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Abstract

We derive explicit lower and upper bounds for the probability generating functional of a
stationary locally stable Gibbs point process, which can be applied to summary statistics
such as the F function. For pairwise interaction processes we obtain further estimates for
the G and K functions, the intensity, and higher-order correlation functions. The proof
of the main result is based on Stein’s method for Poisson point process approximation.
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1. Introduction

Gibbs processes are very popular point process models which are extensively used both in
spatial statistics and in statistical physics; see e.g. [10] and [13]. In particular, the pairwise
interaction processes allow a simple yet flexible modelling of point interactions. However, a
major drawback of Gibbs processes is that, in general, there are no analytic formulas available
for their intensities or higher-order correlation functions. Recently, Baddeley and Nair [2], [3]
proposed an approximation method that is fast to compute and accurate as verified by Monte
Carlo methods. There are, however, no theoretical results in this respect and hence no guarantees
for accuracy in most concrete models nor quantifications of the approximation error.

The aim of the present paper is to derive rigorous lower and upper bounds for correlation
functions and related quantities. These allow us to narrow down the true values quite precisely
if the Gibbs process is not too far away from a Poisson process. Figure 1 shows our bounds
on the intensity for a two-dimensional Strauss process, which is dependent on its interaction
parameter γ . The plus symbols are estimates of the true intensity obtained as averages over
the numbers of points in [0, 1]2 of 10 000 Strauss processes simulated by dominated coupling
from the past. The point processes were simulated on a larger window ([−0.5, 1.5]2) in order
avoid noticeable edge effects. All simulations and numerical computations in this paper were
performed in R (see www.r-project.org) using the contributed package spatstat [4].

Our main result, Theorem 1, below, more generally gives bounds on the probability gener-
ating functional of a Gibbs process. Let � be an arbitrary point process on R

d . The probability
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Figure 1: Bounds on the intensities of two-dimensional Strauss processes with β = 50, r = 0.05, and
values of γ ranging from 0 to 1. The plus symbols are estimates of the intensities based on 10 000

simulations each.

generating functional �� is defined as

��(g) = E

(∏
y∈�

g(y)

)
, (1)

for any measurable function g : R
d → [0, 1] for which 1 − g has bounded support; see e.g. [7,

p. 59] for details.
Many statistics of point processes, such as the empty space function (F function), contain

expectations as in (1). For pairwise interaction processes the situation is even better. By
the Georgii–Nguyen–Zessin equation (3), below, the nearest neighbour function (G function),
Ripley’s K function, and the correlation functions of all orders can be rewritten using the
probability generating functional.

The idea for proving Theorem 1, below, is to replace the Gibbs process � in (1) by a suitable
Poisson process and bound the error using Stein’s method.

The rest of the paper is organised as follows. In Section 2 we introduce some notation and
state the main result. In Section 3 we provide bounds on the intensity, and in Section 4 bounds
on other summary statistics are derived. Section 5 contains the proof of the main result.

2. Preliminaries and main result

Let (N, N ) denote the space of locally finite point measures on R
d equipped with the σ -

algebra generated by the evaluation maps [N � ξ �→ ξ(A) ∈ Z+] for bounded Borel sets
A ∈ R

d . A point process is just a N-valued random element. We assume the point processes
to be simple, i.e. do not allow multi-points. Thus, we can use set notation, i.e. x ∈ ξ means
that the point x lies in the support of the measure ξ .

In spatial statistics, point processes are usually defined on a bounded window W ⊂ R
d .

Let N|W denote the restriction of the N to W . A point process � on W is called a Gibbs
process if it has a hereditary density u with respect to the distribution of the Poisson process
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with unit intensity. Hereditarity means that u(ξ) > 0 implies u(η) > 0 for all subcon-
figurations η ⊂ ξ . Invoking the Hammersley–Clifford–Ripley–Kelly theorem in [10, The-
orem 6.1], such a process may be characterised by requiring a density of the form u(ξ) =
exp(− ∑∞

n=1
∑

{x1,...,xn}⊂ξ v(x1, . . . , xn)), where v : (Rd)n → (−∞, ∞] are symmetric func-
tions, which yields the definition of a finite Gibbs process from statistical physics. By heredi-
tarity we can define the conditional intensity as

λ(x | ξ) = u(ξ ∪ {x})
u(ξ)

