
ON INTEGRAL FUNCTIONS HAVING PRESCRIBED 
ASYMPTOTIC GROWTH 

J. CLUNIE 

1. In this paper I shall prove the following theorem: 

THEOREM. Let <t>(r) be increasing and convex in log r with 

<t>(r) ^ O(logr) ( r - > œ ) . 

(This condition is imposed to exclude certain trivial cases.) Then there is an 
integral function f(z) such that 

(i) l o g M ( r , j Q ~ 0 ( r ) ( r - •«>) , 

(ii) nr%f)~4>(r) ( r - •«>) . 

This paper is intended to be read as a sequel to the previous one by Edrei 
and Fuchs and so I shall not enter into any discussion of the theorem. 

I should like to express my indebtedness to Professor Edrei for stimulating 
my interest in the subject of this paper. 

2. We assume that 

where ^(t) is continuous, strictly increasing, and unbounded with ^(1) = 0. 
This involves no loss of generality since to any function which is increasing 
and convex in log r and not O(log r) (r —» <») there corresponds a </>(r) of the 
above kind, to which it is asymptotic as r —> °°. 

First I shall construct a function for which (i) is true and later one for which 
both (i) and (ii) are true. Though they are similar, the first of these con
structions is much simpler than the second. 

Let r\ < r2 < . . . be the unbounded sequence defined by \l/(rn) = n. We 
define 

œ 

F(z) = £ an z\ 
1 

where 

an = {n > 1). 
r\ r2. . . rn ^ 
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INTEGRAL FUNCTIONS 397 

Then F(z) is an integral function, and for rn < r < rn+ï it is clear that 

MO, F) = anr
n, 

where 

is the maximum term of F(z) for |s| = r. Since 

<£(r) ^ O(logr) (r->«>), 

it is not difficult to show that 

(1) log/xO, F) ~<j)(r) ( r - * œ ) . 

Now we define a sequence of integers Xi < X2 < . . . as follows: Take Xi = 1 
and assume that Xi, X2, . . . , Xw have been specified. If 

aXn+i rll+\ > 2aXn T'A", 

take Xw+i = \n + 1. Otherwise take Xw+1 to be the largest integer m for which 

am C < 2aXn rt 
Since the sequence \an rn

n} ,n = 1, . . . , oo, increases strictly to °° , the sequence 
{\n}, n = 1, . . . , oo , is well defined. 

Put 

It will be proved that f(z) satisfies Condition (i) of the theorem. 

LEMMA 1. 

log n = o(log aXn rj;) (» -> » ). 

Proof. From the construction of the Xw it follows that 

flXn+2 ^Xn+2 > 2aXn ^ ( » > 1 ) . 

Using these inequalities, it is easy to prove that for any <5 > 0, the series 
oo 

1 

converges. As the terms of this series decrease monotonically, we find, using 
a theorem of Abel, that 

n(aXnrtr8^0 ( » - > » ) . 

Since 8 > 0 is arbitrary, this is equivalent to the lemma. 
From (1) and the next lemma the result follows. 

LEMMA 2. 

log M(r,f) ~ log n(r, F) (r - » co). 
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Proof. Consider the interval rv < r < r„+i. If for some n we have v = \n, 
then 

a\nr*n = /x(r, F) (r, < r < r,+i). 

Now, clearly, 

aXmrx- < fi(r, F) (m > 1; r > 0), 

and so we obtain 

(2) ^ ^ < M ( r , / ) < / i ( r , F ) Ê ^ . 

From Lemma 1 we see that 

(3) log n = o{log /i(r, F)} (rv < r < r„+i, r -> » ) . 

Together, (2) and (3) give Lemma 2 as r —» oo through values under considera
tion. 

Suppose now that there is no k such that \k = v, and let X„ be the largest 
Xk satisfying \k < v. Then, by construction, 

a„+i r„+i ^ za\n r\n. 

Hence it follows that 

(4) aXn rt < /i(r, F) < 2aXn r£ (r, < r < r , + i ) , 

and so 

(5) ^ P < M(r , / ) < M(r, F) £ ^ (r, < r < r,+ 1). 

From Lemma 1 and from (4) we again obtain (3). Consequently Lemma 2 
follows from (5) as r —-> °° through values under consideration. This com
pletes the proof of Lemma 2. 

3. Now I shall give the more complicated construction that leads to a 
function which satisfies both (i) and (ii). 

First we define a sequence of integers vi < v2 < . . . in the following man
ner: Take v\ = 1 and assume that vi, v2, . . . , vn have been specified. If 

log aVn+i rZ+i > e*'n log a»n r?n, 

take vn+i = vn + 1. Otherwise take vn+i to be the largest integer k such that 

log ak rl < eln log aPn r
v
v
n
n. 

Since the sequence {ak rk
k} ,k = 1, . . . , oo, increases strictly to oo , the sequence 

{vn}> n = 1, . . . , oo, is well defined. 

LEMMA 3. 

n = o(\ogaVnr
vZ) (w-> oo). 
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Proof. By construction, 

log aVn+2 rvZll > eln log aVn rln
n (n > 1). 

