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Alcohol dehydrogenase (ADH) and mitochondrial aldehyde dehydrogenase (ALDH2) are
responsible for metabolizing the bulk of ethanol consumed as part of the diet and their
activities contribute to the rate of ethanol elimination from the blood. They are expressed at
highest levels in liver, but at lower levels in many tissues. This pathway probably evolved as
a detoxification mechanism for environmental alcohols. However, with the consumption of
large amounts of ethanol, the oxidation of ethanol can become a major energy source and,
particularly in the liver, interferes with the metabolism of other nutrients. Polymorphic variants
of the genes for these enzymes encode enzymes with altered kinetic properties. The patho-
physiological effects of these variants may be mediated by accumulation of acetaldehyde;
high-activity ADH variants are predicted to increase the rate of acetaldehyde generation, while
the low-activity ALDH2 variant is associated with an inability to metabolize this compound.
The effects of acetaldehyde may be expressed either in the cells generating it, or by delivery
of acetaldehyde to various tissues by the bloodstream or even saliva. Inheritance of the high-
activity ADH b2, encoded by the ADH2*2 gene, and the inactive ALDH2*2 gene product have
been conclusively associated with reduced risk of alcoholism. This association is influenced
by gene–environment interactions, such as religion and national origin. The variants have also
been studied for association with alcoholic liver disease, cancer, fetal alcohol syndrome, CVD,
gout, asthma and clearance of xenobiotics. The strongest correlations found to date have been
those between the ALDH2*2 allele and cancers of the oro-pharynx and oesophagus. It will be
important to replicate other interesting associations between these variants and other cancers
and heart disease, and to determine the biochemical mechanisms underlying the associations.

Alcohol dehydrogenase: Aldehyde dehydrogenase: Liver: Cancer

Alcohol is used by a large number of individuals and its
metabolism parallels that of other nutrients. While the use
of small amounts of alcohol has a beneficial effect for
cardiovascular health, consumption of large amounts has
well-known effects on the liver, heart, pancreas and the
nervous system, and less well-recognized influences on
other disease, especially cancers. The susceptibility of indi-
viduals to the ill effects of alcohol consumption appears to

be a result of complex interactions between genes and the
environment (the latter including both the alcohol itself
and other nutrients). The enzymes involved in alcohol
metabolism are polymorphic and it is their contribution to
differential risk of alcoholism and some of its compli-
cations that is most understood. These enzymes and the
effects of their genetic variation are the subject of the
present review.

Abbreviations: ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase; AUC, areas under the blood alcohol concentration curves; C/EPB,
CCAAT-enhancer-binding proteins; FPM, first-pass metabolism; Vmax, maximum velocity.
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Gastrointestinal absorption and first-pass metabolism

First-pass metabolism (FPM) is the difference between the
amount of a drug administered orally and the amount
reaching the systemic circulation and, conceptually, is a
result of metabolism of the drug by the gut or liver during
the absorption phase. FPM is important because it reduces
the amount of a drug reaching target organs and may also
predispose gut tissues to injury from alcohol metabolism.
The gastrointestinal tract, similar to the liver, contains
cytochrome P450s and alcohol dehydrogenases (ADH).
Ingested ethanol is absorbed slowly from the stomach,
during which process it may be subject to oxidation.
Ethanol leaving the stomach is very rapidly absorbed from
the upper small intestine. Ethanol absorbed across the gut
mucosa is carried to the liver by the portal vein, where a
small proportion is metabolized before leaving that organ.
To determine the magnitude of FPM, ethanol is adminis-
tered orally or intravenously and the concentration of
ethanol in the blood (blood alcohol concentration) is
measured over time. The areas under the blood alcohol
concentration curves (AUC) are calculated for each route
of administration and the FPM is the difference in AUC
between the two routes (Julkunen et al. 1985; Caballeria
et al. 1987).

Lieber’s group pioneered studies on FPM, establishing
that FPM is easiest to detect with low doses of ethanol
(0.3 g/kg, equivalent to approximately 20 g ethanol or
two social drinks) when gastric emptying is slowed by the
presence of food (Julkunen et al. 1985). Larger doses of
ethanol or conditions under which gastric emptying is
rapid make the difference between the AUC too small to
measure accurately. While the phenomenon of FPM is well
established, the organ in which it occurs is not. Some
reports favour the stomach as a major site (Lim et al.
1993). The gastric mucosa contains several ADH (g-ADH,
c-ADH and s-ADH, see p. 51) that could be involved in
the metabolism of ethanol. Under circumstances in which
gastric ADH activity is decreased, e.g. in women (Frezza
et al. 1990; Seitz et al. 1993), individuals with atrophic
gastritis, alcoholics (DiPadova et al. 1987) and individuals
taking certain medications (Roine et al. 1990; Cabelleria
et al. 1991), the magnitude of FPM is reduced. s-ADH, a
major gastric ADH isozyme, is absent in the stomach
biopsies of about 30% of Asians, and those lacking this
enzyme had lower FPM of ethanol (Dohmen et al. 1996),
suggesting that s-ADH is important in gastric oxidation
of ethanol. The relationship between FPM and the rate of
gastric emptying suggests that prolonged contact of the
ingested alcohol solution with the stomach favours absorp-
tion of the alcohol transgastrically, where it would be
subject to oxidation in the stomach mucosal cells. Rapid
gastric emptying would have the opposite effect. Oral
administration of alcohol resulted in a substantially higher
blood alcohol level and AUC in the fasted as compared
with the fed state (DiPadova et al. 1987). All these findings
are consistent with an important role for the stomach
mucosa in FPM of ethanol.

