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Abstract

We discuss tail behaviors, subexponentiality, and the extreme value distribution of
logarithmic skew-normal random variables. With optimal normalized constants, the
asymptotic expansion of the distribution of the normalized maximum of logarithmic
skew-normal random variables is derived. We show that the convergence rate of the
distribution of the normalized maximum to the Gumbel extreme value distribution is
proportional to 1/(log n)1/2.
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1. Introduction

The major weakness of the normal distribution is its inability to model skewed data. Several
skewed extensions of the normal distribution have been proposed in the literature. The most
popular and the most widely used of these is the skew-normal distribution due to Azzalini
(1985). The probability density function (PDF) of this distribution is given by

gλ(x) = 2φ(x)�(λx), x ∈ R, (1)

where λ ∈ R, φ(x) is the standard normal PDF, and �(x) is the standard normal cumulative
distribution function (CDF). Let Gλ(x) = ∫ x

−∞ gλ(t) dt denote the CDF corresponding to (1).
If a random variable, say X, has PDF (1) then we write X ∼ SN(λ). Clearly, SN(0) is a
standard normal variable.

Liao et al. (2012) studied the tail behavior of the skew-normal distribution, establishing its
extreme value distribution and associated convergence rates. The following expansion for the
distribution of the normalized maximum of SN(λ) random variables was derived by Liao et al.
(2012):

b̄2
n[b̄2

n(G
n
λ(ānx + b̄n) − �(x)) − κ̄(x)�(x)] →

(
ω̄(x) + κ̄2(x)

2

)
�(x) as n → ∞.
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Here �(x) = exp(− exp(−x)) denotes the Gumbel CDF and

κ̄(x) = ( 1
2x2 + x

)
e−x,

ω̄(x) = −( 1
8x4 + 1

2x3 + x2 + 2x
)
e−x

with
1 − Gλ(b̄n) = n−1, ān = b̄−1

n

for λ ≥ 0; and

κ̄(x) = (1 + λ2)−1( 1
2x2 + 2x

)
e−x,

ω̄(x) = −λ−2(1 + λ2)−2( 1
8λ2x4 + λ2x3 + 3λ2x2 + 2(1 + 3λ2)x

)
e−x

with
1 − Gλ(b̄n) = n−1, ān = ((1 + λ2)b̄n)

−1

for λ < 0.
The skew-normal distribution applies to data on the real line. Its version for positive data

can be obtained by setting X = exp(ξ), where ξ ∼ SN(λ). Then we say that X follows the
logarithmic skew-normal distribution, written as X ∼ LSN(λ). The PDF of LSN(λ) is given
by

fλ(x) = 2

x
φ(log x)�(λ log x), x > 0. (2)

Let Fλ(·) denote the CDF corresponding to (2). Clearly, LSN(0) is a standard log-normal
random variable.

The logarithmic skew-normal distribution is more recent than the skew-normal distribution,
but it has already led to widespread applications. Some selected applications and application
areas have been modeling of income data (see Azzilini et al. (2003)); analysis of auto insurance
claim costs (see Bolance et al. (2008)); analysis of continuous data in a two-part stochastic
model (see Chai and Bailey (2008)); wireless communications (see Wu et al. (2009) and Li et
al. (2011)); modeling of particle size (see Huang and Ku (2010)); cohort studies of paediatric
respiratory symptoms (see Mahmud et al. (2010)); and modeling of precipitation data (see
Marchenko and Genton (2010)). Some probabilistic properties of LSN(λ) have been studied
in Lin and Stoyanov (2009).

The aim of this short note is to consider some further probabilistic properties of the
logarithmic skew-normal distribution. The contents are organized as follows. In Section 2
we present some preliminary results, including the tail behavior, the subexponentiality, and the
extreme value distribution of LSN(λ). Distributional expansions for the normalized maximum
of LSN(λ) random variables are derived in Section 3. To the best of our knowledge, all of the
properties presented are new.

2. Preliminary results

In this section we derive Mills’ inequalities, Mills’ ratios, and an exact decomposition of the
tail of LSN(λ). We also prove that LSN(λ) is strongly subexponential, denoted by Fλ ∈ S∗.

For LSN(λ) and SN(λ), note that 1 − Fλ(x) = 1 − Gλ(log x) and

1 − Fλ(x)

fλ(x)
= x

1 − Gλ(log x)

gλ(log x)
.
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So, by Proposition 1 of Liao et al. (2012) and by Mills’ inequality and Mills’ratio of the standard
normal distribution, we have the following two results.

