
J. Austral Math. Soc. Ser. B 26 (1984), 233-246

ON THE APPROXIMATION ORDER FROM
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Abstract

In this paper, we determine the optimal controlled approximation rates from certain
bivariate splines on regular meshes.

1. Introduction

Our motivation for this paper arose from some recent interesting studies of
bivariate spline spaces on the regular triangular mesh shown below, [2, 3]. In
particular, the determination of the optimal approximation orders for these
spaces (depending on their polynomial degree and the order of continuity) is an
open problem.

Apparently the difficulty in resolving this problem stems from the fact that the
highest order for which all polynomials are locally contained in the spline spaces
gives only an upper bound for the approximation order obtainable from the
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234 Wolfgang Dahmen and Charles A. Micchelli [2 ]

corresponding splines. In fact, it is shown in [3] that C'-cubics do locally contain
all fourth order polynomials but the optimal approximation rate turns out to be
only O(h3). On the other hand, it is also shown in [2] that the approximation
properties of the full spline spaces are completely governed by those subspaces
spanned by translates of certain so called 'box-splines' introduced in [1]. This
reduces the problem to studying spaces of the type

= span{<p,.(- - a ) : i = l,...,N,a e Z ' } (1.1)

where $ = {<px,... ,<pN) is a collection of certain locally supported spline func-
tions on Rs and in the case under consideration s = 2. For a general collection $
of functions, spaces of the type (1.1) have been intensely studied in the context of
finite element analysis.

In this regard, two basic approaches should be mentioned. Using Fourier
analysis, Fix and Strang [5, 6, 8] developed quite a complete characterization of
the approximation properties of yh($) in an L2-setting. An alternative approach
based on Taylor expansion, was proposed by Mikhlin in [7] where approximation
with respect to any Z^-norm was treated. His assumptions on <J> seem to be,
however, more restrictive and not directly applicable to the spline spaces men-
tioned above.

This paper divides into two parts. In Section 2, we briefly revisit Fix and
Strang's analysis to confirm the perhaps not surprising fact that their results can
be extended to /^-approximation for 1 ^ p < 00.

In particular, the exact controlled /^-approximation order of $fh{<&) can as
well be characterized in terms of the Fourier transforms $,-, <p, e $. Since the
Fourier transforms of box splines have a particularly simple structure we are able
to apply these general results in Section 3 to the problems mentioned earlier. For
instance, for C2-quintics we obtain O(h5) as the optimal approximation rate.

2. Controlled /^-approximation

Using standard multi-index notation, let

denote the space of all polynomials of (total) degree < k. We write ̂ ( 0 ) instead

Denoting by || • ||p(fl), the usual Lp-norm on B c R1, 1 < p < 00, we set
Wp

m{&) = {/: | / | , , m (0) = ( X W J I ^ / I I P 1 / ' < 00}. For ficR'we define
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[31 Multivariate spline spaces 235

Adopting the terminology of [8] we say S?(<P) admits "controlled /^-approxi-
mation of order k " or briefly

iff for any / e COO(RS) n Wp
k($?) there exist weights w*Q such that for any closed

domain S c f f the inequalities

N

• - £ (0) < C/i*|/|, i J t(nr t), (2.1)

and

V 7 ,a '

SUPP ?•• T (2.2)

hold for constants C, r independent of h,Q,,f.
Note that (2.2) follows from (2.1) if the set {<p;(- - a) : j = 1,... ,N, a e Z1}

is linearly independent.
We begin by showing that for controlled approximation the choice of a

particular norm does not matter in the following sense.

PROPOSITION 2.1. ,$*($) implie Ap kfor 1 < /? < oo.

PROOF. Following [7, page 50], we choose a T e C°°(RJ) such that supp(r) c
= (jceRJ, | | ;c |K l jand

(
RS

xaT(x)dx = SOa,

Defining

and

rh(x) = h-'T(x/h),

-4- - y) dy,

we recall from [7, page 50] that for/ e Lp(R
s)

\\fk\\PW
and, when/e W

o < / < k,

(2.3)

(2-4)

(2.5)

where in both cases C is independent of fl and h.
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Now, for/A given by (2.3) there exist weights w*a such that

satisfies for some constant rv

UK*)- (2-6)
In order to show that w*>a:= hs/puh

ja are appropriate weights for controlled
Lp-approximation of/we set

Gh,a = h U supp ly ) \+ha , a^Z°.