However, other interpretations of these data have been
published. The assertion that gastric ADH (Yin et al. 1997)
or FPM (Ammon et al. 1996) is reduced in women is

contested. Some investigators have found no correlation
between gastric ADH activity and FPM (Brown et al.
1995). Importantly, the total ADH activity in the stomach,
calculated based on the mass of the mucosa and its
ADH activity, does not account for the amount of ethanol
metabolized, as indicated by the observed differences
between the AUC of oral and intravenous alcohol (Yin
et al. 1997). Furthermore, the human and rat s-ADH have
markedly different kinetic properties. The Km for ethanol
for the human enzyme is 40mM, whereas that for the
rat enzyme is eighty times greater, yet FPM for the two
species is similar in magnitude. These arguments suggest
that FPM also occurs in the liver. Hepatic FPM is depen-
dent on the rate at which ethanol is absorbed, since at low
rates of absorption, leading to low portal venous ethanol
concentrations, ethanol could be extracted by the rela-
tively-low-Km hepatic ADH isozymes. At higher rates of
absorption and higher portal ethanol concentrations, these
enzymes will be saturated. Experimentally, the systemic
AUC of ethanol concentration is very sensitive to the rate
of portal venous administration of ethanol (Smith et al.
1992; Levitt & Levitt, 1994). This alternative explanation
can also account for the lack of FPM seen with high doses
of ethanol or rapid gastric emptying.

To clarify this issue, Ammon et al. (1996) gave ethanol
intravenously and 2H-labelled ethanol by mouth or into
the duodenum. This method reduced the intra-subject
variability by permitting an estimate of both gastric and
hepatic FPM simultaneously. They found that FPM was
about 8–9% of the oral dose and estimated that the gastric
contribution to FPM was about 6% of the oral dose. It
seems safe to conclude that the FPM of oral ethanol is
usually a small percentage (perhaps £10) of the total body
ethanol elimination, and when gastric emptying is rapid or
the ethanol dose consumed is high it is quantitatively even
less important. Gender differences in FPM are probably
not major (Ammon et al. 1996). The overall importance of
FPM might lie in the potential for gastric FPM to protect
the liver and other organs from low doses of ethanol,
and for certain drugs to block FPM (Roine et al. 1990;
Caballeria et al. 1991), resulting in intoxication from
smaller-than-expected doses of ethanol. Furthermore, this
process is an obvious point of intersection of diet and
timing of meals with ethanol consumption.

Overview of hepatic ethanol metabolism and
its regulation

After absorption and passage through the liver, ethanol is
distributed in the body water space and is largely metab-
olized in the liver to acetaldehyde by ADH in the cytosol
and the cytochrome P450IIE1 in microsomes. Although
cytochrome P450IIE1 is important in ethanol toxicity and
in mediating several drug–ethanol interactions, it will not
be further considered in the present discussion. Acetal-
dehyde is converted by aldehyde dehydrogenases (ALDH)
(especially the mitochondrial ALDH2 isozyme) to acetate,
which is released from the liver and metabolized by the
heart and muscle (Lumeng & Davis, 1970). The rate of
ethanol metabolism by ADH and ALDH2 may be critical
in determining its toxicity because the intermediates of this
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pathway are themselves potentially toxic. The maximal
activities of ADH and ALDH in the liver are similar, so
that each enzyme contributes to the overall control of the
rate of alcohol oxidation.

Modelling of alcohol oxidation in rat liver indicated that
ADH activity was controlled in part by the total activity
of the enzyme as well as product inhibition by NADH and
acetaldehyde (Crabb et al. 1983). Liver NADH levels are
elevated during alcohol oxidation because the first enzyme
in the malate–aspartate shuttle, malate dehydrogenase, has
a high Km for NADH (Crow et al. 1982, 1983). Thus, in a
steady-state ADH is operating below its maximum velocity
(Vmax). Flux through the pathway is also sensitive to the
total activity of ADH. Reduction in total ADH activity
(as occurs in fasting) reduced the ability of the liver to
oxidize ethanol in rats, but increases in activity did not
increase the metabolic rate proportionally (Crabb et al.
1983). This outcome is presumed to be a result of the
inability to increase acetaldehyde oxidation and, therefore,
an increase in steady-state acetaldehyde concentration
may limit the rate of ethanol metabolism. In human
subjects with ADH and ALDH2 variants with markedly
different kinetic properties the rate of ethanol oxidation
should be influenced by the Km, Vmax and sensitivity to
product inhibition of the variants. This relationship raises
the possibility that under certain conditions pathways of
alcohol metabolism and the concentrations of metabolic
intermediates change but the alcohol elimination rate
does not.

The rate of ethanol clearance from the blood in the
pseudo-linear segment of the elimination curve varies by
two- to threefold between individuals (Kopun & Propping,
1977; Martin et al. 1985). The test–retest reliability in the
oral ethanol challenge method of determining the alcohol
elimination rate is open to criticism, but substantial
between-individual variation was recently confirmed using
the alcohol clamp technique (O’Connor et al. 1998), which
completely avoids the variability in absorption. The reasons
for this variation are incompletely understood. The likeliest
explanation for the difference is variation in the activity of

enzymes catalysing alcohol oxidation and in the size of
the liver. Examination of these isozymes and their genes
has revealed a substantial number of functional polymor-
phisms, which contribute to responses to ethanol.

Enzymology of alcohol metabolism

Alcohol dehydrogenases

The enzymes responsible for the bulk of alcohol oxidation
are the ADH. All are dimeric Zn-containing enzymes with
a subunit molecular weight of 40 kDa. These enzymes are
classified based on enzymic properties and the extent of
sequence similarities. Only enzyme subunits belonging to
the same class can heterodimerize. The heterodimers have
kinetic properties described by the active sites acting
independently. Classes I, II and possibly IV are predicted
to participate in ethanol oxidation in vivo. The properties
of the enzymes in each of these classes are summarized in
Table 1 (Bosron & Li, 1986, 1987). Class I contains a, b
and g isozymes. These enzymes have a low Km for ethanol
and are highly sensitive to inhibition by pyrazole
derivatives. Class I enzymes are very abundant in the liver
and are therefore believed to play a major role in hepatic
alcohol metabolism. Class II ADH (p ADH, for pyrazole-
insensitive isozyme) was first found in human liver; it has
a higher Km for ethanol and is less sensitive to pyrazole
inhibition than class I enzymes (Ehrig et al. 1990). As it
has a high Km it may contribute to increased rates of
alcohol elimination (i.e. a steeper blood ethanol disap-
pearance curve) sometimes observed at high blood ethanol
concentrations. Class III ADH (c ADH) is expressed in all
tissues studied, is virtually inactive with ethanol but is
capable of metabolizing longer-chain alcohols and w-
hydroxy-fatty acids (Pares & Vallee, 1981). This enzyme
also exhibits glutathione-dependent formaldehyde dehy-
drogenase activity (Koivusalo et al. 1989).