, (2)

where 0/0 = 0. Roughly speaking, the conditional intensity is the infinitesimal probability that
� has a point at x, given that � coincides with the configuration ξ everywhere else. Furthermore,
λ(· | ·) uniquely characterises the distribution of �, since by (2) we can recursively recover
an unnormalised density. It is well known that the conditional intensity is the dx ⊗ L(�)-
almost everywhere unique product measurable function that satisfies the Georgii–Nguyen–
Zessin equation [10, p. 95],

E

(∫
W

h(x, � \ {x}) �(dx)

)
=

∫
W

E
(
h(x, �)λ(x | �)

)
dx, (3)

for every measurable h : W × N|W → R+.
So far, λ(· | ·) is only a function on W × N|W , but in many cases there exists a natural

extension to the whole space, which we shall also denote by λ(· | ·). One way to generalise
Gibbs processes to the whole space R

d is then by the so-called integral characterisation.
A point process � on R

d is a Gibbs process corresponding to the conditional intensity λ(· | ·)
if it satisfies (3) with W replaced by R

d for all measurable h : R
d × N → R+; see [10, p. 95]

or [12] for a more rigorous presentation. Unlike in the case of a bounded domain, � may not
be uniquely determined by (3). For the rest of this paper we will only deal with the conditional
intensity, i.e. if we say that a result holds for a Gibbs process with conditional intensity λ(· | ·),
we mean that it holds for all processes corresponding to this conditional intensity.

A Gibbs process � is said to be a pairwise interaction process if its conditional intensity is
of the form

λ(x | ξ) = β
∏
y∈ξ

ϕ(x, y),

for a constant β > 0 and a symmetric interaction function ϕ. We denote the distribution of
� by PIP(β, ϕ). The process � is called inhibitory if ϕ ≤ 1 and it is said to have a finite
interaction range if 1 − ϕ is compactly supported. The point process � is stationary if its
distribution is invariant under translations, and isotropic if it is also invariant under rotations.
If � is stationary we tacitly assume that ϕ(x, y) depends only on the difference x − y; we then
write ϕ(x, y) = ϕ(x − y). For conditions on ϕ ensuring the existence of � we refer the reader
to [13].

If � is a general point process, its expectation measure or first order moment measure E�

on R
d is simply given by (E�)(A) = E(�(A)) for every Borel set A ⊂ R

d . For k ≥ 1 the
kth order factorial moment measure of � is the expectation measure of the factorial product
measure

�[k] =
∑

X1,...,Xk∈�

pairwise different

δ(X1,...,Xk)

on (Rd)k . Any moment measure is said to exist if it is locally finite.
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The intensity (function) λ(x) of a Gibbs process � is the density of the first moment measure
of � with respect to the Lebesgue measure, provided that the first moment measure exists. For
a bounded A ⊂ R

d , (3) yields

E�(A) =
∫

A

E(λ(x | �)) dx;

hence, the existence of the intensity and the form λ(x) = E(λ(x | �)). For stationary processes
the intensity is obviously constant and we just write λ. For a stationary pairwise interaction
process, we get

λ = E(λ(0 | �)) = βE

(∏
y∈�

ϕ(y)

)
= β��(ϕ). (4)

In a similar manner, it is possible to obtain the densities of the higher-order factorial moment
measures, the so-called correlation functions; see [9] and [11]. For a stationary process � ∼
PIP(β, ϕ), the kth correlation function is given by

λk(x1, . . . , xk) = βk

( ∏
1≤i<j≤k

ϕ(xi − xj )

)
E

(∏
y∈�

ϕ(y − x1) · · · ϕ(y − xk)

)

= βk

( ∏
1≤i<j≤k

ϕ(xi − xj )

)
��(ϕ(· − x1) · · · ϕ(· − xk)). (5)

A frequently used function in spatial statistics is the pair correlation function which is defined
as

ρ(x, y) = λ2(x, y)

λ(x)λ(y)
. (6)

In the stationary isotropic case this simplifies to ρ(s) = λ2(x, y)/λ2, where s = ‖x − y‖.
For our results we need a stability condition for the Gibbs processes. A Gibbs process � is

called locally stable if there exists a nonnegative function c∗ such that
∫
W c∗(x) dx < ∞ for

all bounded domains W ⊂ R
d and the conditional intensity satisfies

λ(x | ξ) ≤ c∗(x),

for all ξ ∈ N. For stationary Gibbs processes we require c∗ to be constant. Local stability is
a frequently used condition in spatial statistics; see [10, p. 84]. However, for � ∼ PIP(β, ϕ)

it implies that either � is inhibitory or it has a hard core, i.e. there exists an rmin such that
ϕ(x, y) = 0 for all |x − y| ≤ rmin. This excludes, for example, the Lennard–Jones process,
which is very popular in statistical physics.