First note that integration by parts and Holder's inequality yield

\D%(X)\P ^ Ch-'j \DPf{y)\Pdy, |0| « *. (2.7)

Combining (2.6) and (2.7), we obtain for x e Gha

\fh{x) - Sh(x)\P < CA"*- ' | / |^((GA >J ( 1 + 0 ) A) . (2.8)

Thus integrating (2.8) over Gh a and using (2.5) gives

11/ - Sh\\p(GhJ ^ Chk\f\p,k(Gh.a)a + ri)h (2.9)

which upon summation over a yields (2.1). Concerning (2.2) note that we have by
hypothesis for some 0 < r < oo,

c2 E
0

where we have used (2.7) in the second inequality. D

We are now in a position to characterize those spaces belonging to Apk+l,
1 < p < oo.

THEOREM 2.1. The following are equivalent:

(i) For 0 < |/? | < k there exist linear combinations \pp of the (p/s in $ such that

+0(2wa) = SOa, a e Z', (2.10)

(2w«)
, , = 0, «6Z'-{0},U|/l|a. (2.11)

(ii) For any normed linear function space {IF, || • ||) on W for which translation is
an isometry and restriction to closed subsets ofRs is a contraction one has: there exist
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Is I Multivariate spline spaces 237

bounded linear functional njy i = l,...,N, such that the map

(QJ)(x) =L Z My(/(*(" + « ) W f - «) (2-12)
7 = V '

satisfies

)! < c inf | | ( / - /»)(*(• + Jc))|,_r. r r | | (2.13)

for some fixed constants c < oo, r > 0 anc/ almost all x e Rs.

(iii) ^ ( 0 ) e ^ i 4 + 1 , for allp, I ^p ^ oo.

(iv)

To prove Theorem 2.1 we observe first that (i) and (ii) of Theorem 2.1 are
equivalent when N = 1, i.e. $ = {<p}.

LEMMA 2.1. Condition (ii) /n Theorem 2.1 holds for $ = {<p} iff

) = 0 , a e Z J - { O } , | i S | < A:. (2.14)

PROOF. Condition (ii) of Theorem 2.1 implies y(<p) e A2k+l. Then (2.14)
follows by [6, Theorem I]. The converse is shown in [4].

To prove Theorem 2.1 for N > 1 we closely follow the lines of [6, 7, 8] where
however (2.11) is required to hold also for a = 0. In order to show that it is
sufficient to work with this weaker condition we again use a technique of [6] and
define for | 0 | < k, 1 = (1 , . . . ,1), ^ ( x ) : = {x - \)p and Tp(z) =
^(exp(/z1), . . . ,exp(/zJ)) so that

(0 )"{<T"' 1+%. (2-15)
Hence for

©= E W

we obtain

©(*)= E L[pJMx + y)- (2-16)

https://doi.org/10.1017/S033427000000446X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000446X


238 Wolfgang Dahmen and Charles A. Micchelli [61

Using the periodicity of Tp(z) as well as (2.15) it is not hard to verify

0(2™) = *0(2,ra) = SOa, DPQilna) = / ^ ! £ ^ ^ ^ , |/J| < k.

Hence when ^ satisfy (2.10), (2.11) condition (2.14) holds for 0 and Lemma 2.1
provides a map

!>(/(*(•+ «)))e(f-a) (2.17)

satisfying (2.13). Using (2.16) to express (2.17) in terms of the <p, e 0 readily
shows that (i) implies (ii). Observe that, when specializing (ii) to Z^-norms, (2.13)
means

|/iy(/(*(- + «)))| < Ch->"'\\f\\p([-h, h]s + ah)

which proves (iii) with «j"a = hs/p^j{f{h{- + a))), (iv) is an immediate conse-
quence of (iii). On the other hand, by Proposition 2.1, (iv) also implies (iii).
Finally, it is shown in [5, 6] that the case/? = 2 in (iii) already implies (i), finishing
the proof.

REMARKS, (i) Controlled approximation turns out to be equivalent to the
existence of a uniformly bounded sequence of local linear (quasi-interpolant-type)
approximation schemes (2.12) which realize the optimal approximation order.
These approximation schemes may be determined with the aid of the conditions
on the Fourier transforms of the <p, e <t> which will be illustrated in the next
section.

(ii) It is shown in [5, 6] that the conditions (2.10), (2.11) are equivalent to the
existence of linear combinations ^ of the <p,'s such that

(2.1.)