Recent additions to this family of enzymes are class IV
and (tentatively) classes V and VI. The class IV enzyme
has been purified from the stomach and oesophagus.

Table 1. Properties of alcohol dehydrogenases (ADH) in man

Gene locus New nomenclature Subunit type Km (ethanol)† Vmax† Tissue distribution

Class I

ADH1 ADH1A a 4 54 Liver

ADH2 ADH1B b 0.05–34.0‡ – Liver, lung

ADH3 ADH1C g 0.6–1.0‡ – Liver, stomach

Class II

ADH4 ADH2 p 34 40 Liver, cornea

Class III

ADH5 ADH3 c 1000 – Most tissues

Class IV*

ADH7 ADH4 s, m 20 1510 Stomach, oesophagus, other mucosas

Class V*

ADH6 ADH5 – 30 ? Liver, stomach

Class VI*

ADH8 ADH6 – – Not detected in man, found in deer mouse and rat liver

Vmax, maximum velocity.
*Tentative assignments based on sequence homologies. Details for the class IV, V and VI enzymes are given on pp. 51–52.
†Km values are given in mM and Vmax values are given in terms of turnover number (/min).
‡Kinetic constants vary with the isozyme, see Table 2.
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Designated either m-ADH (for the mucosal isozyme; Yin
et al. 1990) or s-ADH (for the stomach isozyme; Moreno
& Pares, 1991), it is structurally distinct from classes I, II
and III (Stone et al. 1993; Farres et al. 1994a; Pares et al.
1994; Satre et al. 1994). Its high Km for ethanol may be
an adaptation for the high concentration of ethanol in the
gastric mucosa after ethanol consumption. The fact that
this enzyme has such a high Km for ethanol suggests that
other alcohols may be its physiological substrates. s-ADH
has the highest Vmax of any of the known ADH and is
very active with retinol as substrate (Stone et al. 1993). Its
expression in a variety of epithelia (oesophagus, stomach,
vagina, naso-pharynx and cornea) and the importance of
retinol in the integrity of these tissues suggest that s-ADH
has a role in retinol conversion to retinal. It is the first
ADH expressed in the embryonic mouse and its sites of
expression correlate with the production of retinoic acid
(Ang et al. 1996a,b). Class V ADH, encoded by the ADH6
gene, is expressed at the mRNA level in the liver and
in the stomach, but the enzyme itself has not been purified.
In vitro expressed enzyme had an isoelectric point of about
8.6, a high Km for ethanol (about 30mM) and moderate
sensitivity to pyrazole inhibition (Cheng & Yoshida, 1991;
Yasunami et al. 1991). An additional class of ADH
(tentatively designated class VI) was reported in the liver
of deer mice (Peromyscus maniculatus; Zheng et al. 1993)
and rats (Hoog & Brandt, 1995) and class VII ADH was
cloned from chicken (Kedishvili et al. 1997); to date the
human homologues have not been found. There is a new
nomenclature for ADH, shown in Table 1, but the remain-
der of the present review will use the older system.

The class I enzymes and their mRNA are quite abundant
in liver. The genes are approximately 15 kb in size with
nine exons (Duester et al. 1986). The ADH promoters
contain binding sites for general transcription factors (e.g.
TATAA-binding factors, upstream stimulatory factor
(Potter et al. 1991a), CCAAT box-binding transcription
factor, or nuclear factor 1, which appears to function as
a negative factor (Edenberg et al. 1993), and Sp1-like fac-
tors (Brown et al. 1992)) as well as tissue-specific factors
(e.g. hepatocyte nuclear factor 1, D-box-binding protein
and CCAAT-enhancer-binding proteins (C/EBP; C/EBP a
and b; Stewart et al. 1990, 1991; Potter et al. 1991b)).
Exceptions are the ADH5 and ADH7 promoters, which
lack TATAA boxes. The ADH5 promoter is G + C rich, a
characteristic of housekeeping genes.

ADH are expressed in a variety of extrahepatic tissues,
albeit at lower levels than in the liver. High levels of class
I ADH mRNA were found in the kidney, stomach, duode-
num, colon and uterus of rats (Estonius et al. 1993), with
lower levels in many organs, including the lung, small
intestine and hepatic Ito cells (Yamauchi et al. 1988). Very
low levels were found in the brain, thymus, muscle or
heart (Estonius et al. 1993). Class I ADH has also been
found in blood vessels (Allali-Hassani et al. 1997), a find-
ing relevant to the alcohol-induced flush reaction. Surveys
of ADH expression patterns in human tissue have been
published (Engeland & Maret, 1993; Estonius et al. 1996).
The expression of ADH in gut mucosa and breast is
relevant to studies on the effect of alcohol on cancers of
these organs. The oral mucosa expresses s and c ADH

(Dong et al. 1996). Class II ADH was detected in liver and
duodenum (Estonius et al. 1993). s ADH is expressed in
stomach and oesophageal mucosa at high levels. The colon
expresses g ADH in the mucosa and b ADH in the muscle
layer (Yin et al. 1994). Breast tissue expresses relatively
high levels of class I ADH (Triano et al. 2003), but the
isozyme involved is not known. Enzyme extracted from
breast was apparently saturated at 10mM ethanol, which
would be consistent with either b or g ADH. Human
placenta expresses c ADH only (Pares & Vallee, 1981).

The expression of ADH is regulated to a certain extent
in the liver. Binding sites for thyroid hormone, retinoic
acid (Duester et al. 1991; Harding & Duester, 1992) and
glucocorticoid receptors (Winter et al. 1990) have been
identified in the upstream regions of class I ADH genes.
In vitro promoter studies suggest that the genes are
regulated (retinoic acid and glucocorticoids activating
transcription and thyroid hormone antagonizing the effect
of retinoic acid; Harding & Duester, 1992), but smaller
effects are seen in vivo. This disparity may be the result of
effects of the hormones on protein synthesis and turnover
as well as on transcription (Qulali & Crabb, 1992; Dipple
et al. 1993). Growth hormone increased ADH activity in
intact animals and cultured hepatocytes (Mezey & Potter,
1979; Mezey et al. 1986b; Potter et al. 1989, 1993), while
androgens (Mezey et al. 1986a) and thyroid hormones
(Mezey & Potter, 1981; Dipple et al. 1993) decreased it.
Liver ADH activity is also decreased substantially by
fasting (Bosron et al. 1984) and protein restriction
(Lumeng et al. 1979).