The following result is the key theorem for obtaining the results in Sections 3 and 4. Its
proof is the subject of Section 5.

Theorem 1. Let � be a stationary locally stable Gibbs process with intensity λ and local
stability constant c∗, and let g : R

d → [0, 1] be a function for which 1 − g has bounded
support. Then

1 − λG ≤ E

(∏
y∈�

g(y)

)
≤ 1 − λ

c∗ (1 − e−c∗G),

where G = ∫
Rd 1 − g(x) dx.
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Remark 1. With a slight adaptation of the proof of Theorem 1 it is possible to obtain bounds
on the probability generating functionals of possibly nonstationary processes. Let � be a
locally stable Gibbs process with intensity function λ(x) and local stability function c∗(x). Let
g : R

d → [0, 1] be a function for which 1 − g has bounded support. Then we obtain

1 −
∫

Rd

(1 − g(x))λ(x) dx

≤ E

(∏
y∈�

g(y)

)

≤ 1 −
∫

Rd (1 − g(x))λ(x) dx∫
Rd (1 − g(x))c∗(x) dx

(
1 − exp

(
−

∫
Rd

(1 − g(x))c∗(x) dx

))
. (7)

As the intensity appears under the integral sign, we cannot generalise the arguments of Section 3
based on (7).

For the rest of the paper we tacitly assume all point processes to be stationary.

3. Bounds on the intensity

For the intensity of a inhibitory pairwise interaction process we immediately obtain from
Theorem 1 the following result.

Theorem 2. Let � ∼ PIP(β, ϕ) be inhibitory with finite interaction range. Then

β

1 + βG
≤ λ ≤ β

2 − e−βG
, (8)

where G = ∫
Rd 1 − ϕ(x) dx.

Proof. Recall from (4) that λ = βE
∏

y∈� ϕ(y) and use c∗ = β. Theorem 1 then yields

1 − λG ≤ λ

β
≤ 1 − λ

β
(1 − e−βG),

which can be rearranged as (8).

Remark 2. The lower bound of (8) can also be found in [13, p. 96] with the restriction βG <

e−1, whereas our inequality holds for all values of β and G.

Example 1. Let � be a Strauss process, i.e.

ϕ(x) =
{

γ if ‖x‖ ≤ r,

1 if ‖x‖ > r,

for some parameters r > 0 and 0 ≤ γ ≤ 1. Then G = (1 − γ )αdrd , where αd denotes
the volume of the unit ball. Figure 1 shows that, for a reasonable choice of the parameters
(β, r, γ ), the bounds on λ are quite good. The maximal relative error between the bounds and
the simulated values is about 3.5%.
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Figure 2: Intensities of two-dimensional Strauss processes with β = 100, r = 0.05, and values of γ

ranging from 0 to 1. The solid line is λPS, the dashed line is λMF, and the shaded area corresponds to the
bounds in (8). The plus symbols are estimates of the intensities based on 10 000 simulations each.

Remark 3. For the special case of a Strauss hard core process on R
2, i.e. setting γ = 0 in

Example 1, intensity estimates are derived in [16, p. 181]. The procedure used there can easily
be refined to yield the bounds

β

1 + βπr2 ≤ λ ≤ β

1 + βπr2/4
;

see [15]. The lower bound is the same as implied by Theorem 2. The upper bound is worse for
small and moderate choices of β, but better if β is very large (e.g. greater than or equal to 500
if r = 0.05).

For a comparison of our bounds on the intensity to known approximations from the literature
we concentrate on two methods.

The first one is the Poisson-saddlepoint approximation proposed in [3]. The authors replaced
the Gibbs process � ∼ PIP(β, ϕ) in (4) by a Poisson process HλPS with intensity λPS such that
the following equality holds:

λPS = Eλ(0 | HλPS) = βE

( ∏
y∈HλPS

ϕ(y)

)
.

