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On Hardy's Theory of m-Functions.
By E. T. Copsox.
(Received 16th October 1927. Read 4th November 1927.)

§1. The Cardinal Function of Interpolation Theory! is the

function
- sinw (x — n)
Cle)= 2 an —2—0

which takes the values @, at the points x = n. Ferrar? has recently
proved

-] [-2]
Theorem 1. If Z|anlogn|/n and Z|a_,log n|/n are convergent,
1 1

C (z) is an m-function® for m > .
This means that C () is a solution of the integral equation

j=—f

w

sin m (x —t)
r—t

F@O) At e (r

Ferrar’s proof deals with functions of a real variable and involves
gsome rather difficult double limit considerations. In §2 of the
present paper is given a complex variable treatment, which provides
a much more direct proof of the property in question.

In the concluding sections,® we show that this m-function pro-
perty of the Cardinal Function is closely allied to the fact that it can
be represented, under certain circumstances, by an integral of
the form

C () = j: [ (£) cos mat + ¢ (¢) sin mat] di.

t This function was introduced by Prof. Whittaker, Proc. Roy. Soc. Edin., 35
(1915), 181-194.

2 {nd., 46 (1926), 323-333 ; in particular 330-333.

3 The theory of m-functions is due to Prof. Hardy, Proc. Lond. Math. Soc. (2), T
(1909), 445-472.

18§83, 4 have been rewritten in accordance with the valuable suggestions of
Mr W. L. Ferrar, who kindly read the paper in manuscript.
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§2. Proof of Theorem 1.

Under the conditions of Theorem 1, the Cardinal Function Series
is uniformly and absolutely convergent in any finite part of the
z-plane, and represents an integral function. Consider now

im(z - &)
J T T 0@R) de
N

Z2—

where I" is the contour formed of the segment of the real axis from
— R to R, indented at z, and the semicircle in the upper half plane
on this segment as diameter; we suppose that R = N + §, where N is
an integer, and 0 <3 < 1. This contour integral vanishes, since the
integrand is analytic inside and on the contour. The evaluation of
the contour integral gives at once

R pgim(t-x)
Pj ¢

a1 CWdt=miC @) —I(R)

where the integral on the left-hand-side is a Cauchy principal value,
and where I (R) is the integral round the semicircle.

Now we easily see that, if 0 <0<, | C(Re?) | is less than

- ' [l g | |2 |- ]
— R [4
- emhi sin + Z{R2+ n® — 2Rn cos O} + EI{RL}— n% 4+ 2Rn cos O}

the series on the right-hand-side being uniformly convergent with
respect to 8. Since

T gim (R cos §—x)—mR sin §

— 07\ 4 67
1(R) L o O (Ret) iRet a5,

(R —|z|)|I(R)]|/R is less than

" —(m—m)Rsing || | an | fad |a_n|
joe [R +ZR2+n2——2Rncos0}%+ {R? 4- n® 4 2Rn cos 6} ]dﬂ

Iaol Ian| ® |a_n|
do
<L +21 {R% 4 n?® — 2Rn cos O} +§1:{R2—}—n2+2Rn cos@}%]

a0l , 2 2lan|+]a-n| x[2VER2]
<7T{R + 1 R+n [R-{—n]

where K (k) denotes the complete elliptic integral of the first kind,
modulus k. We have here used the condition thatm > m, and have
integrated term-by-term, which is obviously valid in this case.
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This inequality may be written in the form
R—|x| |ao] , 2 s [an]+|a_n| K 2V Rn
R 1B < B + 7T<1+N§1> [R—%—nJ

where R = N + 8. We shall shew from this that I (R) tends to zero
as N tends to infinity, 8 being fixed.

Now when n > N + 1, we have

gx/@< 2V (N +8) (N + 1) c,
Rin SN +1+5 <l— 5

where ( is a positive constant depending only on §; since K (k) is a
monotone increasing function of K, if 0 <k <1, we see that

= lan+la-a] o 2VERW] 2 |an]+|a_n| c,
NZ+1 R+ R+n]<N+l Nistn K[ _]W]

Now it can be easily shewn! that
Cy)
K [1 — -N—lz] /log N

is positive and finite for all N ( > 1) and tends to unity as N —> .
Consequently '

2 lan] +lan] L [2VEn |an] + @ x|
7V+1 R‘I"n I: :]<0N2.:{_1 N+8+

log ¥
<0, 2 La"|_+_|ill log n
Nyl

-0 as N->w,
€0 a0
since the two series X |a, logn|/n and X |a_,logn|/n are
convergent.