The effect of ethanol on ADH expression is complex.
Studies in rodents have shown that ethanol can increase
ADH activity in male rats by reducing testosterone levels
(Rachamin et al. 1980). The doses of ethanol delivered
to rats or mice via the use of liquid diets does not have
significant effects on liver ADH. However, higher doses
achieved by intragastric delivery of ethanol induced liver
ADH activity and resulted in cyclic changes in blood
alcohol despite continuous infusion. This effect was shown
to result from induction of the transcription factor C/EBPb
and suppression of C/EBPg and a truncated inhibitory
form of C/EBPb termed LIP (He et al. 2002). In addition,
chronic intragastric infusion of ethanol increases portal
vein endotoxin and sensitizes the liver to endotoxin actions
(Enomoto et al. 2000). Mezey’s group (Potter et al. 2003)
reported that endotoxin can induce ADH mRNA, protein
and activity. This effect was correlated with increased
binding of upstream stimulatory factor to the ADH pro-
moter. In man less is known. The amount of ADH in the
liver is not influenced by chronic drinking; the activity is
normal in heavy drinkers without liver disease and there
is a progressive reduction in ADH activity as liver injury
progresses (Panes et al. 1989). Although there are contro-
versial data about women having higher alcohol elimina-
tion rates, orchiectomy increased alcohol elimination rates
in human subjects (Mezey et al. 1988).

Of the seven human ADH gene loci, two are poly-
morphic, and the frequency of the different alleles depends
on ethnic background. Both polymorphic alleles involve
class I ADH genes; three alleles exist for ADH3 and three
for ADH2 (Burnell & Bosron, 1989). The kinetic properties
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and population distributions of these allelic enzymes are
shown in Table 2. The isozymes encoded by the three
ADH2 alleles, which differ at a single amino acid residue,
vary markedly in Km for ethanol and Vmax. b1 is most
common in Caucasians, has a low Vmax and a very low Km

for ethanol. b2, originally designated ‘atypical’ ADH (von
Wartburg et al. 1964), is found in Asians and Ashkenazi
Jews in Israel and the USA (Neumark et al. 1998). It has
a substantially higher Vmax and somewhat higher Km

compared with b1. The b3 isozyme was first detected in
liver extracts from African-Americans (Bosron et al. 1980)
because of its lower pH optimum than the other ADH
isozymes. It has also been found in Southwest Native
Americans. It has a high Km for ethanol and high Vmax.
Smaller differences in enzymic properties are observed
between the products of the ADH3 alleles. The g1 isozyme
has about twice the Vmax of the g2 isozyme, while their
Km for ethanol are similar. g1 ADH is found at a high
frequency in Asians and African-Americans; Caucasians
have about equal frequency of g1 and g2 ADH alleles
(Burnell & Bosron, 1989). The recently described ADH3*3
allele has not been enzymically characterized (Osier et al.
2002). Edenberg’s laboratory (Edenberg et al. 1999)
recently reported polymorphisms in the promoter of the
ADH7 gene, encoding p ADH, which affect promoter
activity in vitro. The other ADH loci have not been found
to be polymorphic to date.

It could be predicted that individuals expressing the
variants of ADH2, in particular, would have different
alcohol elimination rates; specifically, those with ADH2*2
and ADH2*3 would be predicted to metabolize ethanol
more rapidly. This difference has been difficult to demon-
strate, in part because a given isozyme constitutes a small
proportion of the total alcohol-oxidizing capacity of the
liver and because alcohol elimination rates are rather vari-
able, even among individuals of the same ADH genotypes,
or even twins (Kopun & Propping, 1977; Martin et al.
1985). To date, different ADH2*2 genotypes have been
correlated, at most, with only a small proportion of the
between-individual differences in alcohol elimination
rates (Mizoi et al. 1994). The ADH2*3 polymorphism has
been shown to be associated with a 10% increase in the
rate of ethanol metabolism (Thomasson et al. 1995). The
ADH3 polymorphism did not affect alcohol elimination
(Couzigou et al. 1991).

Aldehyde dehydrogenases

Acetaldehyde is further metabolized by NAD+-dependent
ALDH (Table 3). These enzymes have broad substrate
specificity for aliphatic and aromatic aldehydes, which are
irreversibly oxidized to their corresponding carboxylic
acids. The ALDH are expressed in a wider range of tissues
than the ADH isozymes. The nomenclature for ALDH has
been revised; they have been tentatively classified as class
1 (low Km, cytosolic), class 2 (low Km, mitochondrial)
and class 3 (high-Km ALDH, such as those expressed in
tumours, stomach and cornea) based on kinetic properties
and sequence similarities.

The most important enzymes for acetaldehyde oxidation
are cytosolic ALDH1 and mitochondrial ALDH2 (Green-
field & Pietruszko, 1977). Both are tetrameric enzymes
composed of 54 kDa subunits. ALDH1 has a low Km for

Table 2. Properties of polymorphic forms of human alcohol dehydrogenase (ADH)*

Gene locus Subunit type Km (ethanol)‡ Vmax‡ Population§

ADH2*1 (ADH1B*1) b1 0.05 9 Caucasians, African-Americans

ADH2*2 (ADH1B*2) b2 0.9 400 Asians

ADH2*3 (ADH1B*3) b3 34 300 African-Americans

ADH3*1 (ADH1C*1) g1 1.0 87 All groups

ADH3*2 (ADH1C*2) g2 0.63 35 Caucasians

ADH3*3 (ADH1C*3)† g3 Native Americans

Vmax, maximum velocity.
*The kinetic constants are noted for the homodimers of the subunits listed (Bosron & Li, 1986, 1987; Ehrig et al. 1990). Heterodimers behave as if the active sites
were independent.

