ) g lzy

determines an action of GL(2,q) on 2, and it is sufficient to show this action

is transitive. Now 2=0Q,Uf,, where 2,={zeL: zz=1)}, 2,={z€L: zz=j}.

1
_ —(g-1)
If y € GL(2,q) and det y is a non-square, then 2’2z’ = (det y)* Zz=—7z

=jzz, so that y interchanges 2, and 2,. £, is invariant under the sub-
group L, and thus it suffices to show L acts transitively on 2.

The stabilizer in L of the element 1 in 2, is {y € L: ¥ =y}, a group
isomorphic to SL(2,7). Since |L| = q(g>—1)=r%g*—1) and |SL(2,7)|=7(r*—1)
=7(g — 1), the orbit of 1 under L contains #(g+1) elements. Now ze& 2,
if and only if

v

A J2 ~
z = )y MA—py =1, =—p §=—y,
A

1
. . . -7+ g ey
Since 5 = —y if and only if »7? e F,, there are r possibilities for v.
y P

Similarly there are r possibilities for #. For » —1 choices of #, v, we have
#v=—1, 2=0. In the remaining 72 —7+41 cases, AA=1+mw e F,, and
there are » + 1 choices for 2. Hence

[ =r—14+@~r+D)r+D)=r+r=r@+1).
Hence L acts transitively on @, as asserted.

(1D) There are no automorphisms of order 2 in T%.

Proof: For ze L, denote by ¢, the automorphism of L given by

0.0 g 27 gz,

Then ¢% is the inner automorphism of L corresponding to the element

L1 Lr-n

2z If g2 =1, then 2l =+a?  zt If z=<1 ’7;), this is

v

equivalent to the equations

. —5r=1) _ -5+
A=1%0 2 2= Yy
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where 5= +1. Now

1
. < 5= r . .
Since (55) 2 = (6571 ? =6 *? =-—1, we have 1= ¢ =0, which is

impossible.

(LE) Let V be a vector space over F, of dimension m on which L
acts irreducibly and nontrivially. Then m=2xn. If moreover L is faithfully
8

represented on V, then m=2n, m= 5" or m=4n. The second case

occurs only if 3 divides #.

Proof. Let I be the natural representation of L as 2 X 2 matrices over
F,. For any integer k, where 0<<k=<p—1, let I'® be the representation
of L induced from I' on forms of degree k; the degree of the representation
'™ is k+1. Let 0 be the field automorphism of F, defined by 6: z — &?
for x € F,. It is known [6] that every irreducible representation of L over
an algebraic closure of F, is equivalent to one and only one of the form

(L. 15) I x &0 %« v o x [,

where 0<k,<p—1, 0<i<n—1, and I®% s the representation of L
obtained by applying 6’ to the matrix coefficients of I'*¢, L

Suppose B is a non-trivial absolutely irreducible representation of L of
forr’nr (1. 15): the correspondirig n-tuple (ko ks « =+ 5 kney) = (0,0, =+ +,0). Let
s be the smallest positive integer such that 98 and B are equivalent Since
s divides n, we have n = st for some »integer t.  koky e+ k-, can be
arbitrary subject to the requirement not all of them are zero; the remaining
k; are then uniquely determined. The degree of B is then Sﬁl (k; + 1)%.
An irreducible representation of L over F containing B as an absolutely
irreducible constituent thus has degree s 1'[ (i +1)'=s2"=2st =2n. QB is
faithful if and only if ¢ is odd and the number of odd k; for 0=i=<s—1
is odd. Since s II (k; +1)* <4s¢ holds only if ¢ =1,2, or 3, this completes
the proof of (1E)
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(1F) Let V be a vector space over F; of dimension m, where [ is an
odd prime different from p. If L acts irreducibly and non-trivially on V,

then mzé—(q—l). If 1° is the full power of [ in |L|, then m=4b.

Proof. By [16] the irreducible characters of L have degrees 1, ¢, ¢+1,
1
2
rationalities being of the form %(e +4/eq). Since the S;,-subgroups of L
are cyclic, we can apply the results of Dade [9]. If D is any non-trivial
I-subgroup of L, then |N,(D): C.(D)] =2 by (1. 4), (1.6). Thus the tree
associated with an [-block of positive defect has at most two edges. Every

%(qi 1). The four characters of degree (g & 1) are irrational, their ir-

irreducible Brauer character of L with respect to the prime / is then the
restriction of an ordinary irreducible character to /-regular elements of L.
Thus m=-1-(¢— 1)

Let ¥ be an absolutely irreducible constituent of the representation of
L on V. If sis the number of non-equivalent algebraic conjugates of %
over F;, then m =s-deg®. Now 2/° divides g—1 or ¢g+1. Hence if

degB=qg—1, then m=2I"—2=4b. Suppose then that deg®B = %(qi 1).
If s=2, the preceding argument applies. If s =1, the argument fails in
the case /=3 and ¢q=5 or 7. Since s =1, ¢q must be a quadratic-residue

modulo /. Since 5 and —7 are non-residues modulo 3, these last cases do
not occur.

§2. Throughout this section we shall assume G is a finite group
satisfying

(*) G has subgroups L,, L, such that L,™~SL(2,q,), L,~SL(2,a,), [Ls, L,]
=1, L, N L, =<j> where j is an involution, and |C(j): L,L,] = 2.

Clearly je Z(L,)n Z(L,), so that g, ¢, are odd, and Z(L,) =Z(L,) = {j>.
The considerations of §1 apply to L, and L,. In particular, we can speak
of automorphisms of L, and L, of class Ty, Ty, Ty, or T;. We fix isomor-
phisms ¢; from SL(2,¢;) onto L; and attach a subscript i to the symbols
used in §1 for various objects defined for SL(2,q) to denote the correspond-
ing objects for SL(2,¢;). Thus we have

q; —¢e; = 2aiui’ q;t+e;=2v;,, 1=12,

where ¢; = +1, a;=2, and u,, v, are odd. Suppressing the symbol ¢, for
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the moment, we have that Q, =<a;,b,> is an S,-subgroup of L, of order
2%+, j is the central involution of @, and of Q,.
We shall prove the following result:

(2A) Let G be a finite group with property (). Then one of the
following holds:

(i) G=CHOG).

(ii) C(j) = L,Ln>, where n®=1, L} =L, q, = q,.

(iil) C(j) = L,L{n>, where n®=1, L}y=L,, Ly =L, n induces auto-
morphisms of class 7y on L, and L,, @ = a, and G has only one
class of involutions.

We remark that in cases (ii) and (iii) the structure of C(j) is uniquely
determined. In case (ii) either (i) holds or G~ PSp(4,q) with ¢=¢q, = ¢,
[18]. In case (iii) the structure of C(j) is uniquely determined by (1B), (i)
cannot hold, and G~ G,(q) or D%(q), [12]

Condition (*) allows a number of possibilities for the structure of C(j).
The proof of (2A) involves examination of the fusion of involutions of an
S,-subgroup of G.  We write g~ % if g and % are fused in G, g+ & if
not. We begin with a simple remark.

(2B) If H< G, T is an S,-subgroup of H n C(j), and <> is character-
istic in 7, then T is an S,-subgroup of H. In particular, an S,-subgroup
S of C(j) is one of G.

Proof. Since {jy is characteristic in T, NT)<N(>)=C(;). I U is
an S,-subgroup of H containing T, then Ny(T)<C(j) n U =T, so that U=T.
If S is an S,-subgroup of C(j) containing Q,Q,, then |S:Q,Q.| =2, so that
S'<Q.Q, Since Z(Q.Q,) = <5, it follows that (> =S’ n Z(S) is character-
istic in S. Taking H= G in the first part of the lemma, we see that S is
an S,-subgroup of G.

We define

(2- 1) X =TTy Yy = blb2'
Since 2 =<} =02=0}=j, x and y are involutions of L,L, distinct from j.

(2C) L,L, has exactly two classes of involutions, represented by ; and
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Proof. If ge L, he L, (gh)*=1, then g?=h2e L, NnL,=<p. If
g°=h?=1, then g and % are jor 1, and gh=1 or j. If g?=hr2=}
then gh ~ = in L,L,, since L,, L, each have only one conjugacy class of
elements of order 4.

(2D) C(j) = L,L<n), where one of the following holds:

(i) Ly=L, n*=1or j, and ¢ = ¢,

Proof: Choose = E'C(j) — L,L,, so that C(j) = L,L{n). Since L;/{j>==
PSL(2,q;) is an indecomposable group with a trivial center, it follows by the
Krull-Schmidt Theorem that L?=1L,, L3=L,, or L*=1L, L=1L,, In
the first case, (i) holds. In the second case, L,~ L, so that ¢, = ¢,. Since
n, € L,L,, we have n®=gh with g L, he L,. Since n'hne L, ng~'n!
e L,, we also have

(ng™)* = n7in’g~'ng™ = (n"*hn)g™ € L,

(ng™)? = ng™'n"'n*g™ = (ng™'n"h € Ly,
and so (rg™)?*e L, N L,=<5>. Replacing » by ng!, we have n?e {(j,
which completes the proof of (ii).

(2E) If C(j) = L,LKn), L} = L,, and n? =j, then G = C(j)O(G).

Proof. We may assume the isomorphisms ¢, of SL(2,¢,) onto L, are
chosen so that af =a, b7 =b, etc. Suppose (ghn)?=1 for some ge& L,,
he L, Then

1= ghng"h"™ = jgh™hg".

Since jgh" e L,, hg" < L;, and L, N L, = <{j>, it follows that gh"™ =1, hg"=7,
or gh™ =4, hg"=1. But(gh™’" = hg", so both cases are impossible. Thus
C(j) — L,L, contains no involutions, and every involution in C(j) —<j> is
conjugate to z by (20).

Now (1. 1), (1.2), (2.1) imply that

C(%y 7) = P15 P2 Y5 1D,y
which has the S;-subgroup

T =<ay s Y, ).
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|T| = 22=+1, where @ = @; = @,; T is defined by the relations

3 a-1 o=-1 s -
=1 a¥*"' =a3*" = j, la,al =1, a! =a7,

a=a;'s Y =1, al =ay y" =y, n*=j.