Proposition 1. Let Fλ(x) and fλ(x) denote the CDF and the PDF of LSN(λ). For all x > 1,

(i) if λ > 0,

x

log x
(1 + (log x)−2)−1 <

1 − Fλ(x)

fλ(x)
<

x

log x

(
1 − φ(λ log x)

λ log x

)−1

;

(ii) if λ = 0,
x

log x
(1 + (log x)−2)−1 <

1 − F0(x)

f0(x)
<

x

log x
;

(iii) if λ < 0,
x

log x
(1 + (log x)−2)−1

(
1 − λ2

1 + λ2

(
1 + 1

λ2(log x)2

))

<
1 − Fλ(x)

fλ(x)
<

x

log x

(
1 − λ2

1 + λ2

(
1 + 1

(1 + λ2)(log x)2

)−1)
.

Proposition 2. Let Fλ(x) and fλ(x) denote the CDF and the PDF of LSN(λ). For λ ≥ 0, we
have

1 − Fλ(x)

fλ(x)
∼ x

log x
as x → ∞. (3)

For λ < 0, we have
1 − Fλ(x)

fλ(x)
∼ x

(1 + λ2) log x
as x → ∞. (4)

The following result shows that LSN(λ) is strongly subexponential.

Corollary 1. Fλ ∈ S∗, so Fλ ∈ S, the class of subexponential distributions.

Proof. By Proposition 2, the hazard rate function mFλ(x) = fλ(x)/(1 − Fλ(x)) is ultimately
decreasing to 0 as x → ∞. If exp(xmFλ(x))F̄λ(x) is integrable over R

+, where F̄λ(x) =
1 − Fλ(x), Theorem 3.32 of Foss et al. (2011) shows that Fλ ∈ S∗. Combining this with
Theorem 3.27 of Foss et al. (2011), we have Fλ ∈ S. So, we just need to check that
exp(xmFλ(x))F̄λ(x) is integrable over R

+.
Consider the λ ≥ 0 case. By (3) we know for arbitrary ε > 0 that there exists a sufficiently

large A > 0 such that

(1 − ε)
x

log x
<

1 − Fλ(x)

fλ(x)
< (1 + ε)

x

log x
.

Hence, for x > A, we have

exp(xmFλ(x))F̄λ(x) < (1 + ε)
xfλ(x)

log x
exp

(
1

1 − ε
log x

)

<
2(1 + ε)

log A
φ(log x) exp

(
1

1 − ε
log x

)

= 2(1 + ε)

log A
exp

(
1

2(1 − ε)2

)
φ

(
log x − 1

1 − ε

)
.
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So, we can check that limx→∞ xk exp(xmFλ(x))F̄λ(x) = 0 for any k > 1, implying that
exp(xmFλ(x))F̄λ(x) is integrable over R

+.
The same can be shown for the λ < 0 case by using (4). The arguments are similar and thus

omitted. This completes the proof.

In order to derive expansions for the distribution of the normalized maximum of LSN(λ)

random variables, we need the following tail decomposition of LSN(λ).

Proposition 3. Let Fλ(x) denote the CDF of LSN(λ). Then, for large x, if λ ≥ 0, we have

1 − Fλ(x) = fλ(log x)

log x
(1 − (log x)−2 + 3(log x)−4 + O((log x)−6))

=
√

2

πe
�(λ log x)(1 − (log x)−2 + 3(log x)−4 + O((log x)−6))

× exp

(
−

∫ x

e

log s

s
(1 + (log s)−2) ds

)
. (5)

If λ < 0, we have

1 − Fλ(x) = exp(−(1 + λ2)(log x)2/2)

(−λ)π(1 + λ2)(log x)2

×
(

1 − 1 + 3λ2

λ2(1 + λ2)
(log x)−2 + 15λ4 + 10λ2 + 3

λ4(1 + λ2)2 (log x)−4 + O((log x)−6)

)

= exp(−(1 + λ2)/2)

(−λ)π(1 + λ2)

×
(

1 − 1 + 3λ2

λ2(1 + λ2)
(log x)−2 + 15λ4 + 10λ2 + 3

λ4(1 + λ2)2 (log x)−4O((log x)−6)

)

× exp

(
−

∫ x

e

(1 + λ2) log s

s

(
1 + 2

(1 + λ2)(log s)2

)
ds

)
.

Proof. The proof follows by integration by parts.