Solving this equation yields

λPS = W(βG)

G
,

where W is Lambert’s W function, the inverse of x �→ xex , and G = ∫
Rd 1−ϕ(x) dx as above.

The second method is the mean-field approximation that was also described in [3] and is
given by

λMF = W(β�)

�
,

where � = − ∫
Rd log(ϕ(x)) dx. Figure 2 shows the two approximations and our bounds from

(8) for two-dimensional Strauss processes.
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(a) (b)

Figure 3: The two processes in Example 2 restricted to the unit square. Part (a) shows a realisation of
the hard annulus process having 489 points, whereas λPS = 295.2. Part (b) shows a hard core process

realisation having 188 points.

In [3] it was shown that, under the conditions of Theorem 2, we have λ ≥ λMF. The authors
also conjectured, based on simulations for Strauss processes, that λPS is an upper bound for λ.
However, the next example indicates that this is not generally true.

Example 2. Consider the process � ∼ PIP(β, ϕ) with the interaction function

ϕ(x) =

⎧⎪⎨⎪⎩
1 if ‖x‖ ≤ r,

0 if r < ‖x‖ ≤ R,

1 if ‖x‖ > R,

for constants 0 ≤ r ≤ R. We refer to this as a hard annulus process. It is a special case of a
so-called multiscale Strauss process; see [10, Example 6.2]. Let d = 2, β = 3000, r = 0.05,

and R = √
2r . Then we have

λMF = 0,
β

1 + βG
= 122.1, λPS = 295.2,

β

2 − e−βG
= 1500.

An estimate of the intensity based on 300 simulations gives λ̂ = 493.8 > λPS. For comparison,
we also estimated the intensity of a Strauss hard core process with the same β and G and
obtained λ̂ = 193.3. Figure 3 shows that although the two processes have the same β and G,
their realisations look quite different. All simulations were performed by long runs (107 steps)
of Markov Chain Monte Carlo.

We were not able to prove that λ > λPS in this case, but we do have the following heuristic
argument for the observed phenomenon. The simulations show that, for large β, the points
tend to cluster on ‘islands’ of radius less than or equal to r/2 which are separated by a distance
greater than or equal to R. Since the points within each island do not interact, we expect the
intensity to grow linearly in β for large β. However, λPS only grows logarithmically for large
β, so that at some point the intensity will overtake λPS.

Even if λPS may not serve as a bound on λ it remains useful as an approximation. Empirically
its values stay relatively close to the simulated values, whereas the difference of our upper and
lower bounds in (8) increases for large βG.

The following result in connection with Theorem 2 gives an upper bound on the error in
Poisson saddlepoint approximation.
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Proposition 1. Under the conditions of Theorem 2 we have

β

1 + βG
≤ λPS ≤ β

2 − e−βG
.

Proof. Since λPS = W(βG)/G, it suffices to show the following two inequalities:

x

1 + x
≤ W(x) and W(x) ≤ x

2 − e−x
, (9)

for all x ≥ 0. The first one follows from x/(1 + x) ≤ log(1 + x), see [1, Equation 4.1.33], by
transforming it to

x

1 + x
exp

(
x

1 + x

)
≤ x

and applying the increasing function W on both sides. For the second inequality, note that

log(2 − e−x) ≤ x

2 − e−x
.

This holds because we have equality for x = 0 and it is straightforward to see that the
derivative of the left-hand side is less than or equal to the derivative of the right-hand side
for all x ≥ 0. A similar transformation as above and applying W on both sides again gives the
second inequality in (9).

4. Summary statistics

For a stationary point process � the empty space function or F function is defined as the
cumulative distribution function of the distance from the origin to the nearest point in �, i.e.

F(t) = P(there exists y ∈ � : ‖y‖ ≤ t)

= 1 − P(�(B(0, t)) = 0)

= 1 − E

(∏
y∈�

1{y /∈B(0,t)}
)

= 1 − ��(1{·/∈B(0,t)}),

where B(x, t) denotes the closed ball centred at x ∈ R
d with radius t ≥ 0 and 1 denotes the

indicator function. Thus, for a locally stable Gibbs process � with constant c∗, from Theorem 1
we obtain

λ

c∗ (1 − exp(−c∗αdtd)) ≤ F(t) ≤ λαdtd . (10)

Note that, for a Poisson process with intensity λ, we may choose c∗ = λ, in which case the
lower bound in (10) is exact. A minor drawback of the bounds in (10) is that the intensity is in
general not known and has to be estimated as well, e.g. by the methods of Section 3.