Note that, in general, condition (2.18) is strictly stronger than requiring that

(2.19)

In fact, the counterexample in [3] gives an instance of $ where n 3 c y(<P) but
y($) <£ Ax 4 so that, by Theorem 2.1, (2.18) cannot hold for k = 3. Note,
however, that in this case the elements of $ are box splines and translates of
several box splines are never linearly independent because already the translates
of each box spline are known to span n o , [1, 4].
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I'M Multivariate spline spaces 239

If, however, the functions <p,(- - a), i = 1,... ,N, a e Zs, are linearly indepen-
dent then (2.18) is equivalent to (2.19) so that linear independence seems to be the
right condition to make sure that the simple rule

holds.
In order to confirm that in the case of linear independence (2.19) implies (2.18)

we employ an inductive argument similar to the one indicated in [6] for the case
N = 1. First, we show that (2.18) holds for /? = 0. Clearly, (2.18) implies that for
some constants, 1 = LaJcfaq>j(x - a). Thus, 1 = Eai7-c°ia_T<py(jc - a), for each
y e Zs. By linear independence we conclude cj[a = cjo, a e Zs. Setting

*o(*) = E *>;(*),
7 = 1

verifies that (2.18) holds for /J = 0. Suppose we have found for /? < v, \v\ ^ k,
functions ^ = E ^ e j t y satisfying (2.18) for fi < v. We advance the induction by
finding a $, such that (2.18) holds for /? = v. Let x"/v\ = Ea,Jc;a<p/(x - a). Then
for y e Zs

while, on the other hand, expanding (x + y)" and using our induction .hypothesis
yields

Equating coefficients and setting a = 0 gives the relations

cj,y ~ cj,0 + E o , <

Defining $v(x) = L^LicJi0<P,-(-x) we have

y /v* = > I r « + / ——(

- « ) + E ^ ^ -
a

which was to be shown.
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3. Application to translates of box-splines

Following [1] we define for a given set of vectors X = {x1,... ,JC"} c RJ such
that

:= span{*} = Rs

the box spline P{x\xl,... ,x") or briefly P(x\X) by requiring that

f f ( x ) P ( x \ x \ . . . , x " ) d x = f f ( t 1 x 1 + ••• + t n x " ) d t l • • • d t n ( 3 . 1 )
•/RS •'[0,1]"

holds for a l l / e C(RS).
Denoting by \X\ the cardinality of X (counting repetitions) we associate with

any X as above the number

d = d(X) = max{m: {X\ Y) = Rs for all Y c *, |7 | = m}. (3.2)

Using the abbreviation5?(X) = y(P(-\X)) it is known that (cf. [1, 4])

(3.3)

(3.4)

and that y(X) is a space of piecewise polynomials of total degree < n — s.
Moreover the Fourier transform of P( • |X) is easily calculated from (3.1) as

f l e " X X J (3.5)
7 = 1 IX • XJ

Here we are mainly interested in the case s = 2 and the special sets

f2 * , . . . , * }

where e1 = (1,0), e2 = (0,1), e = (1,1). However, our method applies in greater
generality. In particular, for a given n we consider

dn = max{d(Xrq,):r + q + t = «}

and the collection of box-splines with maximal order of smoothness

<*>„:= {P(-\Xr^):r+q+t^n,d(Xr^) = dn}.

Suppose A is the regular triangulation of R2 generated by multi-integer translates
of the lines {te1: r e R}, [te2: t e R} and {re: r e R}. Let U'k hA denote the

space of all / times continuously differentiable piecewise polynomials of degree k
on the scaled triangulation hA. So, in view of (3.4) and the definition of dn, we
have that
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191 Multivariate spline spaces 241

The exact approximation orders fromy($n) are given in

THEOREM 3.1. For 1 < p < oo, one has

!+1, n = 3m,

2m+2> n = 3m + 1, n = 3m + 2.

REMARK, (i) It is shown in [4] that when Xc Zs, P(-\X) satisfies (2.14) for
k = d(X), i.e.

(P(-\X)j{0) * 0, D^(P(-\X))\27ra) = 0, a e T - {0}, |/9| < d{X).
(3.6)

Thus, recalling that Sf(<f>) e Ap k+1 implies Uk c y ( $ ) , Lemma 2.1 combined
with (3.3) yields

y{X) e ApdiX)+i \Ap%d(X)+2'> (3-7)

which was proved first in [1] for p = oo by different arguments. Moreover, one
can readily check that for n = 3m + /, / = 0,1, 2,

. _ /2m - 1, / = 0,1, / , 8N
d»-\2m, 1=2, ( 3 -8 )

Theorem 3.1 says that only for / = 1 the approximation order from ^ ( $ n )
exceeds the order attained by each of the subspacesy(A')) P(-\X) e $„.