In particular Z(T) = <=, .
For any element g of a group X, let rx(g) be the number of roots of

g in X, i.e. the number of elements in X having g as a power. We com-
pute that

rT(j) = % (22(1—2 — 1) _l_ 22“‘2 + 20*1’

rr(®) = rr(xj) = % (@ —1) + 2 — 2%
These two numbers differ by 2°(2** —3) 0, so that {j) is characteristic
in T.
By (2B) T is an S,-subgroup of C(x) and thus z 4+ j. In particular, 7
is conjugate to no other involution of S. The Z*-theorem of Glauberman
[13] implies that jO(G) € Z(G/O(G)), and so G = C(j)O(G).

(2F) Suppose C(j) = LL,<{n), L*=L,, Lt=1L, and G=C() OG).
Then

(i) » may be chosen as an involution inducing automorphisms of class
T, on both L, and L,, and «, = «a,;

(i) G has only one class of involutions.

Proof. Since n*e L,L,, the class of the automorphism of L, induced
by » is an element of order 1 or 2 in Out(L;), i =1,2. Let » induce an
automorphism of class T, on L, and one of class T, on L, where 0<gq,
b=<3. Since n may be changed by an element of L,L,, we may assume
n induces the automorphisms 6,,, 6,, on L, L, respectively, where these
correspond to the automorphisms 6,, 8, of SL(2,q) defined in §1. #? is an
element of L,L, inducing the inner automorphisms 6%, on L,, 63, on L,
There are two such elements, differing by a factor of j, and these are
easily found (see (1. 13)).

Suppose % 4 j.  Since G+ C(j)O(G), it follows by (2C) and Glauber-
man’s Z*-theorem that there exists an involution ¢ & C(j) — L,L, such that
t ~j. Using (1B), 1C), (1.9), (1. 12), we can compute an S,-subgroup U
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of C(t,j). Except in the case a=5b =1, we find that U’ = Z,Z, + 1, where
Z, is a cyclic subgroup of L, i=1,2. Thus <> =(U")" for a suitable
integer m. U is then an S,-subgroup of C(¢) by (2B), so U is even an
S,-subgroup of G. The proof of (2B) shows that <{j> is characteristic in
NU), so that j+ ¢ in N{U). But then j+ ¢ in G by Burnside’s Theorem.
In the case a =56 =1, we may assume » =¢. The involutions of the S,-
subgroup S = Q,Q,{n> of C(j) which are not in @,Q, are of the form ajajn.
Since dlain = n? with g = (nb,)"(a;nb,)’, all involutions in C(j) — L,L, are
conjugate in C(j). The elementary abelian subgroup V =<n,x,;> is an
S;-subgroup of C(n,j). Choose h € G such that »" =j, V*<C(j). The
three subgroups of index 2 in V containing n are <»,j), <n,2>, {n,%5>;
one of these must be transformed by % into a subgroup of L,L,. Thus
nj, nx, or nxzj is fused to an element of L,L,— <j> and hence to z by
(20). Thus n~ z ~ j, which is a contradiction. Hence z~j in G.

Now (1. 8), (1.11), (1.14) show that an S,-subgroup T of C(x,j) is
given by

T =<ay, a5 y,n> or {ay, ay Y, nbd.

If {q,0} € {1,3}, then T’ =<a,,a), {a,ai>, {a?, ay, or {a?,a%y, and {j>=(T")"
for some integer m. But then (s> is characteristic in T, so by (2B) T is
an S,-subgroup of C(x). This is impossible since z~j. Hence {g,8} c
{1,3}, and T’ =<a} aa,>. If e, @, then (4) =<T">™ for some m, and
again this is impossible. Hence {4,b} < {1,3} and a;, =a,. A calculation
readily shows that if (i) fails, then 7.(j) is different from 7r,(x), 7.(xj), so
that (j> is characteristic in 7. This is again impossible, and so (i) holds.

T =<ay, a5, y,ny is an S,-subgroup of C(x,j). Since xz~j, we may
choose g € G such that x'=j, T'<C(j). X =<a,a,y)> is generated by
&y, &Y, ¥, which are involutions conjugate to x. If » + j, then necessarily
X< L,L,, In particular, ;< L,L, — {(;>; by (20C) we may assume j’ = z,
Since X is an S,-subgroup of C;,(x), we may even assume X’=X. But
X' =<at, a3, and so (> =(X")" for a suitable integer m. Thus <j)> is
characteristic in X, and j°=j. This contradiction shows that » ~ j, and
(ii) holds.

The results (2D), (2E), (2F) together prove (2A). Summarizing our
calculations, we see that if C(j) satisfies the assumptions of (2F), then

C(, 7) = {0y P2, Yy 1>, C(n, j) = o1y 09y %, 1.
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Moreover, <a,,a, ¥y, n), <{j,x,n> are S,-subgroups of C(z, j), C(n, j) respect-
ively.

§3. From now on we assume that G satisfies condition (*) and case
(iii) of (2A). In this section we shall prove that ¢, and ¢, are powers of
the same prime p.

(3A) Let D be a 4-subgroup of G. Then D is conjugate to <x,7> or
{n,j>. Moreover, N(D)/C(D) is isomorphic to S;, the symmetric group on
3 symbols.

Proof. We may assume je D by (2A), so that D<C(j). Since all
involutions in C(j) — (j> are conjugate in C(j) to =z or n by (2C) and the
proof of (2F), it follows that D is conjugate to <{z,j> or <{un,j>. Now z~ xj
and n~nj in C(j). Since G has one class of involutions, it readily follows
that [N(D): C(D)| =6 and N(D)/C(D)~S..

It will be convenient to introduce the following notation: let the images
of ((1) ;’), (oll (1)), (“0 2_1>, (_(1) (1) under the isomorphism ¢; of SL(2,¢;)
onto L; be denoted by z,(a), z_;(a), hia), o, respectively, i =1,2. More-
over, let X;, X_;, H; be the subgroups of L; generated by elements of the
form z,(a), 2_;(a), k() respectively. We note that L, = X;H, U X, H,0,;X,,
i=1,2. Let g, 3, be non-squares of order a power of 2 in Fgq, Fq, res-
pectively. We may assume n acts on L, as conjugation by 0 1Y ife, =1,

—51; 0
and by (75 9)if e = 1. Set

hy = nd,d,,

where d; = o, (g _(1)> ife;=1, d;i=11if ¢, = —1. Then C()) = {L,L,, ko),

where %, acts on L; as conjugation by <1 3, ) Moreover,
(3. 1) h§ = hy(57")hy(53).
In particular, %, centralizes H,H,, h3< H,H,, Thus
(3. 2) H = {H,H,, hy>
is abelian of order (g, — 1) (g, — 1).
(3B) Let {48} = {1,2}, and let K = O(C(X,)). Then the following hold:
(i) An S,-subgroup of L, is one of C(X,).
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(i) C(X) = LK, N(X,)=HL.K, and Kn L, = 1.
(iil) K/X, is abelian, and j inverts K/X,.

Proof. Since C(X;) N C(j) = L,X,, the subgroup @, of L, is an S,
subgroup of C(X,) N C(j). Since {j> is characteristic in the generalized
quaternion group Q,, it follows by (2B) that @, is then an S,-subgroup of
C(X;), which proves (i). Now Kn L, is a normal subgroup of odd order
in L,, so that necessarily KN L, =1. Now the Brauer-Suzuki Theorem
[7] implies that K{j> <{C(X;), so by the Frattini argument

C(Xy) = K(C(j) N C(X,)) = KX,Lo = KL,.

Since K{j> is characteristic in C(X,), we have K{j> <] N(X,) so again by the
Frattini argument

N(X;) = K(C(j) N N(X,)) = KL H,

which proves (ii). If j centralizes kX, (mod X;) for some ke K, then
k'jk € jX,, and necessarily k€ C(j). Thus ke C(X;) N C(j) = L, X,. Write
k=mu with meL,, u€X,., Then m=rku'eL,NK=1, and so k=uc<X,.
Thus j inverts K/X,, which proves (iii).

(8C). Let #s1 be in X;, and let M = O(C(x)). Then

(1) X,=M.

(ii) Cu)=ML,, Mn L, =1.

(iii) CUH)N M= X,

Proof. Since C(u) N C(j) = L, Xp it follows as in the proof of (3B) (i)
that @, is an S,-subgroup of C(x). By the Brauer-Suzuki Theorem, M{;>
< C), and so C(u) = M(C()n Cu)) = MX,L,. But L, normalizes MX,.
Thus MX, < MX,L,=C(u) and so X, <M, C(u)=ML,. Since MNnL,<L,,
clearly Mn L,=1, which completes the proof of (i), (ii). Suppose
me C(j) N M. Since m has odd order, we may write m = g,9,, where g, is
an element of odd order in L,, i =1,2. m and g, centralize #, so that
g€ Clu) N L, =<>X,. But since g, has odd order, g, € X,<<M. But now
go=mgz3' € Mn L,=1, and so m = g,, which proves (iii).

38D) If g, — ¢, >q, — ¢, then (g, — &)q} divides |G|.

Proof. C(x,4) =<py, Py y¥,n> has a normal abelian 2-complement con-
sisting of the 2*-th powers of elements in <{p,, 0,>, where a = a; = a,. The

https://doi.org/10.1017/5S0027763000013180 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013180

FINITE SIMPLE GROUPS 157

subgroup R =<{p,2~¢:) is characteristic in C(x,j), since R consists of all

1

2(!

R+#1 since g, — &, > g, — &,
By (1. 1), (1.39),

(g, — )-th powers of elements in the normal 2-complement. Moreover,.

(3- 3) C(R9 .7) = <Py, nb1>L2,

which has as an S,-subgroup T = (nbj, a,b,>. T has order 2?°*! with rela-
tions

(nb)?* = a3*™* = b} = j,
agh = a3ty by = byay, alr = a7
If we set
S; = agnbby,, S, = nbiby, ¢ = (b)) by,
then T = <sy, 8, ¢>, where

P =53 =t =[sp5]=1 s{=s,.

Thus T is the wreath product of Z,« by Z,. Since T’ =<ay, <j> is cha-
racteristic in 7. 7T is then an S,-subgroup of C(R) by (2B).

The Frattini argument implies that
N(R) = C(R) (N(R) N N(T")) = C(R) (N(R) n C(7)).