Using Proposition 3, we can now derive the distributional tail representation of LSN(λ).

Proposition 4. For large x,

1 − Fλ(x) = c(x) exp

(
−

∫ x

e

g(t)

f (t)
dt

)
,

where c(x), g(x), and f (x) depend on λ as follows. In the λ ≥ 0 case,

c(x) →
√

2

πe
as x → ∞,

f (x) = x

log x
> 0 with f ′(x) = − log x − 1

(log x)2 → 0 as x → ∞,

and

g(x) = 1 + 1

(log x)2 → 1 as x → ∞.
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In the λ < 0 case,

c(x) → exp(−(1 + λ2)/2)

(−λ)π(1 + λ2)
as x → ∞,

f (x) = x

(1 + λ2) log x
> 0 with f ′(x) = − log x − 1

(1 + λ2)(log x)2 → 0 as x → ∞,

and

g(x) = 1 + 2

(1 + λ2)(log x)2 → 1 as x → ∞.

In fact, Proposition 4 can also be obtained from Mills’ ratio of LSN(λ). By Corollary 1.7 of
Resnick (1987), we have Fλ ∈ D(�), and the norming constants an and bn are given by

n−1 = 1 − Fλ(bn), an = f (bn) (6)

such that
lim

n→∞ Fn
λ (anx + bn) = �(x).

Remark 1. The tail representation of LSN(λ) can be rewritten as

1 − Fλ(x) = c(x) exp

(
−

∫ x

e

1

f ∗(t)
dt

)

with f ∗(x) = f (t)/g(t) eventually nondecreasing, where c(x), f (t), and g(t) are those given
in Proposition 4. By Corollary 2.5 of Goldie and Resnick (1988), we can easily check that
Fλ ∈ S ∩ D(�) since limx→∞ f ∗(hx)/f ∗(x) = h for any constant h > 1.

3. Expansion for the distribution of the maximum

In this section we derive an exact expansion for the distribution of the maximum of LSN(λ)

random variables. This expansion is used to show that the convergence rate of Fn
λ (anx + bn)

to �(x) is of the order of O((log n)−1/2).

Theorem 1. For norming constants an and bn given in (6), we have

(log bn)((log bn)(F
n
λ (anx + bn) − �(x)) − κ(x)�(x)) →

(
ω(x) + κ2(x)

2

)
�(x)

as n → ∞, where κ(x) and ω(x) depend on λ as follows. In the λ ≥ 0 case,

κ(x) = −2−1x2e−x,

ω(x) = −24−1(3x4 − 8x3 − 12x2 − 24x)e−x;
in the λ < 0 case,

κ(x) = −2−1(1 + λ2)−1x2e−x,

ω(x) = −24−1(1 + λ2)−2(3x4 − 8x3 − 12(1 + λ2)x2 − 48(1 + λ2)x)e−x.

To prove Theorem 1, we need the following auxiliary result.
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Lemma 1. Let Hλ(bn; x) = Fλ(anx + bn) and hλ(bn; x) = n log Hλ(bn; x) + e−x , where the
norming constants an and bn are given in (6). Then

lim
n→∞(log bn)((log bn)hλ(bn; x) − κ(x)) = ω(x),

where κ(x) and ω(x) are those given in Theorem 1.

Proof. First, consider the λ ≥ 0 case. It is easy to check the following two facts by (3) and
Fλ ∈ D(�):

lim
n→∞ n

(
1 − Fλ

(
bn

log bn

x + bn

))
= e−x (7)

and

lim
n→∞

(
1 − Fλ

(
bn

log bn

x + bn

))
(log bn)

2 = 0. (8)

Setting
Aλ(bn) = [�(λ log bn)(1 − (log bn)

−2 + 3(log bn)
−4 + O((log bn)

−6))]

×
[

3

(
log

(
bn

log bn

x + bn

))−4

+ �

(
λ log

(
bn

log bn

x + bn

))

×
(

1 −
(

log

(
bn

log bn

x + bn

))−2

+ O((log bn)
−6)

)]−1

,

we have limn→∞ Aλ(bn) = 1 and

lim
n→∞(Aλ(bn) − 1)(log bn)

2 = 0. (9)

So, by (5), we have

1 − Fλ(bn)

1 − Fλ(bnx/log bn + bn)
e−x

= Aλ(bn) exp

(∫ bn+bnx/log bn

bn

log s

s

(
1 + 1

(log s)2

)
ds − x

)

= Aλ(bn) exp

(∫ x

0

(−t + log(1 + t/log bn)

log bn + t

+ 1

(log bn + t)(log bn + log(1 + t/log bn))

)
dt

)

= Aλ(bn)

(
1 +

∫ x

0

(−t + log(1 + t/log bn)

log bn + t

+ 1

(log bn + t)(log bn + log(1 + t/log bn))

)
dt

+ 1 + o(1)

2

(∫ x

0

(−t + log(1 + t/log bn)

log bn + t

+ 1

(log bn + t)(log bn + log(1 + t/log bn))

)
dt

)2)
.

