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Abstract We show that the representations of the Cuntz C∗-algebras On which arise in wavelet analysis
and dilation theory can be classified through a simple analysis of completely positive maps on finite-
dimensional space. Based on this analysis, we find an application in quantum information theory; namely,
a structure theorem for the fixed-point set of a unital quantum channel. We also include some open
problems motivated by this work.
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There has been considerable recent interest in the analysis of completely positive maps
on finite-dimensional space. There are a number of reasons for this including connections
with wavelet analysis [3,4,15], dilation theory [11,16], representation theory of the Cuntz
C∗-algebras On [3,4,10,11], and quantum information theory [1,17,21,22]. The results
obtained in the current paper have implications for each of these areas. In presenting this
work, another goal we have is to push further the connections between the various areas
mentioned above.

In § 1 we establish a result for completely positive maps. While we focus on the finite-
dimensional setting, this is not necessary in the proof. A structure theorem for the fixed-
point set of a unital quantum channel is contained in § 2. In particular, we prove that the
fixed-point set is a C∗-algebra which is equal to the commutant of the algebra generated
by any choice of row contraction which determines the channel. We discuss the two-
dimensional channels [17,21], and use the theorem to classify them by their fixed-point
sets. The representation theory for On is considered in § 3. We focus on a subclass of
representations arising in dilation theory and wavelet analysis [3,4,10,11,15]. Each of
these representations determines a completely positive map on finite-dimensional space.
We ask if these representations can be classified just by examining the map. An affirma-
tive answer is provided by the result on completely positive maps from the first section.
Finally, in § 4 we pose some open questions which are motivated by this work.
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422 D. W. Kribs

1. Completely positive maps

In this section we present a theorem for completely positive maps on finite-dimensional
space. Let K be a finite-dimensional Hilbert space and let B(K) be the bounded operators
on K. It is well known (see, for example, [7,18,19]) that every completely positive map
Φ : B(K) → B(K) is determined by a row matrix A = (A1, . . . , An) of operators in B(K)
in the following sense:

Φ(X) =
n∑

i=1

AiXA∗
i for X ∈ B(K). (1.1)

The map is unital if, in addition, Φ(I) =
∑n

i=1 AiA
∗
i = AA∗ = I. Of course, there will be

many choices of tuples A which determine a given completely positive map in this way.
We prove the following result.

Theorem 1.1. Let K be a finite-dimensional Hilbert space. Let Φ : B(K) → B(K) be
a completely positive unital map, and suppose A = (A1, . . . , An) is a choice of operators
which determine Φ as in (1.1). If p is an orthogonal projection in B(K), then we have the
following equivalences for the range space Ran(p) of the projection.

(i) Φ(p) � p if and only if Ran(p) is A∗
i -invariant for 1 � i � n.

(ii) Φ(p) � p if and only if Ran(p) is Ai-invariant for 1 � i � n.

(iii) Φ(p) = p if and only if Ran(p) is Ai-reducing for 1 � i � n.

Furthermore, for a given projection p, one of these equivalences holds for a particular
choice of A in (1.1) if and only if it holds for all choices of A in (1.1).

In each of these cases the limit

Φ∞(p) := lim
k→∞

Φk(p)

exists. This operator belongs to the fixed-point set B(K)Φ of Φ, and it is computed from
the fixed-point set as follows.

(i)′ If Φ(p) � p, then Φ∞(p) = inf{X ∈ B(K)Φ : X � p}.

(ii)′ If Φ(p) � p, then Φ∞(p) = sup{X ∈ B(K)Φ : X � p}.

(iii)′ If Φ(p) = p, then the infimum and supremum from (i)′ and (ii)′ are both equal to p.

While the existence of the limit Φ∞(p) and the final three facts seem to be of indepen-
dent interest, the applications of this result contained in the rest of the paper are based
on (i)–(iii).

Note 1.2. After preparing this article the author discovered that conditions (ii)
and (iii) were recently established in [5], although the proofs here are different.

Before proving the theorem, we establish a lemma which generalizes a result from [11].
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Lemma 1.3. Let X be a positive operator in B(K) which satisfies the inequality
0 � X � Φ(X). Then the eigenspace ker(X − ‖X‖I) is A∗

i -invariant for 1 � i � n.