Choose g € NKx, j>) such that x? = j; this is possible by (3A). Since R is
characteristic in C(z,j), it follows that g & N(R), so that g = cd, where
ceCR), and d= NR) N C(y). Thus ' =2°=j4, and 2 ~; in C(R). Now
we can verify that Theorem 2 of [4] applies to C(R) with g=a, J=j.
Using (3. 3) we can compute that

(R, f) = (g1 — &) ¢2 (g} — 1),
c(Rya) = (g1 — &1) (g — &2)s
C(Ry jyt) = (g1 — €1) (q2 — €2)s
c(Ryayt) =q, — &y

The numbers in [4] denoted by a, ¢, ¢, ¢, f are readily computed to be
1, ¢y — e 1, &, coq, respectively. It then follows that

[CR)| = (g1 —¢1) G5 (a5 — 1) (45 + 0. + 1),
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which proves (3D).

We shall prove another similar result, for which we need the following:

(3E) Let X be a finite group with an involution i such that C(i)=ZX
L{t>, where L=~ SL(2,q), Z is a cylcic group of order dividing —;— (q+ ¢)
with ¢ = &1, ¢g=¢ (mod 4), and ¢ is an involution inducing an automorp-
hism of class T, on L. Suppose moreover that t ~: in X. Then |X] is
divisible by |[Z|¢® unless ¢ =3 and X~ M,,, the Mathieu group of order
7920. If g=3 and X % M,, then X=~SL(3,3). Finally, if Z=1, then
q=3,5 or 7,

Proof. This is essentially a result of Brauer. The case ¢=—1 is
treated in Sections 4,9,10 of [3], II. We indicate in §8 the modifications
needed to treat the case ¢ = 1.

(BF) If g+ e, >q,+ ey then (g +¢)qé divides |G]. If ¢, >¢q, =3,
then L, has a cyclic subgroup R of order %—(fh‘l‘ ¢;) such that C(R)=Rx M,
C(R,j) = RLn), and M= SL(3,3).

Proof. C(n,j) = {ay, 65 %,n) has a normal abelian 2-complement <{q¢2, ¢2).
If R = (¢+e2), then R is characteristic in C(n, j), and since g, + ; > g,+ey
R+1. By (1.5), C(R,j) =<opnd> L, =<oi> X L<{n>. The same arguments
as in (3D) show that <a, b, n) is an S,-subgroup of C(R) and that n~j in
C(R). If we set X=C(R)/R, the conditions of (3E) are satisfied with
Z ={¢?[R. Since x € N(R), # induces an automorphism of X. If this
automorphism were inner, the 2-group <a,, by, #, x> obtained by adjoining =
to the S,-subgroup <a,, b, #n> of C(R) would have a center of order at least
4, But Z(ay by n,2>) = <j>. Thus X £ M, since all automorphisms of M,
are inner [15]. By (3E), |X| is divisible by [Z|¢3, so that |C(R)| is divi-
sible by IR 1Z1g8 = = (0, + ead-

If g,>q, =3, then R =<{s% is cyclic of order %—(ql +¢). By (BE),
C(R)JR=SL(3,3). A modification of the method of [17] shows that SL(3,3)
has trivial Schur multiplier. Hence C(R)= Rx M, where M=~SL(3,3).
This proves (3F).

(3G) Let ¢, ¢, be powers of the prime numbers p,, p, respectively.

If ¢,> g, and p, # p,, then an Sp,-subgroup of C(j) is not an Sy,-subgroup
of G.
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Proof. We note ¢, +¢,> ¢, + ¢, and ¢, — ;> g, — ¢, both hold except
in the case ¢, = ¢, + 2. Since the order of an Sp,-subgroup of C(j) divides
(g, — e)q, or (g, + €)g5, the result follows from (3D) and (3F).

(BH) If ¢,> g, and p, # p,, then ¢, =5, ¢, =3.

Proof. Let P be an Sp,-subgroup of L,, X, the Sp,-subgroup of L,
introduced at the beginning of §3, and K= 0(C(X,)). By (3B), we have
C(X,)=KL,. Now PX, is an Sp,-subgroup of C(j), and C(PX,)NC(j)=C,,(P)X,.
An S,-subgroup T of this subgroup is cyclic or generalized quaternion, so
by (2B), T is an S,-subgroup of C(PX,). The Frattini argument then implies

N(PX;) = C(PX,) (N(PX,) N N(T)) = C(PX,) (N(PX;) n C(7)),

so that N(PX,)/C(PX,) >~ (N(PX,) N CU)/(C(PX;) N C()). But PX, is an abelian
Sp,-subgroup of C(j), so that p, does not divide |N(PX,)/C(PX,)|. Since
PX, is not an Sp,-subgroup of G and so not one of N(PX,) by (3G), it
follows that PX, is not an Sp,-subgroup of C(PX,), and hence not one of
C(X,). It follows that p, divides |K/X,|.

Set t =2 1f e,=1, t =n if ¢,=—1, and D=<¢,5). By the definition
of z, n, and (1. 7), D normalizes X, and hence K. Since j inverts K/X,
by (3B), we have

KX, = Cx/x,(t) X Crx,(t7)s
and indeed, since |X,| is odd,
(3. 4) K| X, = Ck(t) Cx(t7) X,/ Xo.

For any group Y, let m(Y) be the minimum number of generators of
an Sp,-subgroup of Y. If ¢, = p3, then m(X,) =#n. Since P is cyclic and
¢, tj are conjugate to j, it follows that

m(C(t)) = m(C(¢))) = m(C(j)) =n + 1.
By (3. 4), we have
(3. 5) m(K|X,) < 2m(C(5)) < 2(n + 1).

Let M be a normal subgroup of C(X,) such that K> M=X, K/M is
a p,-group, and M is maximal subject to these conditions. Then K/M is
an elementary abelian p,-group admitting L, as an irreducible group of
operators. By (1F),
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m(KIM) =1 (¢, — 1),

Since m(K/M)<m(K/X,) and q,=¢, + 2, we find from
(8. 5) that

(3. 6) @+ D= (@~ D=2mCHN =2 + D),

Since ¢, = p3, we have in particular

%(42—3)
P2 = ¢,

By calculus,

a@=3)
11 >z for x=7,

-3
>ax for 2>7,

-3

> for x=>11,

-8

>z for x=15.

The only possibilities are

Pe=q: =17,
P =@y =5,
=3, ¢g=3 or 9.
If g, =7, then (3. 6) gives 4é—%—(q1 — 1)< 2m(C(j)) <4, so that ¢,=9,

m(C(j)) = 2. This is impossible since 7 does not divide |L,] so that m(C(j))=1.

If ¢, =5, then (3. 6) gives 3£—§—(ql —1)=<4, so that ¢, =7 or 9. This
contradicts the assumption (2A) (iii) is the case, since a; =3, @, =2 in this
situation. '

If g, =9, then (3. 6) gives 53% (g, —1)=<6, so that ¢, =11 or 13.

Again this contradicts the assumption that (2A) (iii) holds, since then
ay =2, ay=3.

If ¢, =3, then (3. 6) gives Z_é%(ql—-l)s& so that ¢, =5, 7, or 9,
Since p, 3, we have ¢, +9. Since a;=a,=2, ¢, +7. Hence ¢, =5 and
(3H) is proved.
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(3I) In any faithful representation of SL(2,5) as a subgroup of the
symplectic group S$p(4,3), the vectors fixed by an element of order 3 in
SL(2,5)-form a singular subspace of dimension 2.

Proof. SL(2,5) is given by generators a, 8, 7 satisfying the relations
3.7 d=p=1 =g o =at, FF=47, (@)=L
(We may take a = (Ji (1)>, 8= <% _0>, 7= (8 _3).) Thus we look for
elements of Sp(4,3) satisfying these relations.
Choose a basis e,, e, e; e, of the 4-dimensional symplectic vector space
over F,, satisfying
(€15 €5) = (esr€)) = 1,
(€1, €3) = (€1, 1) = (€25 €3) = (e5,€,) = 0,
and identify elements of Sp(4,3) with their matrices with respect to this basis.
Sp(4,3) has only one conjugacy class of elements of order 5. Hence

we can take
-1 -1 —1 1

0 -1 —1 -1

Since <a) is self-centralizing modulo {—I), the elements of Sp(4,3) inverting
a are all conjugate modulo {—I>. Since the relations (3. 7) are unchanged
if g is replaced by B!, we may assume that

0 0 1 0

0 0 0 1

-1 0 0 0

0 —1 0 0

Now a computation shows there are only two possibilities for the element
7 satisfying (3. 7):

0 0 0 1 0 —1 0 —1
0 0 -1 0 —1 0 —1 0
V= or
0 1 0 0 0 —1 0 1
-1 0 0 0 —1 0 1 0
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The element ar of order 3 is

-1 -1 1 -1 0 -1 -1 0
-1 0 1 1 0 -1 -1 -1
or
-1 -1 -1 1 1 0 0 1
1 —1 1 0 —1 1 0 —1 ’

and its space of fixed vectors has basis
{(1’ 090! 1)’ (0’ 19 1y0)} or {(1’ 1’ 1! 0)9 (—‘19 1, 09 1)}-

In both cases the subspace is singular. Since SL(2,5) has only one conju-
gacy class of elements of order 3, we have the result. (The calculation
that Sp(4,3) has two conjugacy classes of subgroups isomorphic to SL(2,5)
is due to Dickson [10]).

(8]) The case ¢, =5, ¢, =3 cannot occur.

Proof. Suppose ¢, =5, ¢, =3. As in the proof of (3H), we consider
C(X,). L,~SL(2,5) is represented irreducibly and faithfully on the ele-
mentary abelian 3-group K/M. Since 5 does not divide |GL(3,3)], it follows
that m(K/M)=4. By (3.5), m(K/X;)<4 and thus m(K/M)= m(K|X,) = 4.
The Si;-subgroups of C(j) are elementary abelian of order 9, and since
t~tj~j in G, it follows by (3. 4) that the S;-subgroup of K/X, is elemen-
tary abelian of order 81. Since L, has no subgroups of order 15, an S;-
subgroup of C(j) is contained in no larger subgroup of odd order in C(j).
The same is true for C(t) and C(tj). Since K contains Ssg-subgroups of C(#)
and C(tj), it follows that Cg(t), Ck(tj) are Ss-subgroups of C(¢), C(tj) res-
pectively. Hence K/X, is a 3-group of order 3¢, and M = X,.