(10)

https://doi.org/10.1239/jap/1378401246 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1378401246


906 X. LIAO ET AL.

Combining (3), (7), (8), (9), and (10), we obtain

lim
n→∞(log bn)hλ(bn; x)

= lim
n→∞

n log Hλ(bn; x) + e−x

(log bn)−1

= lim
n→∞

n(log Fλ(bnx/log bn + bn) + (1 − Fλ(bn))e−x)

(log bn)−1

= lim
n→∞

n(−(1 − Fλ(bnx/log bn + bn)) − (1/2)(1 − Fλ(bnx/log bn + bn))
2(1 + o(1)))

(log bn)−1

+ lim
n→∞

n(1 − Fλ(bn))e−x

(log bn)−1

= lim
n→∞

n(1 − Fλ(bnx/log bn + bn))(−1 − (1/2)(1 − Fλ(bnx/log bn + bn))(1 + o(1)))

(log bn)−1

+ lim
n→∞

n(1 − Fλ(bnx/log bn + bn))(1 − Fλ(bn))e−x/(1 − Fλ(bnx/log bn + bn))

(log bn)−1

= e−x lim
n→∞

−1 + (1 − Fλ(bn))e−x/(1 − Fλ(bnx/log bn + bn))

(log bn)−1

= e−x lim
n→∞

−1 + Aλ(bn)(1 + ∫ x

0 (−t + log(1 + t/log bn))(log bn + t)−1 dt (1 + o(1)))

(log bn)−1

+ e−x lim
n→∞

Aλ(bn)
∫ x

0 ((log bn + t)(log bn + log(1 + t/log bn)))
−1 dt (1 + o(1))

(log bn)−1

= e−x lim
n→∞

Aλ(bn) − 1 + Aλ(bn)
∫ x

0 (−t + log(1 + t/log bn))(log bn + t)−1 dt (1 + o(1))

(log bn)−1

+ e−x lim
n→∞

Aλ(bn)
∫ x

0 ((log bn + t)(log bn + log(1 + t/log bn)))
−1 dt (1 + o(1))

(log bn)−1

= e−x lim
n→∞

∫ x

0

(−t + log(1 + t/log bn)

1 + t/log bn

+ 1

(1 + t/log bn)(log bn + log(1 + t/log bn))

)
dt

= − 1
2x2e−x

:= κ(x),

where the final step follows by the dominated convergence theorem. Similarly, we can show
that limn→∞(log bn)((log bn)hλ(bn; x) − κ(x)) = ω(x).

The same results hold for λ > 0 by (4) and Proposition 4. The arguments are similar and
thus omitted. This completes the proof.

Proof of Theorem 1. Note that limn→∞ hλ(bn; x) = 0 by Lemma 1. Using Lemma 1 again,
we have

(log bn)((log bn)(Fλ(anx + bn) − �(x)) − κ(x)�(x))

= (log bn)((log bn)(exp(hλ(bn; x) − 1)) − κ(x))�(x)

= (log bn)

(
(log bn)

(
hλ(bn; x) + h2

λ(bn; x)

2
+ h3

λ(bn; x)

3! (1 + o(1))

)
− κ(x)

)
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=
(

(log bn)((log bn)hλ(bn; x) − κ(x))

+ (log bn)
2h2

λ(bn; x)

(
1

2
+ hλ(bn; x)

3! (1 + o(1))

))
�(x)

→
(

ω(x) + κ2(x)

2

)
�(x) as n → ∞.

The desired result follows.

Remark 2. By the definition of bn, it is easy to check that 1/ log bn = O(1/(log n)1/2). So,
Theorem 1 shows that the pointwise convergence rate of Fn

λ (anx+bn) to its limit is proportional
to 1/(log n)1/2. Furthermore, the pointwise convergence rate of (log bn)(F

n
λ (anx+bn)−�(x))

to its limit is also proportional to 1/(log n)1/2 by Theorem 1.
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