(ii) It was pointed out in [2] that the approximation power of the spaces IT^ AA

is already completely determined by the span of all box splines contained in
njt.AA- Thus, by definition of ^ ( $ n ) , Theorem 3.1 also provides the exact
approximation orders for the spaces IIn_2 AA. Note that / = dn - 1 is the highest
order of continuity for which any given continuous function, say, can be ap-
proximated by elements of nj,_2 AA arbitrarily well; (cf. [2]). Aside from the low
order cases n < 5 and the case n = 3m where |On| = 1, only nonmatching upper
and lower bounds for these approximation orders were known, [2, 3].

PROOF OF THEOREM 3.1. Let n = 3m + I, I = 0, 2, 1.

/ = 0: In this case, we have $n = {P(-\Xm m m)} so that the assertion readily
follows from (3.7), (3.8).
/ = 2: It is easy to see that
fl\ f _ . __ D ( I ~V \ fY\ — ZJ ( 1 V \ rn -— P ( I V ^ \

^ n ~ I f l ~ r V I A m , m + l , m + l / ' f 2 ~~ r V • | A m + l , m , m + l / ' T 3 "" r V 'I A m + l , m + l , m ^ / •

(3-9)

Again (3.7), (3.8) affirm that
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242 Wolfgang Dahmen and Charles A. Micchelli [10]

Suppose now that we even have &*($„) e Ap>2m+2- In view of (3.6) and (3.8)
Theorem 2.1(i) would imply the existence of a linear combination

\p = a<p1 + b(p2 + c<p3

such that

4<(0) = l, D^(2-rra) = 0, |0| = dn + 1 = 2m + 1, a e Z2 - {0}.

(3.10)
Note that (3.5) reduces to

(P(-\XriS,,)j(x, y) = p(xyP(y)s
P(x + y)' (3.11)

where p(x) = (1 - e'ix)/(ix). We must therefore have for j e Z - {0}

( a \2m+l

^ ) * ( * . ^)l(2.y.o, = (2« + l)!p'(2ir/)2l-+1(fl + c),

^ ) * ( * . j O l ^ y , = (2m + l)!p'(2ir/)2l"+1(ft + c),

0 = ( ^ ' | ; ) ^ ( x > ^)la-/.-2^> = (2« + i)!p'(2»y)2"+1(a + b).

This homogeneous system clearly has only the trivial solution. This finishes the
case / = 2.
1=1: For n = 3m + 1 we have

*„ = {Vl = ^(-l^m.m.m + l ) . <P2 = *>(- |*«,,n +l . J , 9>3 = ^ ( •|**, + l , m , J .

(3-12)

In view of (3.11) we need the following special case of Lemma 3.1 in [4],

y=i y-i y=i

(3.13)
where
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[u] Multivariate spline spaces 243

Showing that &($„) e Apam+1 reduces, by Theorem 2.1, to verifying (2.10),
(2.11) which, in view of (3.6), (3.8) means that we have to find a linear
combination

7

* = E CJ%<

such that

$(0,0) = 1, D*$(2TO) = 0, « G Z 2 -{0} , | j3 | = 2m. (3.14)

where <p, are defined in (3.12). Using (3.13) and p(2wj) = 0 , j e Z - {0}, it is
easy to check that

Thus the only remaining homogeneous conditions to check in (3.14) arise for
(x, y)e. E = {(0,2w/), (2nj,0), (2irj,-2itj): j e Z - {0}}. Straightforward use
of (3.13) provides for (0,2irj)J e Z - (0), the values

D%(0,2vj) = D'$2(0,2irj) = D%(0,2irj) = 0, |j3| = 2m,

K.

0, otherwise,

(m - l)\(m + k)\ ,, .,2m o l , , i \ i
'_ . -p'(2irj) , 0 = (m- k,m + k),k

0, otherwise,

,277-;)

+ l ) ! ( m + A:)! ..2m o ( , . , \ ,

) , j8 = ( m - / c , m +A:) , /c =

0, otherwise.

On the points (2ir/, 0), we have

D%(2nj,0) = D%{2irj,0) = D\(2rrj,0) = 0, |jS| = 2m,

m\{m + k)\ ,, .,2m o , . , , >. ,
—^—r- -p\2-nj) , )S = (m + k,m - k),k =

/c.
0, otherwise,
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Dfiq>5(2wj,0)

~ xf.iftl r K). rfl^ .\2m n / 1 / / \ 1 -1

,k_ t u — - P { 2 v j ) . j8 = (m + fc,/w-A:),A: = l , . . . , » i ,

lo, otherwise,

D%(2irj,0)

[k + 1)!
0, otherwise.