By (3F), L, has a subgroup R of order 3 such that

C(R) =R X N, C(R,j) = RLxXn>

where N>~ SL(3,3). Since L,n>~GL(2,3), a group with no normal sub-
group of index 3, Ln>=<N. Now N has two conjugacy classes of subgroups
of order 3, whose centralizers in N have orders 9 or 54. Since jeCy(X,),
we must have |Cy(X,)| =54. Let Z be an Sj;subgroup of Cy(X,). Z is
an Sj;-subgroup of N and so Z’#1. Since RC,(j)<C(j) and C,(j) = X,,
we necessarily have C,(j) =X, Thus j has no fixed-points on Z/X,, and
7 inverts Z/X,. Since j centralizes C(X;)/K, K contains all elements of odd
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order in C(X,) which are inverted by j modulo X,. In particular, Z< K
and K is non-abelian.
ItA now follows that

Z(K)= K' = D(K) = X,,

since L, acts irreducibly on K/X,, and so K is extra special of order 3° [14].
Since [L;, X,] =1, we have a faithful representation of L,~ SL(2,5) on the
4-dimensional symplectic space K/X,. The subgroup R fixes the elements
of Z/X,, which is a non-singular subspace of dimension 2 in K/X, since Z
is non-abelian. But this contradicts (31).

Together with (3H), this proves

(83K) If G is a finite group with property (x) and (2A) (iii) holds, then
¢, and ¢, are powers of the same prime p.

§4. From now on we may assume ¢, = p"1, ¢, = p".  Thus e;=¢,=¢,
and the group H of (3. 2) is the direct product of two cyclic subgroups of
orders ¢, —1 and ¢,—1. Let D be the 4-subgroup contained in H, and
denote the involutions in D by

j = joy j19 j2°
By (3A) and the final remark of §2, we have |[C(D)| = 2(g;—1)(g,—1).
Since w,w, inverts H and H is abelian, it follows that

(4- 1) C(D) = <{H, 601(02>-

By (3A) there exists an element 5 € N(D) permuting the involutions of
D cyclically. We may assume that » has order a power of 3 and that

7. Jo=>J1=>Js—> Jo.
Since ;, @, 7 € N(D), it follows that
(40 2) N(D) = <C(D)’ @iy 7]>-

Since D is characteristic in H, N(H)< N(D). Suppose D<H. Then H is
the unique subgroup of its isomorphism type in C(D) by (4. 1), so that H
is characteristic in C(D) and hence normal in N(D). Thus NH)=N(D) in
all cases. 7 and w0, commute modulo H, so W = N(H)/H is dihedral of
order 12. If D+ H, then (4.1) implies that C(H) = H. We have thus
proved
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(4A) Let D be the 4-subgroup of H. Then N(D) = N(H) = {H, 0y, 031>
and W = N(H)/H is dihedral of order 12. If D+ H, then C(H) = H.

(4B) Let z be a p-element of C(j) inverted by j; or j,. Then z€X,X,,
where e {1,—1}, be {2, —2}. If P is a p-subgroup of C(j) inverted by
j, or j, then P<X,X,, where ac {1,—1}, be {2,—2}.

Proof. Since =< L,L,, we may express r=mnr, with =, L,. Every
conjugate of X, in L, different from X, is of the form #'X_,u for a suitable
U in Xi‘ Thus if T & Xi’ then

(4. 3) T, = uvu

for some v X;, ve X_;, v#+1. Now j, j, invert X; and X_;,. Conjugat-
ing (4. 3) by j, or j, then gives #7! = uv™'u~!. Since z7' is also (#~'vu)™! =
# Wy, it follows that #2 and »~! commute. But #? < X, whereas v € X_,,
and v+ 1. Thus #*=1, and # =1, which proves the first part of (4B).
‘The second follows from the fact that if g1, 21, and ge X, h e X_,,
then <g, k> is not a p-group.

(4C) Let z+1 be in X, X,, with eae€ {1, -1}, be {2, —2}.
(i) If z¢ X, UX, then the number of conjugates of z under H is
é— (@ — 1) (g — 1); these all belong to X, X, — X, — X,.

(i) If ze X, or X,, then the conjugates of z under H consist of all
non-identity elements of X, or X, respectively.

Proof. We note from the definition of H that H normalizes X;, X_;
for i =1,2. The result is an easy consequence of the action of H on X,
X ;.

(4D) Suppose ¢, = ¢, =3 is not the case. Then one of the following
holds:

(i) Some element z+1 in X,X, is in the center of an S,-subgroup of
G.

(i1) For some r+1 in X, or X, c(z) =0 (mod gig3).

Proof. Let {a,b} = {1,2}, and let K= 0(C(X,)). By (3B), K admits
HL, and j inverts K/X,. As an L,-group, K/X, has composition factors
which are faithful irreducible L,-modules over prime fields. In particular,
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a factor which is a p-group has order m, where m = g2, m = ¢33, or m=q}
by (1G). Since D normalizes L, and K, the Brauer-Wielandt Theorem [3],
I1, (6E) implies that |K|,= q2¢3.

An:ange notation so that ¢,=g¢,. Let 5=2 in the preceding paragraph,
and let M/X, be the S,-subgroup of K/X,. If M=X,, then XX, is an S,-
subgroup of C(X,). If P is then an S,-subgroup of G containing X,X, then
Z(P)< C(X,) so that Z(P)<L,K. By Sylow’s Theorem, Z(P)< X,X, for
some g LK. Thus (i) holds since Z(P) +1.

Suppose then that M > X,. Since D normalizes M and X,, we have
that | M| < q%q3, |M|X,| <qiq:. 1If ¢qt<|M/X,|, then g¢?=<q?q? and neces-
sarily ¢, = ¢, so that ¢(X;)=0 (mod ¢3¢}). In this case, (ii) holds for any
71 in X,. By (1G) and the discussion in the first paragraph, we may
assume that L, is irreducible, faithful on M/X,, and that [M/X,| =q? or ¢%/.

We define M, =Mn C(j,;) for i=0, 1, 2. M, is then X, Since
0, € NM) and w;: j, = j,— j;, it follows that o, interchanges M, and M,.
In particular, |M;| = [M,|, and since M > X,, M, and M, are not trivial.
Since j inverts M; and M, ypMpy™ and 9?My~2 are p-subgroups of C(j)
inverted by j, and j,. Thus by (4B)

4. 4 M, < (XoXo)", M= (X.Xo)"

where q, c€ {1,—1}, b, d € {2,—2}. We note that H normalizes each M,,
i=0, 1, 2, by the definition of M,.

Suppose |M|X,| = ¢33, Since M| =q¥*>q=q, and M <X, X,,
we have that |M7'] |X,] > | X, X, = |IM7'X,|, and so M nX,>1. A
similar argument shows that M77" n X,>1. Conjugating these relations by
H then implies that X, and X, are both in M7*. Thus

M, = (X, X,)", M, = (X,X,)"
so that ¢%3 = q,q,, and ¢, = ¢q}. ¢i¢; then divides ¢(X,), and (ii) holds for
any =1 in X,.

Suppose |M/X,| =g Let P be an S,-subgroup of G containing X, M.
If z#=1 is in Z(P), then ze C(X, so that z< XM, and we may write

2 = m2y%%s

where r€ X,, z,e M, for i =0, 1, 2. If z;,=2,=1, then z=rz,€ X, X,
and (i) holds. Assume then that z,#1 or z,#1. Since z 2z, and =
centralize X,X,, it follows that zz, = z3'z7'z € C(X,X,). Conjugating this
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inclusion by j, and j, then gives z,z;' € C(X,X,), z7'z, € C(X,X,) respectively.
Thus 2%, 23 € C(X,X,), so that z,, z, € C(X,X,).

Now M,, X?, X? are normalized by H. By (40) it follows that if
X?N M >1or X?n M>1, then X?<M, or X]< M, respectively. A simi-
lar remark holds for 3, X” and X?'. If the projection of M, into X7
were 1-1, then |[M|<gq,. If ¢,> ¢, then necessarily M, N X?>1 and
X?<M,. If the projection of M, into X} is not 1-1, then M, N X?>1
and X?< M,. A comparison of orders then gives M; =X?, If ¢,=¢,=¢
and if M,NX? = M,NnX7? =1, then M, contains an element of (X, X,—X,—X,)"

and hence —%—(q—- 1)2 such elements by (4C). Since —;:—(q— 12 >qg—1 for

¢ >3, this is impossible if ¢>3. Similar comments apply to M,. Thus

(4. 5) M, =X My=X" if q > g,

M,=X" or X! My,=X" or X7 if ¢ =¢,>3.

Suppose z, +1, so that z, € M, N C(X,X,). Since M; and C(X,X,) admit

H, it follows by (4C) and (4. 5) that M, < C(X,X,). If M, =X, then X?X,X,

is an abelian group. (X2X,X,)* = X,(X,X,)* is then abelian as well, where

=y1if a=1, and a =0y if a= —1. In particular, (X,X,)* < C(X,)nNC(j,).

Let K= 0(C(X,), and let A7 be the S,-subgroup of K. C(X;)= L,k by

(3B). If g (X,X,)* then g= hk, where % is a p-element in L, and keK.
Since ji'gj, =g, we have

h-lj?hjl =k kY € Kn L,=1,

so that h e C(j,j,) = C(D). But |C(D)! is not divisible by p, so that z=1.
Thus (X, X,)*< M. Define M, = Mn C(j;) for i =0, 1, 2. As in the proof
that [M,| = |M,|, it follows that |M;| = |M,]. But we have just shown
that M, = (X,X,)% so that |X,M| =q¢3qi. Thus (ii) holds for any z+1 in
X,.. If M,=X?, then X,(X,X,)? is an abelian group, where =7 if b=2,
B=owym if b=—2. Thus (X.X,)’<CX,) n CU). Ifge (X.X,)’, then g=hk,
where & is a p-element in L, and k= K. As before, 2 must be trivial so
that (X, X, <K. Thus M, =(X.X,)", contradicting the assumption that
|M;| = q,.