The nearest neighbour function or G function is defined as the cumulative distribution
function of the distance from a typical point of � (in the sense of the Palm distribution) to
its nearest neighbour. For pairwise interaction processes � ∼ PIP(β, ϕ) the G function is
computed in [9, Section 5] as

G(t) = 1 − β

λ
E

(∏
y∈�

1{y /∈B(0,t)} ϕ(y)

)
= 1 − β

λ
��(1{·/∈B(0,t)} ϕ(·)).
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Figure 4: Part (a) shows the G function of the hard annulus process from Example 2 with parameters
β = 70, r = 0.025, and R = 0.035. Part (b) shows the K function of a Strauss hard core process with
parameters β = 40 and r = 0.05. In both panels the solid line is an estimate of the true function based on
1 000 simulations, the dashed line is the true function for a Poisson process (in the case of the G function
with the same intensity as the one obtained by simulation for the hard annulus process), and the shaded

area corresponds to the bounds computed in the text.

Thus, if � is inhibitory and has finite interaction range, setting c∗ = β in Theorem 1 yields

2 − β

λ
− exp(−βG̃t ) ≤ G(t) ≤ 1 − β

λ
+ βG̃t ,

where G̃t = ∫
Rd [1−ϕ(x) 1{‖x‖ > t}] dx. Figure 4(a) shows these bounds for the hard annulus

process from Example 2 with parameters β = 70, r = 0.025, and R = 0.035.
Let us furthermore assume that � is isotropic. Then the K function is defined as

K(t) = αdd

∫ t

0
sd−1ρ(s) ds,

where ρ is the pair correlation function. By (5), (6), and Theorem 1, we obtain bounds on ρ as

ϕ(x)

(
β2

λ2 − β2G̃x

λ

)
≤ ρ(‖x‖) ≤ ϕ(x)

(
β2

λ2 − β

λ
(1 − exp(−βG̃x))

)
, (11)

where G̃x = ∫
Rd [1 − ϕ(y)ϕ(y − x)] dy, and (in most cases numeric) integration of (11) yields

bounds on the K function.

Example 3. Let � be a Strauss process in two dimensions. Then

G̃x = 2πr2(1 − γ ) − 2r2(1 − γ )2
(

arccos

(‖x‖
2r

)
− ‖x‖

2r

√
1 −

(‖x‖
2r

)2 )
;

see also [2]. Since we do not know the true intensity of the Strauss process, we substitute the
bounds of (8) into (11) to obtain bounds on the K function. This procedure twice causes an
error and therefore the estimates on K are good only for smaller values of βG. Figure 4(b)
shows these estimates for β = 40, r = 0.05, and γ = 0.
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5. Proof of Theorem 1

The main strategy of the proof is to replace in (1) the process � by a Poisson process H, and
then use Stein’s method to bound the error

E

(∏
y∈�

g(y)

)
− E

(∏
y∈H

g(y)

)
.

In the context of Poisson process approximation, Stein’s method for bounding expressions
of the form |Ef (�) − Ef (H)| uniformly in f from a class of functions F was first introduced
in [6]. A nice exposition of the main body of the method with various ramifications and detailed
proofs can be found in [17]. More recent developments include the generalisation to Gibbs
process approximation [14].

The central idea of Stein’s method is to set up an equation of the form

f (ξ) − Ef (H) = Ahf (ξ), for all ξ ∈ N, (12)

where A is an operator on a space of functions h : N → R that characterises the distribution
Q of H in the sense that H̃ is Q-distributed if and only if EAh(H̃) = 0 for all functions h. The
hope is that a suitable choice of A results in a right-hand side whose expectation is much easier
to bound. A particularly successful approach is the generator method by Barbour [5], which
suggested to choose for A the infinitesimal generator of a Markov process whose stationary
distribution is Q.