From these inequalities it is not difficult to show that 

tiloga^rlir1 

2 

converges. As the terms of this series decrease monotonically, we find, applying 
again the theorem of Abel previously used, that 

n(\og aVn rln
ny

l -> 0 (n - • co ). 

Hence the lemma is proved. 

We now construct a sub-sequence {kn},n = 1, . . . , oo y of {vn}, n = 1, . . . , oo f 

as follows. Let {KW}, n = 1, . . . , oo, be an auxiliary increasing, unbounded 
sequence with KI > 1 and Kn+i ~ Kn (n —>°o), such that 

n log Kn = o(\og aVn rv
v
n
n) (n-* oo ). 

It is not difficult to see that there is such a sequence {/cw}, n = 1, . . . , oo. 
Take ki = v\ and assume that ki, k2, . . . , kn have been defined. Let vm be 
the smallest vs satisfying vs > kni if 

n 

(6) 2 ^ au rVm < Kn+2 aVm rVmJ 
i=i 

take kn+i = *>m- Otherwise take kn+i to be the largest vs such that 

(7) X) 0*i ̂  > C i " 2 aVp r% (kn < vp < v8). 
i=i 

One can see that the sequence {kn}, n = 1, ...,*>, is well defined by noting 
that the maximum term of an integral function grows more quickly than 
any power of r. 

I shall now prove that 

co „ „kn 

satisfies (i) and (ii) of the theorem. 

LEMMA 4. 

n 

2 3 au rll
n+2 < K~+22 akn+2 rllH (n > 1). 

i=i 

Proof. Suppose at first that kn+i is defined by (6). The left-hand side of (6) 
is of degree kn and the right-hand side is of degree kn+i > kn and so, since 
fkn+2 ^ f/Cn + li 
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/Q\ \ ^ ki ^ — n— 2 kn+i 
{o) /-J akl rkn+2 ^ Kn+2 ttkn+l rkn+2> 

1=1 

By definition, 

(9) am rZ+2 < akn+2 r
l
k
n
n
+

+
2
2 (m > 1). 

From (8) and (9) the lemma follows in this case. 
Suppose now that kn+\ is defined by (7), and let kn+i = vm. Then 

E ki ^ —re—2 vm+l - r e - 2 
-lki rvm+\ ^ K? 

1=1 

The degree of the left-hand side of this inequality is less than that of the 
right. As kn+2 > Vm+u it follows that rkn+2 > rVm+1 and so 

aki rkn+2 ^ Kn+2 (lvm+i "kn+2-

1=1 

Hence, using (9), the lemma follows in this case also. 
LEMMA 5. For rkv < r < rkv+1 {v > 2), 

r/ \ Ukv-l Z i Llkv Z ilk +l Z \ ( / £\) f \ 

f(z) = -r=i— + — — + -v+i h o{fx(rJ)} ( r_>oo). 

Proof. Since 

we find that for r < rk,+1, 

(10) 

oo fcn oo „ &n 

^ = ^ 4 - 2 K-n 
< w,=^j'+2 Kre 

~Jtv + 1 fcj»+i 
û t , + i r #fc„+l rkv+l 

v+l v + l 
K*+l Kv+l 

< 
CO 

v+1 \"** —re 

Kv+1 2 ^ *» 
n=v+2 

„_|_1 _„_2 /-, - 1 v _ l 
< Kv+i Kv+2 U — Kv+2) 

< (KV+2- I)'1 = o(l) ( * - > « ) . 

From Lemma 4, we have 
v—2 

Z akl r\l
v < K7" afc, r

k
kv. 

Given e > 0, we choose m = m(e) such that KT1 < e (I > m). Next we choose 
J>O = ^o(e) such that when *> > VQ, 

Z) a*< ̂ 't < €*„v a*, r*;. 
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Hence, when v > vo, we obtain 

v-2 kl m v-2 

Z=l «I 1=1 m + 1 

<2eK7vakvrt. 

Therefore, for r > rkp, 

(11) Z ^ = o( l )K7 'a* , / ' ( * - « ) , 

since the degree of the sum on the left is less than kv and its terms are positive. 
From (10) and (11) the lemma follows. 

LEMMA 6. If 

CO 

1 

then 
log »(r, g) ~ log n(r, F) (r -> <»). 

Proof. Consider rn < r < rn+1. If for some m we have vm = n, then 

M(r, g) = M 0 , ^) (r» < r < rn+1), 

and so the lemma is true as r —» °o through such values. 
Suppose that there is no 5 such that vs = n, and let vm be the largest vs 

satisfying vs < n. By construction, 

(12) log an+1 rltl < e3Mlog aVm r £ 

We also have 

(13) log < log ii(r, g) (rn< r < rn+1). 

From (12) and (13) it follows that 

e~z/m log /*(r, F) < log /x(r, g) (r„ < r < rn+1), 

and since, clearly, 

log /z(r, g) < log /x(r, 70 (r > 0), 

the lemma follows as r —> oo through values under consideration. 