A similar argument applies if z, + 1, which completes the proof of (4D).
As a corollary of the proof, we have
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(4E) Let ¢,=¢,. One of the following holds:

(i) X, is an S,-subgroup of K = 0(C(X),))), M= X.,.
(ii) [MIx.] = g% ¢ =g and ¢(X;) =0 (mod gig3).
(iii) |M/X,| = ¢i”% ¢1 = g3, and ¢(X) =0 (mod qig3).

(iv) IM/X,| =q3. If (ii) of (4D) fails, then there is an S,-subgroup
P of G containing XM, such that Z(P) n X, X, + 1.

(4F) 1If q%¢} divides |G|, then c(z) =0 (mod q¢3q}) for some =++1 in X,
or X,

Proof. We choose ¢g,=¢q, and let K, M be defined as in (4D), (4E).
If (ii) or (iii) of (4E) holds, then we are done. If (iv) of (4E) holds and
(4F) fails, then there exists an S,-subgroup P of G such that P=X,M and
Z(P)n X, X,+1. Choose #+1 in Z(P)N X, X,;, and write = =mr, with
m € X, Since X,<Z(M), = and =z, induce the same automorphism on
M|X,. Since z centralizes M, =, acts trivially on M/X, so that =, =1. But
then = = r, € X, and (4F) holds.

Suppose (i) of (4E) holds and (4F) fails. By (4D) there exists an ele-
ment z+ 1 in X, X, such that r e Z(P) for some S,-subgroup P of G. Let
T = mm, where n, € X;. Since we are assuming (4F) fails, =, #+1, = # 1.
Now <(j> is an S,-subgroup of C(z,j) so by (2B), <j> is an S,-subgroup of
C(z). Thus C(z) = {j>O(C(z)), moreover D normalizes O(C(z)) since j, and
J, invert z. Let R be an S,-subgroup of O(C(z)) admitting D; by assump-
tion |R]=q%¢i. On the other hand, the Brauer-Wielandt Theorem shows
that |R]=q¢3q;. If R,=RNC(,) for i =0, 1, 2, then |R,|=|R,|=|R,|=q.q.
By (4B) R, = X,X, where a€ {1,—1}, be {2,—2}. Since (x> O(C(x)), = be-
longs to R,. Since the S,-subgroups of L, and L, are T.I. sets, it follows
that R, = X,X,. An argument already used several times gives

Rl = (XaXb)ﬂi R2 = (Xch)vzy
where @, ¢ € {1,—1}, b, d € {2,—2}. Thus R contains the abelian subgroup

(x> X (X,X,)™ of order greater than ¢,g,. Since X, and X7’ are conjugate
in G, we have that ¢(X,)=0 (mod pq,q,), contrary to the assumption that
(i) of (4E) holds.

In the next two lemmas we shall assume |G| is divisible by giqi. By
(4F) there exists an element =1 in X, or X, such that ¢(z) =0 (mod ¢3¢3).
Set {a, 8} = {1,2}, and choose 8 to be that subscript such that » € Xj.
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4G) If qiq} divides |G|, then giqi divides ¢(Xp), where g is chosen
as above.

Proof. Choose z+ 1 in Xj so that ¢(z) =0 (mod ¢¢3), and let M=0(C(x)).
Since D normalizes M, we may choose an S,-subgroup R of M which
admits D. By (3C), C(zx) = L,M and L, N M =1, so that |R| =qiq;. We
define R, = Rn C(j;) for i =0, 1, 2, and note that R,=<C(j)) N M= X, by
(3C) (iii), so that |R,|=<gs.  Since |R,] and |R,| are not greater than
d.qs it must be the case that R, = X3 and |R,| = |R,| = ¢,q5. Moreover,
by an earlier argument we may conclude that

Ro = XB’ Rl = (XaXb)ﬂ’ Rz = (Xch)vzy

where a, c€ {1,—-1}, b, d = {2,—2}. But now H normalizes R,, R,, and
R,, and so H normalizes R = R R,R, as well. Conjugating the inclusion
r€ Z(R) N Xz by H then gives X;=<Z(R), so that X;<Z(X,R). This com-
pletes the proof.

(4H) Suppose the hypothesis of (4G) holds. Let K= O(C(Xp)), and
P =X,M, where M is the S,-subgroup of K. Then the following hold:

(i) M/X; is elementary abelian of order ¢ig3.
(i) With a suitable choice of notation
P = (X.Xp) (X-.X)"(X, X" or
P = (X, Xp) (X_oX_5)"( X X_g)"".

Proof. M]|X; is abelian of order g¢i¢? by (3B), (4G). Let M;=MnC(j;)
for i =0, 1, 2; we have M, = X; and [M,, M,]<X,. Since M, and M, are
elementary abclian, it follows that M|X, is as well, which proves (i). Now

M, = (XeXb), M, = (XX9)",
where a, ¢ € {1,0,}, b, d € {1,05}. Since X< Z(P), we see that XU = cx9),
X =CX:), so that <X§'% XL =<C(X,). Suppose a=¢, so that

X3 X5 =<X} X§>. Then (X X} X}>=<C(X.,), and so in turn,
(X, X", X”>=<C(Xg). Conjugating this last inclusion by w, then- gives
{X-.s X7, Xf).éC(Xg). In particular, <X,, X_.,>"=<C(Xg), which is im-
possible since j, & C(Xg). Thus a#c¢. By a suitable choice of notation,
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we may assume a=a, ¢=1.  Now (X%, Xg”2>$C(XB). Conjugating
this inclusion by w, then gives (X, Xa7) < C(Xp). If b+ d, then (Xp, X_p>"
= C(Xp); which is again impossible since j, & C(Xz). Thus b =4d, and the
proof of (4H) is complete.

§5. We shall prove in this section that ¢’qi divides |G| if it is not
the case that ¢, =¢,<11. Set E = {n,j>. By the final remark of §2,
C(E) = {oy, 65 %, ny, which has the normal abelian 2-complement <o?, o3>.
Set
V = <0§, 0‘%>’ V1 = <0'§>7 V2 = <0'g>-

Since N(E)/C(E) is isomorphic to S; by (3A), there exists an element ¢ of
order a power of 3 in N(E) permuting =, nj, j cyclically. By (1. 9) the
elements z,, v, € N(E), and indeed, r, inverts V, and centralizes V,, r, in-
verts V, and centralizes V,. Since z = r,;z,, « inverts V. Thus

(5. 1) N(E) =<V X E, 74 75 O.
Let V be the character group of V. We define the following subsets

of V:

Vi={2aeV:av,=1},

Veo={xeV:av,=1},

M=V -V, ,-V,

N=V,uV,—{1},
where 1 stands for the trivial character of V. The union V = M U N U {1}
is disjoint, and
(5. 2) |M| = v,0,— 0, — v, + 1= (v, — 1) (v, — 1),

IN| = (@, — 1) + (v, — 1),

where g; + ¢ =2v,. An element % of N(E) induces an action on V by the
equation 2"(¢") = 2(g), g€ V.

(5A) Suppose there exists an orbit of length 3 in ¥ under the action
of ¢ contained in M. Then |G| is divisible by giq.

Proof. If 2 is a character in this orbit, then the hypothesis implies
that the orbit of 12 under N(E) has 12 distinct characters. As a character
of VE/E, 1 induces a character 2* of C(E)/E of degree 2 with 6 conjugates
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in N(E)/E, which by [1] corresponds to a block B of G with defect group
E. In NE)n C(j) these conjugates form 3 orbits of 2 characters each,
which then correspond to blocks B;, B, B; of C(j) with E as defect group,
and by [6], Bi=B for i =1, 2, 3. It is easily seen from the structure of
C(j) that each B; has four irreducible characters of degree (g, — ¢) (g, — ).
Since n ~nj in C(j), there exist blocks b;, b;, of C(n,j) = C(E) such that
b$yY’ = bS5y’ = B;,.  In particular, B; has one column of decomposition num-
bers from each of the sections of C(j) represented by 1 and j, and two
columns from the section of n. The degrees of the corresponding modular
characters are (g, — ¢) (¢; — ¢), (g, — ¢€) (g2 — ¢), 2, 2 respectively. B itself has
one column from the section of 1, and 3 columns from the section of j.
The corresponding degrees are f, (g,—¢)(gz—¢)s (g~ ¢€)(ga—¢), (g1 —€)(gz—¢),
where f is an integer. We can assume that the matrices of decomposition
numbers for B,, B are

1 j n 1 7

1 1 1 J; 1 1 1 0
1 1 —1 -—9d; 1 1 -1 —o
1 —1 1 —d; 1 —1 1 —o
1 —1 —1 d; 1 -1 -1 )

where 6 = +1, §,=+1, i=1, 2, 3.

Apply now the formula of [2] III (2A) to the groups G and C(j) with
=y, =y, =7 and the column of decomposition numbers of the modular
character of C(j) in B,, A computation then gives

|G| = (¢:9:)* (g1 + ¢) (g2 + ) f.
Thus q¢iq¢¢ divides [G].

6B) Let {a,8} = {1,2}. Suppose Vz+1 and ¢ centralizes V. Then
g =1.

Proof. As in the proof of (3F), we can verify that the conditions of
(3E) are satisfied in X = C(V)/Vs.  The corresponding Z and L are V,/Vy
and L,Vg/V, respectively, and so g,=<7.

6C) |G| is divisible by (g,4,)* unless one of the following cases-holds:
(i) ¢ =g, =11,
(i) ¢=¢=09.
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(iii) min {g;,¢,} =3, 5 or 7.

Progf. If V,=V,=1, then necessarily ¢, =g, =3, a case contained in
(iii). If V+ 1, and ¢ centralizes V, then necessarily V, or V, is non-trivial,
and the result is implied by (5B). Thus we may suppose that V #1, and
moreover, ¢ does not centralize V. In particular, ¢ does not centralize V.
If ¢ has an orbit of length 3 in V contained in M, then (g,g,)* divides |G|
by (5A). Thus we may suppose that no orbit of length 3 of ¢ in V is
contained in M.

Let » be the number of characters in M fixed by ¢, The remaining
(v; — 1) (v, — 1) — 7 characters in M then belong to s orbits of ¢ which meet
N. Let ¢ be the number of orbits of length 3 of ¢ contained in N, and
let w be the number of characters in N fixed by &  The fixed-points of
¢in V form a subgroup W <V of order 1+7+w. Since there are a
total of s+¢ orbits of ¢ of length 3 in V, we have

(5. 3) [W|=1VI|—3(s+1t).