Finally, on the remaining points (27ry, -27ry) we have

D%2(2irj, -2-nj) = Dfiq>3(2irj, -2-nj) = D%(2irj, -2-nj) = 0, |y8| = 2m,

ml) (-1) p(2nj) , 0 = {m,m),
0, otherwise,

o, otherwise,

m - l)!(m + iy.P'(27Tj)2m, fi = (m - 1, m + 1),
0, otherwise.

With these conditions (3.14) reduces to the system of linear equations

c5 = c6 = c7 = 0, cr + c4 = 0, c2 + c4 = 0, c-s + cA = 0,

Ci + C2 + C3 + C4 = 1.

In fact, we obtain the equations ct + c4 = 0, c6 = 0 and c7 = 0 from the
conditions (3.14) on the points (2irj, -2wj) while c3 + c4 = 0 and c5 = 0 come
from the points (0,2777). The remaining homogeneous equations are derived from
(3.14) on the points (2 777,0). These equations have the unique solution c± = c2 =
c3 = -c4 = j . Hence we conclude5^($B) e Ap2m+V

Next, we will show tha t^($ n ) € ApXm+1.
Suppose to the contrary that y($n) e Ap2m+2- Theorem 2.1 combined with

(3.6) would guarantee the existence of linear combinations 4'(Q,o)y
the <p,'s in <Pn such that for all |/?| < 2m + 1

SpeciaUzing this relation for |/?| = 2 m gives

Z)^( 0 > 0 )(27r«) = 0, a£Z2- {0} , ^ ( 0 , 0 ) (0 ,0) = 1, (3.15)
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1 •31 Multivariate spline spaces 245

while B = (0,2m + 1) yields
2m + l

J-y) +»..,(O,2IJ) ^

- ^ 7 ^ +7 2 ^ + / ( 2 - + l ) t « •
According to the above calculations, (3.15) determines i|>(00) uniquely as

Furthermore, it is easily checked that for ally e Z - {0}
\2m + l

( a \2m+l

^ ) ^ ( 0 , 2 * / ) = (2m

On the other hand, our previous calculations show that the term
(^)2m^(01)(0,27rj) in (3.16) has the form cp'(2trj)2m for some constant c. Hence

for B = (0,2m + 1), (3.16) would imply c + (2m + l)!p'(2w/) = 0 for ally e Z
- {0}, which is impossible. Thus there exists no solution of (3.15), (3.16), which
completes the proof.

REMARK. Using ^(00) defined above the construction in [4] provides an explicit
quasi-interpolant fory($n) which realizes the optimal approximation order.

Let us finally note that the above calculations also provide some immediate
information about the case of nonoptimal smoothness.

To this end, let us write

. y) = Bm(x, y)T0(x, y)

where Br(x, y) = B(x, y\Xr^r) and T0(x, y) = i(p(x) + p(y) + p(x + y) - 1).
Consider for k < m the linear combination ^ ( x , y) of box splines defined by its
Fourier transform

where we assume that n = 3m + /. Defining

* f = { B ( x , y \ X r q t l ) : r + q + t ^ n = 3m +

we clearly havey($n) c ^ ( $ ^ ) for all pi <: rfn - 1. Hence

Since

DpBm_k{2m,2TTj) = 0, |)8| < 3(m - k) - 1, (/, 7) e Z 2 \ £ ,

DpBm_k(27ri,27rj) = 0, |j9| ̂  2(m - k) - 1, (i, » e Z 2 \{(0 ,0)} ,

and

( 3 * / ) . , , 2 m y ) = 0, ||8| < 3* + / - 1, (1, y) e £ ,
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246 Wolfgang Dahmen and Charles A. Micchelli (14)

we conclude that

D*ik(2iri,2wj) = 0, |j9| < 2m + k + I - 1, (/, j) e Z 2 \{(0 ,0)} ,

provided that

3(m - k) - 1 > 2m + k + I- 1.

Hence, when

m ^ 4A: + /,
we readily get

W2(">-*)-2'\ c J
p,2m + k + l-

The case A: = 0, / = 1, is covered by Theorem 3.1. The case k = 0, / = 2 shows
that the approximation rate increases by one when the order of continuity
decreases by one.

Note added in proof. After this paper was accepted for publication we became
aware that there seems to exist no complete proof for the implication (iii) => (i) in
Theorem 2.1 which was stated by G. Fix and G. Strang in [5, 6, 8]. However, Fix
and Strang did prove the equivalence of condition (i) in Theorem 2.1 and the
existence of a quasi-interpolant (2.12), (2.17) which guarantees the optimality of
the approximation rates in Theorem 3.1 for a correspondingly restricted notion of
controlled approximation.
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