It is a consequence of Tannery’s Theorem? that

Lol 2 5 lanltloca] g[2VER]

‘R—+7§ R4n R4+n

as N— o,

17t is an elementary consequence of the result (given in Whittaker and Watson,
Modern Analysis (1920), §22.737), im {K’ - log (4/k)}=0.
k>0

2 See Bromwich, Infinite Series (1926). § 49.
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if we can shew that

larn]+,a/-nl 2'\/m
R4+n K[R+n}<M”

where M, is independent of R, and X M, is convergent. But, as
above, we may shew that

(anl + [acn| g [ 2VER
R4n 1€-+-n}< 3

lan| +a-n]
——n——logn,

which is sufficient for our purpose.

We have thus shewn that, under the conditions of Theorem 1,
I(R)~>0 as N ~> o, and hence that

x eim(t—z)

Pj C@)dt =t C(2)
—w bt —x

where the integral on the left-hand-side is a principal value, both at

t=uw, and t=cw. Equating imaginary parts, we have at once,

if m >,

C@)dt =7 C(x);

-r’ sin m (¢ — x)
— t —

the principal value sign has been omitted because == is a removable
singularity, and because C (¢) is an integral function finite on the
real axis and

£ : t—
j sin m ( x) Y
-®

t—x
exists. This completes the proof of Theorem 1.

It may be pointed out that the proof that I (R)— 0 may be con-
siderably shortened in the case m > =, by the use of the inequality

| C (Re?) | < KemBsind R [log R
if 0 <8< 7. But the proof by the use of this inequality fails in

the case m = .

§3. We have just seen that the fact that the Cardinal Function
is a solution of the equation (1) depends chiefly upon the result that
I(R)->0 as B—> «, the other parts of the proof being straight-
forward deductions from Cauchy’s Integral Theorem.
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1

A
Ferrar! has recently shown that, if X |a,| P is convergent
— W

(p>1), then the Cardinal Function has the definite integral
representation

= j: [¢(t) cos mat + ¢ (2) sin 7xt] dt,

where ¢ and ¢ are each L'+» over (0, 1). From this result we are
able to prove, with very little trouble, that I (R)~> 0 as E—> », and
thus to bring out the connection between the two properties of the
Cardinal Function which we have noted in §1.

For, considered as a function of the complex variable z, C(z) is
an integral function which remains finite as z tends to infinity in
either direction along the real axis. In the upper half plane, we have

2 =ref O<o<m)
cOoSs <e7rrsin9-t (t>0)'

. mzl
sin

Hence, by the use of Holder’s inequality for integrals, we have
1 1 i
|C(re9i)l<j |$]| |cos wre""tldt—{—j.o[t/fl | sin 7refit | di
0
1y .
(70, dtp o\ 1 l4p 1_1- 51 w1+ L)rsing.e 2
<{([rgreramem o (Frar raey (f e agrs
< Kemrsin® (pgin §) ~ L+

where K is a finite constant, since ¢ and i are each L'+7 over (0, 1).
We now have

. 4 p

II(R)I<R le r e~(m-MEnG b 14p gin 1+P 940

2RK F’r —o(m-mBo;w (2RO\N-11
<z=—1a1), ° (E7) v ae

—>0,as R~ o, if m >

1 Proc. Roy. Soc. Edin., 47 (1927), 230-242. The particular case p=1 was
previously discussed by J. M. Whittaker, Proc. Edin. Math. Soc. (2), 1 (1927), 41-46.
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We can now easily complete the proof, exactly as in §2, of the
following theorem:—

Theorem 1.*¥ If ;Jco | anll ¥ ;’T (p > 1) is convergent, then C (x) possesses
the definite integral representation
C(x) = J: [¢ (t) cos mat -+ o (£) sin wat] di
where ¢ and s are each L1 +» over (0, 1), and is an m-function for m > .
Theorem 1* is, of course, included in Theorem 1; for, by
Hilder’s inequality, the convergence of % |anl1 ¥ %(p> 1) implies

€® e ]
the convergence of X |a, logn|/n and X |a_,logn|/n, but not
1 1

conversely.

§4. Finally, the use of functions of class L? enables us to prove,
by the same direct method, Theorems! 2 and 3 below.
Theorem 2. The integrals

4 cos
1@ =" 60 5 wedw
represent m-functions, if —m < a <A <m, provided only that ¢ (w) 1s
Lr (p > 1) over (a, 4).
Theorem 3. The integral

o= toate 2

b (w) dw

represents an m-function, if m > p >0, provided only that ¢ (w) is
Lr (p>1) over (—=, o).

1 Compare the rather similar theorems given by Hardy, loc. cit., 457, 459.
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