Moreover, each such orbit contains one or more characters in N, so by
(5. 2)

(5. 4) sHt<v,+v,—2

[W| divides [V|— |W], and since [V| and |W| are odd, it follows that
2|W| divides |V| — |W|. This together with (5. 3) then gives

(5. 5) 3(s+¢)=0 (mod 2|W]).

In particular, lWls%(s+t), and so ]Vls%(s—k t) by (5.3). Using
(5. 4), we then obtain the inequality

(5. 6) 21)11)2 S 9(1)1 + 1)2 - 2)-

Suppose v, >5 and v,>5. (5. 6) then implies that v,<9, v,=<9. If
v,=v,=9, then s+¢=<16 by (5.4). But (5. 3) and (5.5) cannot simul-
taneously be satisfied. If v, =v, =7, then s+ ¢=<12 by (5. 4), and s+¢=12
must be the case; otherwise 2|W| > 3(s+ #). But if s+ ¢ =12, then
2|W| = 26, which does not divide 36. If {v,v,} = {7,9}, then (3K) would
be contradicted. By a relabeling of indices, we may thus assume v,<5. If
v, =5, then v,=<27 by (5.6), and (2A), (3K) then imply that ¢, =¢,=9
or ¢y =¢,=11. If v,<5, then ¢,<7. This completes the proof of (5C).
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(6D) Suppose min {g,,¢,}=<7. If ¢+ ¢, then |G| is divisible by
(¢:192)°%

Progf. We choose notation so that ¢, >g¢g, = p, where p is 3, 5 or 7.
If p =3, let R be the subgroup of L, given by (3F); if p =5 or 7, so that
v, =3, let R=(V,)% The proof of (3F) shows that in every case, |C(R)] is
divisible by p3. Let P then be an S,-subgroup of C(R) containing X,, so
that Z(P)< C(X,). Since C(X,) = L,K, where K = 0(C(X,)), any element =
in Z(P) may be written in the form z = c¢d, where ¢ is a p-element in L,
and de K. Now P<C(R) and so [r,R]=1. On the other hand [z, Rl=
[c,R] (mod K). Thus [¢,R1<L, N K=1, and indeed, ¢ =1 since c is a
p-element. We have thus shown that Z(P) << M, where M is the S,-subgroup
of K. If Z(P)n X, =1, then certainly M> X,, and R has non-trivial fixed-
points on M/X,. If Z(P)n X,>1, then X,< Z(P) since X, has prime order.
In this case, P<<C(X,), and the above argument showing that Z(P)< M can
be applied to yield P<M. Again M>X, and R has non-trivial fixed-
points on M/X,. Thus (ii), (iii) or (iv) of (4E) must hold. (iv) is impos-
sible by the proof of (1E) and the fact that R has fixed-points on M/X,, and
so (gq,q,)* divides [G].

§6. We assume from now on that |G| is divisible by (g,4,)3. Choosing
notation as specified in (4G), we have the two cases

Case A: P=(X,Xp) (X-.Xp) (X, Xp)"".
6. 1)
Case B: P= (X.Xp) (X-oX-p)"(X.X_p)".

(6A) Pn P =1,

Proof. Let P~ = P”"1":, Since H normalizes P and P-, it follows that
H, and in particular D, normalize PN P~. Since PN P~ N C(j;) =1 for
i =0, 1, 2, it follows by the Brauer-Wielandt Theorem that Pn P~ = 1.
For each w in W = N(H)/H, let o(w) be a coset representative of w in
N(H). We define the subgroups
P/, = PN o(w)'Po(w),
6. 2)
P} = PN o(w) P o(w).
Clearly P;, and Pj are well-defined and admit H. If » e N(H) and w=Hz,
we shall occasionally write P;, Py in place of P,, Pj. We shall call a
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subgroup of the form X}, re {+1, +2}, i =0, 1, 2, appearing in (6. 1) a
root subgroup of P.

(6B) Let we W. Each root subgroup of P is contained in P, or Pj.
P,, Py are the products of the root subgroups of P contained in them, the

root subgroups being ordered from left to right in the order they appear
in (6. 1. P=P,P;=P;P), and P, N P}=1.

Proof. 1t is clear from (6. 2) that each root subgroup of P is in P}, or
Pl  Moreover, P, N P4 =1 by (6A). Since P, and PJ admit D, P, and
P}, can be factored as required by the Brauer-Wielandt Theorem. Finally,
[Pol - [Pyl = (¢:02)% so that P= P}, Pj = P}P,. '

(6C) With suitable notation, case B of (6. 1) holds.
Proof. Suppose case A of (6. 1) holds, so that
P = (X.Xp) (X-.Xp)" (X.Xp)".

Since [X!', X3] =1, we have [X,, Xj] =1 by conjugating by 5. Conjugating
the last relation by wg, we have as well [X,, XZZ] =1. Now P.{{,=X‘,XZ“XZZ,,

where o(w)= w,9* (mod H), so in particular
X7, XU1<X.X".X0I'n Xg=1

Thus [X?,, X7*] =1, from which we conclude that [XZ;, X,] =1 by conju-
gating by 5. Conjugating the latter by wz gives [X7,, X,]=1 as well. We

have thus shown that
(Xpy Xgp X7y X70p X710 < C(Xo).

Let g be any element in X}, XZ’;, X%, or X' If E=0(C(X,), then
C(X,) = LgK by (3B), so we may express g = cd, where ¢ is a p-element in
Lg and de K. Let j, i=1 or 2, be the involution in D commuting
with g. Since D normalizes K, it follows that [j,c]e K. On the other
hand, D normalizes L;, and so [j;,cle Lg.  Thus [j;,c]=1, since LynK=1.
The element ¢ then centralizes D = {j, ;>, which implies that ¢=1. We
have now shown that

(Xp X-a X% XU <M,

where M is the S,-subgroup of K. If M, = Mn C(j,) for i =0, 1, 2, then
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My=X., Mi=<{XpX-0)", My=(X_p X D"

and necessarily these inclusions are equalities by the Brauer-Wielandt Theo-
rem. If we define P= XM, then |P| = (q,9,)* and X,<Z(P). Replacing
X, by X_, and P by P“ then gives case B for P in C(X,).

We may henceforth assume that case B in (6. 1) holds. The following
table gives the factorization of PJ for we W in this case.

o(w) Py
1 1
o, Xo
wgm? X2,
0,057 XX Z;
0.0 X1 XY

(6. 3) 0 XXX
o X X1 X",
7 X X2 X1 X1
7 X.XpX2 X"
o’ XXX X0 X2
g Xp XL X2 X2 X",
[OMOY] P

We define the subgroup B=HF. Since H<N(P) and Hn P=1, the
order of B is (g, — 1) (g, — 1)giqs.

(6D) For we W, |Bo(w)B| = |B| |Pjl.

Proof. By the definition of B and (6B) we have Bw(w)B = Bw(w)HP,P%.
Since the transform of HP, by o(w)™! is contained in B, it follows that
Bo(w)B = Bo(w)Py. Now suppose bo(w)u = bw(w)u, for elements b, b, € B
and #, u, € P}. Then 576 = w(w)u,u'o(w)™t. Since b7'd is a p-element
of B and P< B, it follows that 576 € P. On the other hand, o(w)u,% " w(w)™?

o(w)Plow)*<P-. Thus b7'%b€ PN P~ =1, and so b, =b, u, =u. This
completes the proof. ‘

(6E) Let 7 € {040}, and we W. Then
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(i) rBo(w) € Bo(w)B U Bro(w)B,
(ii) o(w)Br < Bo(w)B U Bo(w)rB.

Proof. It suffices to prove (i), since (ii) follows from (i) by taking
inverses of the subsets in question. Now rBow(w) = rHPw(w) = HrP.R!o(w)
BrPlo(w). If (P))*™ <P, then BrP"’ow(w) € Bro(w)B and (i) holds. Assume
then that (P})*™<P-, Since P! =X, if r =0, and P7= X7 if 7 = ogp,
it easily follows that (P?)™*™ <P. But now BrPjo(w)= BrPir™. ro(w),
and so it will be sufficient to show that rP/r* < BrP?. This, however, is
a consequence of the corresponding double coset decomposition in the groups
SL(2,q,) and SL(2,q,).

6F) Let G=BN(H)B. Then G is a subgroup of G of order
(0122 (@2 — 1) (g2 — 1) (1 + @19, + ¢3q?). G is the disjoint union of double co-
sets Bo(w)B, where we W.

Proof. G is closed under group multiplication by (6E), so G is a sub-
group of G. We claim that BN NH)=H. Since H=<B N NH) and
B = HP, it follows that if B n N(H)> H, then there exists an element =1
in P such that r& BNN(H). But then [z, Hl< PN H=1, so that z&C(H)=< C(D),
which is impossible by (4. 1). This together with the preceding facts is
enough to show that G is the disjoint union of the double cosets Bw(w)B
with we W, (see [8]). The order of G then is immediate from (6D) and
(6. 3).

§7. We continue with the notation of §6.

(7A) Let D normalize the p-subgroup A of G, and define A;,=ANC(j,)
for i=0,1, 2. If 4,=<Z(A) for some { in {0, 1, 2}, then [A4,_,, 4;: 1< A,,
where the indices are reduced modulo 3.

Proof. This is a restatement of [3] IT (7E).

(7B) The root subgroups of P contained in M satisfy the following
commutator relations:

(i) X2 X¥1=1 or Xg [X"g X"5] = X,

(ii) All other commutator relations between root subgroups in M are
trivial,
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Proof. We have [X7g, X' 1=[Xp X2 1°8" =1, and [X7p, X", 1=[Xp X7,1°8"
=1. The remaining commutator relations between root subgroups in M
not of type (i) are clearly trivial, so (ii) is proved. Since H is transitive
on the non-identity elements of Xj, it will be sufficient to show [XZs X7g] # 1
in order to prove (i). But if [X’l,g, XZZ] =1, then [X,, X’,;z] = [ng, XZ’]"’B”=1,
so that (X X_g»”* < C(Xp). This is impossible since j, & C(Xp).

(7C) X, stabilizes the following chain of subgroups:
P> X1 XU X1 XX > XUXT XX > X1 XX > X 15X, > X > 1.