In the context of an approximation based on a Poisson process Hν with intensity ν > 0 on a
compact set A, the default choice is a spatial immigration–death process on A with immigration
rate ν and unit per-capita death rate. This is a pure-jump Markov process on N|A that holds
any state η ∈ N|A for an exponentially distributed time with mean 1/(ν|A| + η(A)), where
|A| denotes the Lebesgue measure of A; then a uniformly distributed point in A is added with
probability ν|A|/(ν|A|+η(A)), or a uniformly distributed point in η is deleted with probability
η(A)/(ν|A| + η(A)). Let Zξ be such a process started at configuration ξ . The operator A then
takes the form

Ah(ξ) =
∫

A

[h(ξ + δx) − h(ξ)]ν dx +
∫

A

[h(ξ − δx) − h(ξ)]ξ(dx).

Immigration–death processes have many nice properties. In particular, it is known that
Z∅(t) is a Poisson process with intensity ν(1 − e−t ) for every t ≥ 0. Let {Ex}x∈ξ be
independent and identically distributed and exponentially distributed random variables with
mean 1, and introduce the death process Dξ(t) = ∑

x∈ξ 1{Ex > t}δx . Constructing Z∅ and Dξ

independently on the same probability space, Zξ can be represented as Zξ (t)
d= Z∅(t) + Dξ(t)

for every t ≥ 0; see [17, Theorem 3.5].
We can then solve the Stein equation (12). Taking g : R

d → [0, 1] such that A = supp(1−g)

is compact, consider the function f : N → [0, 1],
f (ξ) = f (ξ |A) =

∏
y∈ξ

g(y).

By [17, Theorem 5.2] the function hf : N → R,

hf (ξ) = hf (ξ |A) = −
∫ ∞

0
[E(f (Zξ |A(t))) − E(f (Hν))] dt,
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is well-defined and satisfies (12). Thus,

Ef (�) − Ef (Hν) = EAhf (�)

= E

∫
A

[hf (� + δx) − hf (�)]ν dx + E

∫
A

[hf (� − δx) − hf (�)]�(dx)

= E

∫
A

[hf (� + δx) − hf (�)](ν − λ(x | �)) dx

= E

∫
Rd

[hf (� + δx) − hf (�)](ν − λ(x | �)) dx, (13)

where we applied the Georgii–Nguyen–Zessin equation on R
d to the function

[
(x, ξ) �→

1A(x)
(
hf (ξ) − hf (ξ + δx)

)]
for obtaining the second equality.

Equation (13) is our starting point for further considerations.

Proposition 2. Let � be a stationary Gibbs process with intensity λ and conditional intensity
λ(· | ·). Let g : R

d → [0, 1] be a function such that 1 − g has bounded support. Then, for all
ν > 0,

E

(∏
y∈�

g(y)

)
= 1 − λ

ν
(1 − e−νG) + Iν(g),

where

Iν(g) = e−νG
E

(∫ 1

0
eνGs

(
1 −

∏
y∈�

(1 − s(1 − g(y)))

)
ds

∫
Rd

(1 − g(x))(λ(x | �) − ν) dx

)
.

Proof. It is well known that, for the Poisson process Hν, we have

E

( ∏
y∈Hν

g(y)

)
= exp

(
−ν

∫
Rd

1 − g(x) dx

)
= e−νG; (14)

see e.g. [7, Equation 9.4.17]. We then follow the main proof strategy laid out above in order to
re-express

E

(∏
y∈�

g(y)

)
− e−νG.

Starting from (13), we may use the decomposition Zξ+δx

d= Zξ + Dδx , with independent
Zξ and Dδx , to see that, for any ξ ∈ N|A,

hf (ξ + δx) − hf (ξ) =
∫ ∞

0
Ef (Zξ (t)) − Ef (Zξ+δx (t)) dt

=
∫ ∞

0
Ef (Zξ (t)) − Ef (Zξ (t) + Dδx (t)) dt

= (1 − g(x))

∫ ∞

0
Ef (Zξ (t))P(Dδx (t) �= ∅) dt

= (1 − g(x))

∫ ∞

0
Ef (Zξ (t))e

−t dt

= (1 − g(x))

∫ ∞

0
E(f (Z∅(t)) + (f (Zξ (t)) − f (Z∅(t))))e−t dt.
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By further decomposing Zξ
d= Z∅ + Dξ with independent Z∅ and Dξ , we obtain

E(f (Zξ (t)) − f (Z∅(t))) = E

( ∏
y∈Z∅(t)

g(y)

)
E

( ∏
y∈Dξ (t)

g(y) − 1

)

= exp(−ν(1 − e−t )G)