Proof. Without loss of generality assume that ‖X‖ = 1. Let M = ker(X − I). Then
for any vector ξ ∈ M,

‖ξ‖2 = (Xξ, ξ) �
n∑

i=1

(AiXA∗
i ξ, ξ)

=
n∑

i=1

(XA∗
i ξ, A

∗
i ξ) �

n∑
i=1

(A∗
i ξ, A

∗
i ξ) = ‖ξ‖2.

In particular, all the inner product inequalities are actually equalities. Since X is a
positive contraction, the only way this can happen is if each of the vectors A∗

i ξ belongs
to M. Hence M is A∗

i -invariant. �

Proof of Theorem 1.1. First note that the equivalences (i) and (ii) are duals of each
other. Indeed, since Φ is unital,

Φ(p) � p if and only if Φ(I − p) � I − p,

and the subspace Ran(p) is A∗
i -invariant precisely when Ran(I − p) = Ran(p)⊥ is Ai-

invariant. Thus we shall prove (i).
If Φ(p) � p, then an application of the previous lemma yields the A∗

i -invariance of
Ran(p). To see the converse of (i), with respect to the orthogonal decomposition K =
pK ⊕ p⊥K, suppose Ai can be written in matrix form as

Ai =

[
Bi 0
Ci Di

]
for 1 � i � n.

Then the relation Φ(IK) =
∑n

i=1 AiA
∗
i = IK yields the identities

n∑
i=1

BiB
∗
i = IpK,

n∑
i=1

BiC
∗
i = 0 and

n∑
i=1

(CiC
∗
i + DiD

∗
i ) = Ip⊥K.

Thus upon writing

p =

[
I 0
0 0

]

with respect to this spatial decomposition we get

Φ(p) =
n∑

i=1

AipA∗
i =




I 0

0
n∑

i=1

CiC
∗
i


 �

[
I 0
0 0

]
= p.

For (iii), notice that the previous computation shows that Φ(p) = p when Ran(p) = pK
is Ai-reducing. Indeed, the subspace pK is reducing for the operators A = (A1, . . . , An)
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exactly when Ci = 0 for 1 � i � n. On the other hand, if Φ(p) = p, then the inequalities
in (i) and (ii) are satisfied. Hence Ran(p) is Ai-reducing.

Concerning the limits, suppose p satisfies equivalence (i). Since Φ is positive and unital,
we have

0 � p � Φ(p) � Φ2(p) � · · · � Φk(p) � · · · � I.

This is a monotone increasing sequence of positive operators which is bounded above,
hence we obtain the existence of the limit Φ∞(p) = limk→∞ Φk(p). It is clear from the
form (1.1) that Φ is continuous, hence Φ∞(p) is fixed under the action of Φ. On the
other hand, when X � p is fixed by the map, we have X � Φk(p) for k � 1, showing that
Φ∞(p) is bounded above by every fixed point which majorizes p. It follows that Φ∞(p)
actually is the infimum.

The proof of (ii)′ is analogous since, in that case, the operators Φk(p) form a decreasing
sequence of positive operators which are majorized by p. Finally, when Φ(p) = p, we get
Φ∞(p) = p so that (i)′ and (ii)′ show that the infimum and supremum are both equal
to p. �

Remark 1.4. While our focus is on the finite-dimensional case, we note that the proof
of Theorem 1.1 works for any completely positive unital map determined as in (1.1) by a
row contraction A. The only change in the conclusion is that the limit Φ∞(p) converges
in the strong operator topology.

2. Quantum channels

Mathematically, a quantum channel is a completely positive trace-preserving map on
finite-dimensional space. In the language of quantum information theory, a channel
describes the transfer of quantum information, or qubits, from ‘Alice’ to ‘Bob’ (see
[1, 17, 21, 22] for some recent related analysis, as well as [8] for general information).
The operators A = (A1, . . . , An) which determine a quantum channel Φ as in (1.1) are
called the Kraus operators [18] of the channel.

In general, the fixed-point set B(K)Φ = {X ∈ B(K) | Φ(X) = X} of a completely
positive map is just a self-adjoint subspace. In particular, generally the fixed-point set
is not closed under multiplication. We obtain the following structure theorem for the
fixed-point set of a unital quantum channel.