Proof. The second term of this chain is M, which is normal in P.
Since M|X; is abelian, the remaining terms are clearly normal in their
predecessor. The chain is then a normal one. Now [XZZ,‘XB] = 1; conjugat-
ing this by wgy?® gives [X,, XZZ] =1. Thus X, even centralizes XZ:;X,;. The
complex X,X",X"sX; is a subgroup by (6. 3) and the factor group X, X" X"sXs/Xp
admits D. Since X"3Xy/X, is central in this factor group, we have by (7A)
that [X,, X%1=<X"sXp so that [X,, X7.X"sXgl<X"6Xs X, X1 X".X"6Xs is
a subgroup by (6. 3) and the factor group of this by X”sX, admits D. Since
X, X?.1< X, and [X,, X",]< X"sX,s, (7A) implies that [X,, X7 1< X".X":X,
so that [X,, X2 X7 X"sXs1< X”,X"Xs.  Finally, PIX",X"3X, admits D, and
the image of X! in this factor group is central. A third application of
(TA) gives [X,, X< X! X", X"3Xs which completes the proof.

We construct one other subgroup G of G along lines similar to those
for G. Define then

P =X, X"oX", N=<(Hwpn, W=NH

We note that H normalizes the subgroup P and that Pn P =1 For
each we W, let

P, =P N ow)Po(w),
P2 =P n o(w)Po(w).

P}, P are well-defined subgroups of P, and each root subgroup of P con-
tained in P is either in P, or P, Moreover, PP = PzP.,. The following-
table gives the factorization of P,
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o{w) pPr

1 1

og > 4F
(7. 1) wgn? X2

7 XpXZg

7 XX

g P

Finally, define B= HP. B is a subgroup of order (¢, — 1) (g, — 1)g3. The
next three lemmas are the analogues of (6D), (6E), (6F), and are proved

in much the same way.

(7D) |Bo(w)B| = |B| |P4| for weW.

(7E) Let 7 e {og, 0’} and let we W. Then
@) rBo(w) S Bo(w)B U Bro(w)B.

(ii) o(w)Br < Bo(w)B U Bo(w)rB.

(7F) Let G = BNB. Then G is a subgroup of G of order 73(g3—1)
(e +1) (g, — 1. G is the disjoint union of double cosets Bw(w)B, where
weW.

7G) Let C(j)=G N C(). Then C(j) = LgH.

Proof. The inclusion C(j)=LgzH is clear. Suppose there exists an ele-
ment ¢ in C(j) not in LgH. Since C(j) = L,L,H and L, = X.H, U X,H,0,X,,
we may express ¢ = uv, where u € LgH, ve X, or X,H,0.X,, and v+ 1.
IfveX,, then v=u'ceGnX, Since PNG=2~P is an S,-subgroup of
G and P=<P, X,), thisis impossible. If veX,H,0,X,, then v=u"'ceGN Bo,B.
By (6F) and (7F) we see that G N Bo,B =¢. Thus C(j) = LH.

Now [XgX'gl=1 and [XzX7%1=1. If we conjugate these relations
by 7 and wgy respectively, we then have [XZ,XZZ]= 1 and [X75 Xp1=1.
The subgroups

(7. 2) U=X3X", U*=XXp
are thus abelian of order a5

(7H) Let U, U* be defined as in (7. 2). Then the following hold:
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(I) G=<(D,p.

(I1) |U| =|U* =4q%; U and U* are normalized by C(j);
UnU*=UnCG)=U*nCG) =1

(III) All involutions in C(j) different from j are conjugate in C(j).

IV) [G: UCHI <gqi+gs+1.

(V) Every class of €(j)-conjugate elements of U meets C(j,) = C(7,)N G.

Proof. (1) is obvious. By definition |[U]|=|U*| = g5 Now [Xzﬁ,X’_’;]=XB;
conjugating this by wg? then gives [Xp Xpl= XZ;, which implies that
Xp=<N(U). Since wge N{U) as well, it now follows that Lz=< N{U), and so
C(j) = LgH=N(U) by (7G). Since w,0s normalizes C(j) = LgH and trans-
forms U onto U*, we have C(j)<< NWU*) as well. U and U* are inverted
by j, so necessarily C()H) N U =CG) NnU*=1. To complete the proof of
(I1), we note that U N U* admits D, UNU*N C(j;) =1 for i =0, 1, 2, and
apply the Brauer-Wielandt Theorem. (IV) holds since |G: UC()| =q5+qp+1.

The group C(j) = LgH can be described in the following manner. Let
F, be a Galois field containing both Fi, and Fq, as subfields. Since ¢,—1,
g, — 1 are divisible by the same powers of 2, we may choose an element
0 in Fq, N Fq, of order a power of 2 such that 4 is a non-square in Fq,
and in Fq,. If §,=4,=45 in the notation of the beginning of §3, then &,

acts on Lg as (1 5), and &% = A,(37)hy(67"). Let SL(2,g5) be embedded
in the natural way in GL(2,q), and let Z be the subgroup of GL(2,q) defined
by

Z=[(F‘ ﬂ);pEan, psbo].

If ¢ is the inverse of the isomorphism ¢, of SL(2,qp) onto L, then ¢ can
be extended to an isomorphism ¢ from LgH, onto SL(2,¢p)Z by defining

o ha(v‘l)—+<” U).

That ¢ is an isomorphism follows from the relations [Lg, H,1=1, LyNH,=<{j>.
Finally, ¢ can be extended to an isomorphism ¥ from LzH onto <SL(2,qp),
z, (* ;)> by defining

v h0—+<1 5).
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That ¥ is an isomorphism follows from the fact that %, acts on L, as
(1 5), and that

= me e, (1 5,)=(75) (7 5)-

Suppose a, ¢ are matrices in <(SL(2, gp), (1 5)) and Z respectively such
that (ac)? = (1 1). Since (ac)? = a%c?, it follows that

¢=arezZnSLeg, (1)

But the intersection Z N <SL(2, gp), <1 5)} is easily seen to be

(7 )7 m ).

Thus ¢ must be of the form (” ,u>’ where pe<>. Since (” #) =

('" #_1><1 ;z2>’ we see that ac € <SL(2, gp), (1 5)). The normal subgroup
Lg(hy> of LgH then contains all involutions of LgH.
To prove (III) it will be sufficient to show that all involutions in

{SL(2,4qps), (1 5)) other than (”_1 _1> are conjugate in (SL(2, qﬁ),<1 5),

Zy to (1_1). If { is such an involution, then i’ = (1_1) for some
g€ GL(2,q5). Now we can express g =cd, where ¢ € SL(2,¢q5) and d is a
diagonal matrix, so that = (1 _1>d = (1__1>. Finally, U admits LzH
and j inverts U, It is a easy consequence of the proof of (1E) that L, is

even transitive on U — {1} so that (V) holds. This completes the proof of
(7TH).

By (7H) and [3], I, there exists a Desarguesian plane r whose points
and lines are in 1-1 correspondence with subsets of G of the form ¢'jUg
and ¢7jU*j, g G. Moreover, there exists a homomorphism f of G into
coll(z), the group of collineations of =z, such thst f(G) contains the pro-

jective group PSL(3,q5). Thus we have a normal series
(7. 3) GD> G,> K> 1,
where K is the kernel of f, |K| is odd, G/G, is cyclic, and G./K~PGL

(3,g) or PSL(3,qp). In particular, |GJK| = qB (g —1) (g5 — 1) where
d =1 or 3, the latter case occurring only if g;= 1 (mod 3). But by (7F),
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Gl =q3(g3—1)(gg+ 1) (q.—1. Thus dg,—1)/(gg—1) is an integer. If
4, <gg and ¢, = p", gg=p"8, we may write ng=n,+f, where =1
But then

P —1=p"p’ —1>p'(p"« — 1) =3(p" — 1),

and d(g, —1)/(gg —1) cannot be integral. Thus g¢,=gqp, so that by (4E),
g. =g or ¢, =qj This together with (5C) and (5D) gives

(7I) If G is a finite group with property (x) and (2A) (iii) holds, then
¢, and ¢, are equal, or one is the cube of the other.

This completes the proof of the theorem stated in the introduction.

We conclude with an identification of the group G. Now the preced-
ing proof shows that g, = g3 or ¢, = ¢§. Let g3 = ¢, and define K, = (H)*".
Clearly K,=1 if ¢, =g and K, = (H,)** is cyclic of order ¢*+¢+1 if
4. = q3. In either case, K, is a cyclic characteristic subgroup of H, so that
{@;, w5 5> Induces an abelian group of automorphisms on K, In particular,
» must centralize K,. K, then centralizes (L, H,7) = G, and so Ko_<_Z(C).
Thus K,< K, where K is the normal subgroup of (7.3). Moreover,
1GIK,| = ¢(¢* — 1) (¢* — 1) by (7F).

If g1 (mod 3), then PGL(3,q), PSL(3,q), and SL(3,q) are isomor-
phic groups of order ¢¥(g®* —1) (g2 —1). Since |G,: K|=¢*¢* —1)(¢*—1) in
this case, it follows that G = G,, K= K,, and G/K,~SL(3,q).

Assume then that g=1 (mod 3). If G,/K~ PGL(3,q) the above argu-
ment will show that G = G,, K=K, so that G/K,~ PGL(3,q). We assume
then that G,/K~PSL(3, q), so that either |G:G,] =3, |K: K, =1, or
|G: Gyl =1, |K: K, =3. In the latter case, G/K,~ SL(3,q) or PSL(3,q)X Zs
by a result of Steinberg, [17]. The remaining case |G: G,| =3, K=K,
leads to a contradiction if G/K # PGL(3,q). Indeed, since ¢g=1 (mod 3),
we have

@+qg+1=0 (mod 3), ¢2+¢g+1%0 (mod 9),

so that |N| contains the full power of 3 dividing |G|, and thus NnG, < N.
On the other hand, L; has no normal subgroups of index 3, so that L,
and in particular, Hp, are contained in G,. The definition of incidence
in z given in [3], I, shows that the point jU is not on the line jU*. The
q +1 involutions j, j;¢ with ¢ in Xz belong to ¢+ 1 points of r, namely
the g+ 1 subsets of the form 57%jUy? sy ™'jUyps with s>=1¢, s in X, res-
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pectively, and these points all lie on the line jU* by [3], I, (2D). More-
over, these ¢+ 1 points are distinct. Indeed, if 5 2jUp? = s~1y~*jUys, then
9 Un? = jt sy~ 'Uys, where ¢ =2  This is impossible since j¢ has even
order. If sily~1jUyps,=s"19~1jUys, then s;s~'eC) NNU") < NC(HNU"=NX-p).
Since s,;s~'€Xjp, this implies that s, =s. But the collineations on = induced
by H, leave the point jU fixed and the line jU* pointwise fixed, so that
H,=G, Thus HH,<G, Since |H: HH,) =2 and N/H is generated by
involutions, it now follows that N< G,, which is a contradiction. We have
thus proven

(7]) Let ¢ =min{q,, ¢}, and let K, = (H)*!. Then K, is central in
G, and G/K,~SL(3,q), PGL(3,q), or PSL(3,q)XZs.