†The third ADH3 allele was recently discovered and the enzymic characteristics are unknown (Osier et al. 2002).
‡Km values are expressed in mM and the Vmax values are given in terms of turnover numbers (/min), as in Table 1.
§Populations that have high allele frequencies for these variants. The alleles are not limited to those populations.

Table 3. Properties of human aldehyde dehydrogenases (ALDH)

Gene locus Structure‡ Km (Ach) Tissue distribution

Class 1

ALDH1 a4 30mM Many tissues, liver > kidney

Class 2

ALDH2 a4 1mM Low levels in many tissues

Liver > kidney >
muscle > heart

ALDH5* ? ? Low levels in most tissues,

placenta

Liver > kidney > muscle

Class 3

ALDH3 a2 11mM Stomach, liver, cornea

Other

enzymes†

ALDH4 Glutamate g-semialdehyde

dehydrogenase

ALDH6 Retinal dehydrogenase

ALDH7,8 Related to ALDH3

ALDH9 ALDHE3

ALDH10 Fatty aldehyde

dehydrogenase

Ach, acetaldehyde.
*ALDH5 is tentatively assigned to class 2 because of sequence similarities to
ALDH2 and the presence of a potential mitochondrial leader sequence.

†It is not likely that ALDH6-10 play any role in metabolism of acetaldehyde.
‡The structure of the enzymes is indicated by a2 for dimers and a4 for
tetramers.
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acetaldehyde (about 30mM) and is exquisitely sensitive to
disulfiram (Antabuse; Alpharma AS, Oslo, Norway) in vitro
(Greenfield & Pietruszko, 1977; Dickinson et al. 1981).
ALDH2 has a submicromolar Km for acetaldehyde and is
less sensitive to disulfiram in vitro. These enzymes have
high inhibition constants for NADH and, thus, are not
inhibited by the high NADH:NAD+ that is established in
cytosol and mitochondria during the oxidation of ethanol.
The enzymes are distributed more or less evenly across the
liver acinus. ALDH1 and ALDH2 mRNA are expressed in
a variety of human tissues in addition to the liver (Stewart
et al. 1996b); ALDH2 mRNA is particularly abundant in
the kidney, muscle and heart. Low levels of ALDH1 and
ALDH2 mRNA are found in the placenta, brain and
pancreas, which may be relevant to the genesis of fetal
alcohol syndrome, alcoholic neurotoxicity and chronic
alcoholic pancreatitis. In man the oral mucosa expresses
ALDH3, the oesophagus expresses ALDH1 and ALDH3,
the stomach expresses ALDH1, 2 and 3, while the colon
expresses predominantly ALDH1, and the lung expresses
ALDH2 (Yin et al. 1993, 1994, 1997). The breast is
reported to express ALDH1 and ALDH3 (Sreerama &
Sladek, 1997) and the placenta expresses low levels of
ALDH5 mRNA (Stewart et al. 1996b).

The control of expression of these enzymes has been
studied. The ALDH1 gene was cloned (Hsu et al. 1989)
and the promoter was studied in transfection and DNA-
binding assays. 5k Flanking DNA (2.6 kb) permitted
expression of reporter constructs in hepatoma cells; a
minimal promoter was shown to bind nuclear factor Y/
CCAAT-binding protein 1 and octamer factors (Yanagawa
et al. 1995). The ALDH2 gene has been more intensively
studied. It has no TATAA box (Hsu et al. 1988); similar to
ALDH1, it has a binding site for the ubiquitous CCAAT-
box-binding protein nuclear factor Y/CCAAT-binding
protein 1 near the transcription start site (Stewart et al.
1996a). Pinaire et al. (1999) described a site designated
FP330-3k that is bound and activated by hepatocyte
nuclear factor-4 and retinoid X receptor, while apoA
regulatory protein-1, chicken ovalbumin upstream promo-
ter–transcription factor and PPAR-d oppose this activation.
These authors concluded that it is likely that the FP330-3k
site integrates the effects of several transcription factors in
different tissues and this process may explain why ALDH2
is highly expressed in liver and kidneys.

Additional ALDH enzymes are known, but their role in
alcohol metabolism is unknown. Pietruszko’s laboratory
(Kurys et al. 1989, 1993) purified and cloned an enzyme
designated ALDHE3. This enzyme has properties similar
to ALDH1; it is expressed in the cytosol and has a Km for
aliphatic aldehydes of about 30–50 mM (Kurys et al. 1989),
but is only 40% similar to ALDH1 or ALDH2 at the
amino acid level (Kurys et al. 1993). This enzyme has a
low Km for aminoaldehydes such as 4-aminobutyraldehyde
and hence may metabolize compounds derived from
polyamines such as spermine and betaine aldehyde (Chern
& Pietruszko, 1995). Its gene (designated ALDH9) was
recently cloned (Lin et al. 1996). ALDH5 (originally
known as ALDHx; Hsu & Chang, 1991) is unique among
the ALDH genes in that it lacks introns. The enzyme has
70% sequence similarity to ALDH2 and is predicted

to contain a mitochondrial leader sequence. If so, ALDH5
may be classified as the second class 2 ALDH. The ALDH5
gene is also polymorphic at two different residues: valine
or alanine at position 69; leucine or arginine at position
120 (Hsu & Chang, 1991; Sherman et al. 1994). It is not
known at present whether these substitutions alter the
enzymic properties of ALDH5. The highest levels of
ALDH5 mRNA are expressed in the liver, kidney and
skeletal muscle (Stewart et al. 1996b).

ALDH3 and ALDH4 are abundant in liver extracts, have
considerably higher Km for aliphatic aldehydes than the
class 1 and 2 enzymes and higher affinity for aromatic
aldehyde substrates. The class 3 ALDH3 family includes
the cytosolic, tetrachlorodibenzoparadioxin (dioxin)-
inducible ALDH, the hepatoma-associated ALDH and the
corneal and stomach ALDH3 (Lindahl, 1992; Algar et al.
1993). The stomach form might participate in the oxidation
of acetaldehyde generated during gastric metabolism of
ethanol. ALDH4 appears to be glutamic g-semialdehyde
dehydrogenase. ALDH6 is a retinal dehydrogenase.
ALDH7 and ALDH8 have been cloned (Hsu et al. 1995),
but enzymological characteristics for these enzymes are
not yet known. They are related to ALDH3. ALDH9
represents the gene for ALDHE3, and ALDH10 encodes
the fatty ALDH that is deficient in Sjogren-Larsson
syndrome.