LEMMA 7. 

log /x(r,/) ~ log fi(rt F) (r -» » ) . 

Proof. Consider r^ < r < r^+1. Suppose that &s = pm and ks+i = vn. If 
n = m + 1, then 

log /*(r,jQ > log ii(r, g) - (s + 1) log /cs+i (rks < r < rA,+1), 
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since in the range of r either 

MO, g) = aks rk° or /*(r, g) = a*s+1 r*«+i. 

Also for r*. < r < r*,+1, 

( 5 + 1 ) log KS+I (s + 1) log *s+i _ „ m /0_^ v 
log/i(r,g) logafcarjfc. 

by Lemma 3 and the choice of the KTO, In any case, 

(14) logfx(r,f) < log/x(r,g), 

so that we obtain Lemma 7 as r —» 00 through values under consideration. 
Suppose now that n > m + 1. Then, by construction, 

s 

]T a* r% > K~1+1 aVp r\\ (p = m, m + 1, . . . , n), 
1=1 

and so, as a little consideration shows, 

É f l « ' * > S ¥ (r*.<r<ritl+l). 

Hence 

y> akl r
kl M ^ J ) , , 

Z = l * Z Ks+2 «s 

which gives, using Lemma 5, 

(2 + o(l))M(r, /) > * f e 4 (r*. < r < rks+l, s -> «> ). 
KS+2 KS 

Making use of Lemma 3 and the conditions on the Kn> we obtain 

log »(r,f) > (1 + o(l)) log /i(r, g) (rfc, < r < r*,+1, 5 —> 00). 

Together with (14), the lemma follows as r —> 00 through values under con
sideration. 

This completes the proof of Lemma 7. 

From (1) and Lemmas 5, 6, and 7, it follows that/(2) satisfies Condition (i) 
of the theorem. 

LEMMA 8. If h(z) = X K zn is an integral function such that 

h{z) = bni zn* + bn2 z
n> + bnz z

n* + o{M(r, ft)} (r -> « ) , 

zoftere Wi < n2 < ^3 depend on r, then 

T(r, h) ~ log ju(r, A) (r—•«>). 

Proof. By Cauchy's inequalities for the terms of a Taylor series, it follows 
that for all large r each term of h(z) concealed in o{/x(f, ft)} is less than /z(r, h) 
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in modulus. In what follows we assume that we are dealing with r for which 
this is true, so that the central index of h(z) is nu n2, or w3. 

Let n(r, h) = \bnk\ r
n\ where * = 1, 2, or 3. If 

I M ^ < î M ( r , A ) (j^k'J = 1,2,3), 

then on \z\ = r, when r is sufficiently large, 

2/*(r,A) > |A(s)| >iM(r,A). 

Hence the result follows in this case. 
Suppose now that for j 9e k we have 

\bnj\r
ni>ïn(r9h). 

Then one of j and k is 1 or 3. Assume, in fact, that one of them is 1. The 
other case is similar. If 

4>(z) = bmz^ + bn2z^ + bnzz
n\ 

we get 

,2?r -i(r,h) 
?}- (riog\4>(rei9)\d0>log^4 

+ 2. 
1 f*^ 

(15) > log 

Jog I i 2^i fre
iB\n2~ni + - ^ (re

i6)n*-ni 

uni Uni 
de 

since the integral on the right is non-negative as can be seen by applying 
Jensen's theorem to 

1 I n2 Ji2—ni I um nz—ni 
1 + VZ +VZ 

uni uni 

with \z\ = r. Let rj (0 < rj < 1) be given, and let the set 

E = {0: |0(re") | <i7/*(r,A)} 

be of measure 27rô. Then 
* 2 T T 

2K JO 

Together with (15) this gives 

log/x(',A) - l o g 4 < ( 1 - ô)jlog/i(f,A) + l o g 3 } + 5{log/x(r ,A)-log(l / i7)} l 

and so 

J o g J 2 _ 
* log(lA) * 

5s- log |*(re")|d0 < (1 - 5) log 3/i(r, A) + 5 log w ( r , A). 
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Put h(z) = 0(s) +R(z) and let 

7] = max 2 max *4——•, exp[ — {log/i(r, A)}*] . 
L |z|=r M (/>",) J 

Outside the set £ we have 

\h(£)\ > \4>(z)\ - \R(z)\ > i\4>(z)\, 

and so, if F is the complement of £ in (0, 2ir), then 

(16) T(r,h)>~ {log \h(rete)\dd 

> ^ " f l o g | * ( r e " ) | d 0 - l o g 2 

> (1 - Ô ) l o g M r , A ) } - l o g 2 

= (l + o(l))logM(r,A) ( r - > « ) . 

On the other hand, |A(z)| < (3 + 0(l))/*(r, h) ( r - > » ) , so that 

(17) r ( r , A ) < (l + o(l))logM(r ,A) ( ' - * » ) • 

From (16) and (17), the lemma follows. 

From Lemmas 5, 6, 7, and 8 it follows that f(z) satisfies Condition (ii) of 
the theorem. 

Imperial College, London 
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