§8. We now indicate how the arguments of [3], II, may be modified
in order to prove (3E). Accordingly we shall adopt notation conforming
in an obvious way with that of [3], II, so that a number of symbols al-
ready used will have different meanings in this section. Thus we shall
assume that G is a finite group satisfying the following conditions.

(I) G has an involution j such that C(j) = UX L {j,>, where L~ SL(2,q),
U is a cyclic group of order dividing % (@+¢) withe =241, g=-¢ (mod 4),

and j; is an involution inducing an automorphism of class 7y on L.

(II) j~j, in G.

We wish to show that |G| is divisible by ¢3 if ¢>3, G=~M,; or SL(3,3) if
g=3, and ¢q=<7 Iff U = 1.

From (1. 8), we see that an S,-subgroup S of C(j) is of quasi-dihedral
type, with center (j>. As in (2B), we see that S is an S,-subgroup of G.
Now (I), (II) imply that G has no normal subgroup of index 2.

If ¢ = —1, then C(j) is isomorphic with the quotient group of GL(2,q)
by the subgroup of order —;—(q— 1)/1U| in its center. Then the desired
results follow immediately from Theorem (1A) of [3], II.

We henceforth assume that e =1. Setting D = ¢j,j,> and using (1. 9),
we see that C(D) = Dx U x W, where W is cyclic of order %(q +1). Also,
from (1. 8), L contains an element f of order 4 which is inverted by j,,

and C(f) has order 2(g —1)[U|. The element ¢ = fj, is an involution such
that ¢: j, =4, = jj..
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As in [3], II, we can apply the results of [2], III, §8. The principal
2-block of G consists of four irreducible characters %, =1, %, X, X; of odd
degrees 2; = 1;(1), and 2" irreducible characters x,, x* with 1< p=<2"2—1,.
of even degrees, where 2" is the order of the S,-subgroup S of G. The
relations (3. 1), (3. 2) of [3], II hold, and there exists a function ¢ on C(j)
such that 4+¢ is an irreducible character of C(j) whose kernel contains j,
and such that

X:(79) = —6;, + 5:0(9), X(79) = 8; — 8,0(9),

81 . . |
%(79) = —08s 2,(79) = —28; + 6,0(9), X(jg) = *o(g),
for 2-regular g in C(j). Moreover, we have
o(1)=2+ 2"% (mod 2"71),

Since C(j)/<s> is isomorphic with the direct product of PGL(2,q) with a cyclic
group, its irreducible characters have degrees 1, ¢, ¢—1, ¢+ 1. It follows
that ¢ is an irreducible character of C(j) and that

8. 2) o(1) =q+ 1.

Further, the relation (3.6) of [3], II holds, while the relations (3. 7) are
replaced by

(8. 3) 0,8,=2—(, 0,8, =—¢q, 03%;=—142""1 (mod 2").

In particular, the degrees 1, x;, , =, are all distinct. The order formula
(4F) of [3], II is replaced by

(8. 4 Gl = 21Ulga + 1) (g — 1)'p
®5  p=(1+ 1)l + 0)/w — 307 = (1= 2 Jeulw, + (e + 0,0)%

The lemmas (4D), (4E), (4H) of [3], II may now be shown to hold in
the present situation, without any significant change in their proofs. We
then have

(8A) It suffices to consider the case that Z(G) =1. If this is satisfied,
then C(z) = C(j) whenever 1z & Z(C(j)).

Proof. Since Z(G)< Z(C(j)) = U<y> and j & Z(G), it follows that Z(G) < U.
If Z(G) #1, then we can use induction on the group order to show that
|G/Z(G)| and hence |G| are divisible by ¢
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The second statement is proved as in [3], II, (4G), except for the
possibility that

g=5, U] =3, |G: ClU)| =3.

In this case C(U) must be normal in G, for otherwise G would have a
quotient group isomorphic with the symmetric group of degree 3 and so
would have a normal subgroup of index 2. Since C(j)/U has no normal
subgroup of index 3, C(j)<<CU). Then Z(C(U))< Z(C(j)), so that Z(C(U))
=U. Hence U is normal in G, and G/C(U) is isomorphic with a subgroup
of the automorphism group of U, a contradiction. Precisely as in [3], II,
§9, we may prove

(8B) If U+1 and Z(G) =1, then |G| is divisible by ¢&

From now on we assume that U =1. The arguments of [3], II, §10
apply, with rather obvious changes because the relations (8. 1) to (8. 5) hold
rather than the corresponding relations of [3], II. Thus the contradiction
at the end of the proof of [3], II, (10E), which now applies for prime

1

divisors p of [ = 7(q—l— 1), stems from the relation

e, —6d)(q@+1) = (%, 4+ ) (g— 1),

where 7 =3 or 5/3, which leads to the relation 33, = #(g + 2) or 155,=¢(q +4),
where ¢ is an integer, an impossibility for =1 (mod 4). The final contra-
diction on p. 150 of [3], II becomes the contradiction z; = ¢*q — 2)/(2¢ — 1).
We thus obtain

8C) If U =1, then l=%(q+1) is 1, 3, 5 or 15.
The possible values for g are then 5, 9 or 29. In each case we can
compute the possible values for x,, z, x;,, We have the eleven cases

(1) ¢=5; 2,=125, 2, =21, %3 =105; |G| =2*-3%.5%-7.
(2) g=5; 2,=19, x, =75, 2;=57; |G| = 2¢-32.52.19,
(3) ¢g=5; 2,=35 x,=85, x;=119; |G| =24-32:5-7-17,
(4) g=9; %, =729, %,=73, ;3 =0657; |G| =25.3%-5.73,
(5) ¢=9
(6) g=9
q

(7)

s %, =135, @, =201, @, =335; |G| = 2°-3%-5%-67.
;@ =71, @, =567, x;=497; |G| =25.31.5.7.71.
=29; @, =29-41, x, =17-29, @, =17-41; |G| = 2¢-32.5.74.17-29 - 41.
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(8) q=29; ®, =29, ,=23:271, 3 =23-29-271; |G| =2¢-32-5-7.29% 271,
(9) gq=29; #,=23:29, ©,=3-29+37, %,=3-23-37; |G|=2¢-32.52-7%-23.29.37.
(10) ¢ =29; #,=3+13-29, 2,=29113, 2,=3-13-113; |G| =2¢-3%-5.7%+13-29-113.
A1) q=29; x, =811, x,=23%-29, =z, =23%-811; |G| =2¢-34-5.7-292.811.

All these cases except (1) can be ruled out by a combination of Sylow’s
Theorem and the theory of blocks of defect 1.  This completes the proof
of (3E).

REFERENCES

[ 1] R. Brauer, Zur Darstellungstheorie der Gruppen endlicher Ordnung I, Math. Z. 63
(1956), 406-444.

[ 2] R. Brauer, Some applications of the theory of blocks of characters of finite groups II,
II1, J. Alg. 1 (1964), 307-334, 3 (1966), 225-255.

[ 371 R. Brauer, On finite Desarguesian planes I, I, Math. Z. 90 (1965), 117-123, 91 (1966),
124-151.

{41 R. Brauer, Investigations on groups of even order, Proc. Nat. Acad. Sci. 55 (1966),
254-259.

[ 51 R. Brauer, On blocks and sections in finite groups II, Amer. J. Math., 90 (1968), 895-925.

[ 6] R. Brauer and C. Nesbitt, On the modular characters of groups, Annals of Math. 42
(1941), 556-590.

[ 7] R. Brauer and M. Suzuki, On finite groups of even order whose 2—-Sylow group is a
quaternion group, Proc. Nat. Acad. Sci. 45 (1959), 1757-1759.

[81 R.W. Carter, Simple groups and simple Lie algebras, J. London Math. Soc. 40 (1965),
193-240.

[9] E.C. Dade, Blocks with cyclic defect groups, Annals of Math. 84 (1966), 20-48.

[10] L.E. Dickson, Determination of all the subgroups of the known simple group of order
25920, Trans. Amer. Math. Soc. 5 (1904), 126-166.

[117 J. Dieudonné, La géométrie des groupes classiques, Springer, 1955.

[12] P. Fong, A characterization of the finite simple groups PSp{4,q), G.(g), Di(q), II, to
appear, Nagoya Math. J.

[13] G. Glauberman, Central elements in core-free groups, J. Alg. 4 (1966), 403-420.

[14] P. Hall and G. Higman, The p-length of a p-soluble group and reduction theorems
for Burnside’s problem, Proc. London Math. Soc. (3), 7 (1956), 1-42.

[15] G.A. Miller, The groups of isomorphisms of the simple groups whose degrees are less
than fifteen, Arch. Math. u. Phys. 12 (1907), 249-251.

[16] I. Schur, Untersuchungen iiber die Darstellung der endlichen Gruppen durch gebrochene
lineare Substitutionen, J. fur reine u. angew. Math. 132 (1907), 85-137.

[17] R. Steinberg, Générateurs, relations, et revétements de groupes algébriques, Colloque
sur la Théorie des groupes algébriques, Brussels, 1962.

[18] W.]J. Wong, A characterization of the finite projective symplectic groups PSp,(q),
Trans. Amer. Math. Soc., 139 (1969), 1-35.

University of Illinois, Chicago, Illinois
University of Notre Dame, Noire Dame, Indiana

https://doi.org/10.1017/50027763000013180 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013180