Similar to the class I ADH, the ALDH2 gene is
polymorphic and the variants demonstrate the vital role
of ALDH2 in ethanol oxidation. Alcohol consumption
causes facial flushing in a large proportion of Japanese,
Chinese and Koreans (Wolff, 1972, 1973). The reaction
has even been seen in Asian infants given alcohol,
suggesting a genetic basis. Family studies suggested that
the flush reaction is inherited as a dominant trait
(Schwitters et al. 1982). The flushing reaction correlates
with the accumulation of acetaldehyde (Zeiner et al. 1979;
Goedde et al. 1983; Enomoto et al. 1991a). In non-flushers
drinking alcohol elicits a small increase in acetaldehyde
levels (to 5–10mM); in flushers the levels are variable, but
may exceed 100 mM (Enomoto et al. 1991a). The similarity
between the Asian flush reaction and the disulfiram flush
reaction (Asmussen et al. 1948) suggests that ALDH
deficiency might be the explanation. A large percentage
(about 40%) of Japanese have been found to lack ALDH2
activity in hair root and liver samples (Harada et al. 1981,
1982) and most of these individuals flushed when they
drank alcohol. Thus, ALDH2 appears to play a crucial role
in maintaining low levels of acetaldehyde during alcohol
oxidation.

The mutation responsible for the deficiency is a GfiA
substitution that results in replacement of glutamate with
lysine at position 487 in ALDH2 (Hempel et al. 1984;
Yoshida et al. 1984). The normal allele is termed
ALDH2*1 and the mutant allele is designated ALDH2*2.
ALDH2*2 homozygotes have essentially no ALDH2
activity, while heterozygotes have markedly reduced but
still detectable activity; hence, ALDH2 deficiency is a
dominant negative trait (Crabb et al. 1989). Consistent
with enzyme activity measurements, homozygotes ex-
perience far higher acetaldehyde levels after they drink
alcohol than do heterozygotes (Enomoto et al. 1991a).
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Measurement of ALDH activity in the livers of controls
and individuals with ALDH2 deficiency suggested that
about 40% of total liver ALDH activity is ALDH2
and 60% comprises other forms (ALDH1, ALDHE3 and
possibly ALDH5; SJ Yin, personal communication). The
ALDH2*2 allele encodes an enzyme with a much increased
Km for NAD+ and a reduced Vmax when compared with
the wild-type enzyme (Farres et al. 1994b). Thus, it is
predicted to be virtually inactive under conditions occur-
ring in liver mitochondria. The two ALDH2 alleles have
been expressed in tissue culture cells (Xiao et al. 1995).
Transduction of ALDH2*1 resulted in expression of a
low-Km ALDH with the expected isoelectric point. The
ALDH2*2 allele directed expression of an inactive protein.
Transduction of ALDH2*2 into ALDH2*1 expressing cells
reduced the low Km activity substantially. The extent of
reduction in activity suggested that only tetramers contain-
ing either three or four wild-type subunits are active.
Moreover, the ALDH2*2 polypeptides were less stable in
the transduced cell lines, further reducing the level, and
thus activity, of heterotetramers (Xiao et al. 1996) and
contributing to the dominance of the ALDH2*2 allele. The
x-ray crystal structure of ALDH2 shows that amino acid
487 is situated in a region of the protein involved in
subunit–subunit interactions (Steinmetz et al. 1997).
Introduction of a positive charge by substitution of a
lysine for glutamate disrupts essential ionic bonds and is
predicted to inactivate the adjacent subunits and explain
the dominance of the mutation.

Studies of the effect of ALDH2 deficiency on alcohol
metabolism rates are limited by the adverse effects of
the flush reaction. Preliminary studies failed to show a
difference in alcohol elimination rates between flushers
and non-flushers (Mizoi et al. 1979; Inoue et al. 1984), but
a subsequent study detected reduced rates of elimination in
individuals with ALDH2 deficiency when controlled for
ADH genotype (Mizoi et al. 1994). This finding would be
consistent with product inhibition of ADH by elevated
intrahepatic acetaldehyde levels.

A polymorphism in the ALDH2 promoter was simulta-
neously reported by Harada et al. (1999) and Chou et al.
(1999). This A/G variant occurs at approximately -360 bp
upstream from the start site and is adjacent to a site bound
by transcription factors belonging to the steroid receptor
family. The A allele is less active than the G allele in
reporter gene transfection assays. Harada et al. (1999)
showed that the A allele was also less common in a group
of alcoholics with active ALDH2. These variants were
found in all ethnic groups examined. It will be very
interesting to see if the observations on the association of
the A allele with protection from alcoholism can be
extended to Caucasians and Africans.

Correlation between genetic variants and risk of
alcoholism and organ-specific injury

The genetic predisposition to alcoholism has been amply
demonstrated by a number of classical genetic studies,
such as twin, adoption and high-risk familial clustering
studies. Despite use of unbiased approaches such as
genome-wide screening, the strongest genetic associations

identified to date are those related to the ADH and ALDH2
genes. Specifically, individuals having the genes encoding
high-activity ADH (b2 ADH encoded by ADH2*2) or the
dominant negative allele for ALDH2 (ALDH2*2) are at
reduced risk of alcoholism, while those with ALDH2*2 are
at much higher risk of oro-pharyngeal cancer. Associations
with other disorders are less strong at present. Most work
has concentrated on an imbalance between the rate of
acetaldehyde production and disposal as the likely expla-
nation for associations between ADH and ALDH2 poly-
morphisms and various pathologies. This thinking is
strongly influenced by the phenomenon of the alcohol
flush reaction. However, additional mechanisms by which
the inheritance of different isozymes alters risk for disease
need to be considered in order to interpret the association
studies. These mechanisms include: interference by ethanol
in the metabolism of retinol or other metabolites by ADH
or ALDH2 and effects of ethanol on redox state and the
metabolism of compounds such as steroid hormones. In
addition, oxidative stress induced by ethanol and effects
of acetaldehyde on signalling pathways in various tissues
may also prove to be important.