(∏
y∈ξ

(
1 − e−t (1 − g(y))) − 1

)
,

where for the first expectation we used (14) and that Z∅(t) is a Poisson process with intensity
ν(1 − e−t ); for the second expectation note that each point of ξ survives independently up to
time t with probability e−t . Thus, in total,

hf (ξ + δx) − hf (ξ)

= (1 − g(x))e−νG

∫ ∞

0

[
eνGe−t + eνGe−t

(∏
y∈ξ

(1 − e−t (1 − g(y))) − 1

)]
e−t dt

= (1 − g(x))
1 − e−νG

νG
+ (1 − g(x))e−νG

∫ 1

0
eνGs

(∏
y∈ξ

(1 − s(1 − g(y))) − 1

)
ds

by the substitution s = e−t .
Substituting this into (13) and using Eλ(x | �) = λ finally yields

E

(∏
y∈�

g(y)

)
− e−νG = ν − λ

ν
(1 − e−νG) + Iν(g).

Proposition 3. Let � be a stationary locally stable Gibbs process with constant c∗. Then, for
all 0 < ν < c∗,

Iν(g) ≤ Iν(g) ≤ Iν(g),

where

Iν(g) = − 1

c∗ − ν
(c∗(1 − e−νG) − ν(1 − e−c∗G)) ≤ 0, (15)

Iν(g) = 1

ν
(c∗(1 − e−νG) − ν(1 − e−c∗G)) ≥ 0. (16)

Furthermore, Iν(g) ≤ 0 for all ν ≥ c∗.

Proof. Since −ν ≤ λ(x | �) − ν ≤ c∗ − ν almost surely, we have, for ν < c∗, the upper
bound

Iν(g) ≤ (c∗ − ν)e−νGG

∫ 1

0
eνGs

(
1 − E

∏
y∈�

(1 − s(1 − g(y)))

)
ds, (17)

and a similar lower bound, where c∗ − ν is replaced by −ν. Because A = supp(1 − g)

is bounded, � can be replaced by �|A in (17). It is a known fact that every locally stable
Gibbs process on a bounded domain can be obtained as a dependent random thinning of a
Poisson process; see [8, Remark 3.4]. In particular, there exists a Poisson process Hc∗ such that
�|A ⊂ Hc∗ almost surely. Since 1 − s(1 − g(y)) ≤ 1 for all s ∈ [0, 1] and for all y ∈ R

d , we
obtain

1 − E

∏
y∈�

(1 − s(1 − g(y))) ≤ 1 − E

∏
y∈Hc∗

(1 − s(1 − g(y))) = 1 − e−sc∗G,
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where the last equality follows by (14). Integrating and rearranging the terms yields (15) and
(16). If ν ≥ c∗, Iν(g) is obviously nonpositive.

We now continue with the proof of Theorem 1. Propositions 2 and 3 yield the upper bounds

E

(∏
y∈�

g(y)

)
≤ 1 − λ

ν
(1 − e−νG) + c∗

ν
(1 − e−νG) − (1 − e−c∗G)

= (c∗ − λ)G
1 − e−νG

νG
+ e−c∗G,

for 0 < ν < c∗, and

E

(∏
y∈�

g(y)

)
≤ 1 − λG

1 − e−νG

νG
,

for ν ≥ c∗. Since the function [x �→ (1 − exp(−x))/x] is monotonically decreasing for x ≥ 0,
we obtain the minimal upper bound for ν = c∗, as

E

(∏
y∈�

g(y)

)
≤ 1 − λ

c∗ (1 − e−c∗G).

For the lower bound recall the Weierstrass product inequality, which states

n∏
i=1

(1 − ai) ≥ 1 −
n∑

i=1

ai,

for 0 ≤ a1, . . . , an ≤ 1. Then, noting that the products below contain only finitely many factors
not equal to 1 by the boundedness of supp(1 − g), we have

E

(∏
y∈�

g(y)

)
= E

(∏
y∈�

(1 − (1 − g(y)))

)
≥ 1 − E

∑
y∈�

(1 − g(y))

= 1 − E

∫
Rd

1 − g(x)�(dx)

= 1 − λ

∫
Rd

1 − g(x) dx

= 1 − λG

by Campell’s formula; see [7, Section 9.5].

Remark 4. An alternative proof for the lower bound can be obtained by using Propositions 2
and 3 in the analogous way as for the upper bound.
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