Alcohol dehydrogenase

Effects on risk of alcoholism. Despite the small effect
of ADH genotype on alcohol elimination rate, ADH
genotypes, particularly the presence of an ADH2*2 allele,
are related to differences in alcohol-drinking behaviour.
Among Chinese living in Taiwan the ADH2*2 allele was
found to be substantially more common in the non-
alcoholic group than in the alcoholics (Thomasson et al.
1991). Similar findings have been reported in the Atayal
natives of Taiwan (Thomasson et al. 1994), the Maori of
New Zealand (Chambers et al. 2002), in Spanish patients
(Borras et al. 2000) and among Jews living in the USA or
in Israel (Neumark et al. 1998). There was no apparent
effect of ADH2 alleles on the quantity and frequency of
drinking in Japanese men (Takeshita et al. 1994), although
the number of individuals with the genotypes expected to
predispose to the highest consumption (individuals homo-
zygous for both ALDH2*1 and ADH2*1) is small because
of the allele frequencies in this population. A more recent
study indicated that ADH2*1 was more common in heavy
drinkers than in moderate drinkers (Tanaka et al. 1997).
Moreover, the ADH3*1 allele was also more prevalent in
the non-alcoholics than in the alcoholics (Shen et al. 1997)
in Asians, but there is no apparent effect of the ADH3
locus on alcohol consumption or alcoholism rates in
Caucasians (Gilder et al. 1993). The mechanism for this
protective effect is uncertain. Since the ADH2*2 allele
encodes the highly-active b2 ADH isozyme, it has been
postulated that faster conversion of alcohol to acetaldehyde
could be ‘protective’ against heavy drinking and alcohol-
ism. However, alcohol elimination rates and peak blood
acetaldehyde levels were not influenced by the ADH2*2
genotype (Mizoi et al. 1994).

Fewer studies on the relationship between the ADH2*3
allele and risk of alcoholism or drinking behaviour
have been carried out. The presence of ADH2*3 was
associated with a negative family history of alcoholism
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(Ehlers et al. 2001) and with greater alcohol expectancies
(Ehlers et al. 2003). However, the ADH2*3 allele was not
found at a different frequency in alcoholics and controls in
a study of >200 African-Americans (Taylor et al. 2003).
On the other hand, the presence of ADH2*3 was associated
with a lower ‘maximum number of drinks’ among Mission
Indians in California, USA (Wall et al. 2003). Additional
work is needed to find out whether this allele modifies
more characteristics associated with the subtle aspects of
alcohol consumption.

Effect on risk of liver disease. The evidence for
genetic risk factors for alcoholic liver disease is less
strong than that for alcoholism. The largest study, the US
Veterans Administration Twin Panel Study, showed a
higher concordance for cirrhosis in monozygotic twins
than in dizygotic twins, indicating a genetic component
to the risk (Hrubec & Omenn, 1981). Re-analysis of the
database supported this conclusion, but found that most,
but not all, of the genetic liability for cirrhosis was the
result of shared risk for alcoholism (Reed et al. 1996). No
specific candidate genes that confer risk or protection
against alcoholic liver disease have been firmly established,
but there are hints that the ADH polymorphisms may play
some role.

The effect of ADH variants on the risk of alcoholic liver
disease could be complex (Lumeng & Crabb, 1994). High-
activity ADH variants decrease alcoholism risk, but if
individuals with these isozymes persist in drinking, hepatic
injury might result from high intrahepatic concentrations
of acetaldehyde. One study has demonstrated increased
risk of alcoholic liver diseases among ADH2*2 hetero- or
homozygotes (Yamauchi et al. 1995), and pooling two
other studies with this study (Chao et al. 1994; Tanaka
et al. 1996), provided evidence of a substantial increase in
risk of cirrhosis in the subjects with ADH2*2.

ADH3 is polymorphic in Caucasians. Two studies of the
prevalence of ADH3*1 and ADH3*2, in patients from
the UK (Day et al. 1991) and from France (Poupon et al.
1992), have suggested that ADH3*1, encoding the more
active enzyme, may be more common in those with
alcoholic liver diseases. When the data from the two
studies were pooled, the prevalence of ADH3*1 was 0.65
in alcoholics with cirrhosis and 0.55 in controls (Day et al.
1993) and the difference approached significance. How-
ever, a lower ADH3*1 allele frequency was reported in
individuals with cirrhosis in another study (Sherman et al.
1994). Thus, the effect of this polymorphism is uncertain.

An additional ADH genetic variant, which occurs within
an intron, is a Pvu II restriction fragment length poly-
morphism in the ADH2 gene. It is not known whether the
variant alters the expression of the gene or is linked to
another susceptibility locus. The B allele was found at a
considerably higher frequency in alcoholics and seemed to
be more common in patients with cirrhosis rather than
alcoholic hepatitis (Sherman et al. 1993).

Contributions of alcohol dehydrogenase to other
disorders. Although the majority of ethanol is eliminated
by hepatic oxidation, ADH is expressed in many tissues
(Saleem et al. 1984; Engeland & Maret, 1993; Estonius
et al. 1996), and there is the opportunity, therefore, for
alcohol either to be metabolized to potentially-injurious

acetaldehyde or to interfere with the metabolism of
compounds normally oxidized by this enzyme. Retinoic
acid, generated from retinol oxidation, plays an important
role in the regulation of embryonic development, sperma-
togenesis and epithelial differentiation by serving as a
ligand for members of the nuclear receptor family. Based
on careful kinetic studies of all human ADH family
members, ethanol at concentrations found in heavy
drinkers can effectively block the oxidation of retinol to
retinoic acid. Accordingly, Yin et al. (1999) further
suggested that inhibition of retinol oxidation by ethanol
might contribute to testicular atrophy, oligospermia,
psoriasis and the increased incidence of oral, oesophageal
and colo-rectal cancers in chronic alcoholics. Indeed, an
association between ADH2*1 and testicular atrophy in
alcohol abusers has been reported (Yamauchi et al. 2001).
Several studies have attempted to link ADH genotype with
risk of fetal alcohol syndrome. One study found a
protective effect of ADH2*3 (McCarver et al. 1997), while
another found it to be a risk factor (Stoler et al. 2002).
Another study reported that ADH2*2 is protective against
fetal alcohol syndrome (Viljoen et al. 2001).

A small study indicated that ADH2*2 may be more
prevalent in individuals with alcoholic pancreatitis than in
alcoholics who do not have this complication (Matsumoto
et al. 1996). There may also be an association between the
homozygous ADH3*1 genotype and risk of oral cancer
(Coutelle et al. 1997; Harty et al. 1997); however, this
gene is not reported to be active in the oral mucosa
(Dong et al. 1996). Epidemiological evidence points to an
increased risk of rectal cancer in heavy drinkers. Seitz
et al. (1996) have found ADH activity in the rectum that
is similar in magnitude to that found in the stomach.
Recently, it was reported that alcohol consumption
increases the risk of adenomatous colon polyps to a greater
extent in individuals homozygous for ADH3*1 than in
other genotypes (Tiemersma et al. 2003).

There has been much interest in the potential interaction
between alcohol, ADH genotype and risk of breast cancer.
Epidemiological studies suggest an increase in breast
cancer among women who drink more than one or two
standard drinks per d. ADH is highly expressed in the
mammary epithelium, which lacks low-Km ALDH; hence,
there may be local metabolism of ethanol in the breast
tissue (Triano et al. 2003). One study reported an increased
risk of breast cancer among premenopausal, but not post-
menopausal, women who were ADH3*1 homozygotes
(Freudenheim et al. 1999), while another study found no
such association (Hines et al. 2000). The most recent
study found an interaction between the ADH2*2 allele
in Caucasian women and alcohol consumption among
patients with breast cancer (Sturmer et al. 2002). The
ADH2*2 allele was more common in the women with breast
cancer. Among the women with breast cancer those with
ADH2*2 were less likely to drink more than once per week
than those with ADH2*1.

Aldehyde dehydrogenase 2

Effects on risk of alcoholism. Japanese studies demon-
strated that ALDH2 deficiency reduced the quantity and
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frequency of alcohol consumption by men and the risk
of alcoholism (Higuchi et al. 1992). This effect was
confirmed in other Asian populations by the observation
that individuals who were alcoholic (Goedde et al. 1983;
Harada et al. 1983, 1985) or who had alcoholic liver
disease (Shibuya & Yoshida, 1989) rarely had ALDH2
deficiency or an ALDH2*2 allele. In Japan about 41% of
controls were ALDH2 deficient, while only 2–5% of
alcoholics were ALDH2 deficient (Harada et al. 1983).
In Taiwanese males the frequency of the ALDH2*2 allele
was 30% in a non-alcoholic control group and 6% in
alcoholics (Thomasson et al. 1991). Similar results were
reported by other research groups. The protective effect of
being heterozygous for ALDH2*2 appears to be decreasing
over time in Japan (Higuchi et al. 1994), i.e. the frequency
of ALDH2*2 heterozygotes among alcoholics is increasing,
presumably because of environmental and cultural changes.
However, ALDH2*2 homozygotes are nearly absolutely
protected against alcoholism, presumably because of the
severity of their flushing (Higuchi et al. 1994; Chao,
1995). This phenomenon has been observed in other
countries (China and Pacific islands; Agarwal et al. 1981;
Goedde et al. 1983, 1989; Goedde & Agarwal, 1987) with
a somewhat different prevalence of the ALDH2*2 allele, as
well as in Asians living in Canada, suggesting that the
flush reaction is protective against alcoholism for bio-
chemical rather than cultural reasons (Tu & Israel, 1995).

Effect on risk of liver disease. ALDH2 deficiency may
be a two-edged sword for the reasons mentioned earlier
for ADH2*2, since individuals with mild flushing who
can tolerate heavy drinking may suffer from the hepatic
effects of elevated acetaldehyde concentrations. There
has been one small study suggesting that ALDH2*2
heterozygotes who drink heavily develop alcoholic hepa-
titis at a lower cumulative alcohol consumption than
those with active ALDH2 (Enomoto et al. 1991b). When
the results of several studies were combined the prevalence
of ALDH2*2 was substantially higher in the alcoholic
patients with cirrhosis than in those without cirrhosis
(Chao et al. 1994; Yamauchi et al. 1995; Tanaka et al.
1996). With the apparent increase in the number of
alcoholics heterozygous for ALDH2*2 in Japan, ALDH2
deficiency may become an important risk factor in that
population.

Effects on other health risks. ALDH2 deficiency is
associated with alcohol-induced asthma, thought to result
from the effect of increased circulating or locally-
generated acetaldehyde on the airways (Takada et al.
1994). Several groups have reported that ALDH2 defi-
ciency is associated with increased risk of oesophageal and
oropharyngeal cancer (Yokoyama et al. 1996a,b,c). The
activity of ADH is considerably higher than that of ALDH
in the oesophagus, which would predispose this tissue to
injury during ethanol oxidation (Yin et al. 1993, 1997). It
is also possible that the phenomenon reflects increased
exposure of the oropharynx and oesophagus to acetalde-
hyde in the saliva (Vakevainen et al. 2000, 2001).
The amount of acetaldehyde in saliva is increased in
ALDH2*2 heterozygotes given alcohol, and this amount
falls when alcohol oxidation is inhibited by 4-methyl-
pyrazole, suggesting that the acetaldehyde is generated

in the salivary glands. An additional observation is the
association between ALDH2 deficiency and a mitochon-
drial DNA mutation and diabetes in Japanese subjects. It
was hypothesized that ALDH2 deficiency predisposed the
patients to mutagenic effects of acetaldehyde on mitochon-
drial DNA (Suzuki et al. 1996). No effect of ALDH2
deficiency on the risk of stomach cancer or hepatoma has
been reported.

Summary

Many lines of evidence indicate that the genetic variation
in ADH and ALDH2 contribute to the risk of alcoholism
and the susceptibility to certain alcohol-induced patholo-
gies. Most of the evidence has come from association
studies, which of course do not prove a causative relation-
ship. The next challenge is to confirm the findings and to
understand the biochemical mechanisms responsible for
the risk and susceptibility, which will point toward a better
understanding overall of the disease processes.
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