Theorem 2.1. Let Φ : B(K) → B(K) be a unital quantum channel. If A =
(A1, . . . , An) determines Φ as in (1.1), then the algebra A generated by A1, . . . , An is
a ∗-algebra which depends only on Φ. Further, the fixed-point set B(K)Φ of the map Φ

coincides with the commutant of A, A′ = {X ∈ B(K) | AiX = XAi for 1 � i � n}, and
hence is itself a ∗-algebra containing the identity operator on K.

We begin by pointing out a special case of the theorem, established previously in [5,11],
which holds more generally. For completeness we provide a proof.

Lemma 2.2. Let K be a finite-dimensional space and let Φ : B(K) → B(K) be a
unital completely positive map which is determined as in (1.1) by A = (A1, . . . , An). If
A = B(K), then the fixed-point set for Φ consists of scalars, B(K)Φ = CI.
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Proof. Suppose X = X∗ is non-scalar and satisfies Φ(X) = X. Then Lemma 1.3 can
be adapted to show that the eigenspaces corresponding to the two extremal eigenvalues
for X are perpendicular A∗

i -invariant subspaces, which are both non-trivial since X is
non-scalar. Thus the algebra A∗ has proper invariant subspaces, a contradiction. �

The key observation for unital quantum channels is that invariant subspaces for deter-
mining n-tuples are actually reducing.

Lemma 2.3. Let Φ : B(K) → B(K) be a unital quantum channel. Then every projec-
tion which satisfies Φ(p) � p also satisfies Φ(p) = p. Thus if A = (A1, . . . , An) determines
Φ, then every subspace which is invariant for the family {A∗

i : 1 � i � n} is also reducing
for the family. Furthermore, every subspace which is invariant for {Ai : 1 � i � n} is
also reducing.

Proof. Since Φ is positive and unital, we have 0 � Φ(p) � I. Thus if we are given
a projection p which satisfies p � Φ(p), then trace preservation ensures we must have
equality, p = Φ(p). A similar analysis follows for the dual notion Φ(p) � p � I. The rest
of the lemma follows from Theorem 1.1. �

Proof of Theorem 2.1. We first show that A is a ∗-algebra. Let {pj} be a maximal
family of pairwise orthogonal projections which are each minimal reducing for the family
{Ai : 1 � i � n}. Let Kj = pjK for each j. Then Aipj = pjAi for all i, j, and by
maximality IK =

∑
j pj . Hence the algebra A =

∑
j pjApj is block diagonal with respect

to this family, and the blocks Apj = pjA = pjApj are algebras themselves. But the trivial
subspaces are the only subspaces which are invariant for Apj . Indeed, if a subspace pK
is invariant for each Ai and p � pj is supported on some pj , then pK is reducing for the
Ai by Lemma 2.3, and hence by the minimality of pj we have either p = 0 or p = pj . It
follows from Burnside’s classical theorem that the restricted finite-dimensional algebra
Apj is equal to B(Kj), in particular the algebras Apj are self-adjoint. Therefore, A = A∗

is a ∗-algebra. (In particular, it is a finite-dimensional C∗-algebra.)
Since Φ is unital, that is Φ(I) = I, it is clear that every X which commutes with

A1, . . . , An will be fixed by Φ. Hence the fixed-point set B(K)Φ contains the commu-
tant A′.

To see the converse, let Ai,j = Aipj for all j and i = 1, . . . , n, and for each j put Bj =
(A1,j , . . . , An,j). Given X ∈ B(K), let X = (Xjk), where Xjk = pjXpk. If X satisfies
Φ(X) = X, then a computation shows that Φj(Xjj) = Xjj , where Φj : B(Kj) → B(Kj)
is the unital completely positive map Φj(Y ) =

∑n
i=1Ai,jY A∗

i,j . However, as observed
above, the minimality of pj as an Ai-invariant subspace gives us Apj = B(Kj). Hence by
Lemma 2.2, we have Xjj = xjjpj for some scalar xjj .

For j �= k, we claim that either Xjk = 0 = Xkj for all X = X∗ in B(K)Φ, or there
is a unitary Wjk : Kk → Kj with Ai,j = WjkAi,kW ∗

jk for i = 1, . . . , n. Thus suppose
there is an X = X∗ with Φ(X) = X and Xjk �= 0, normalized so that ‖Xjk‖ = 1. Let
M = {ξ ∈ Kk : ‖Xjkξ‖ = ‖ξ‖}, and let N = XjkM be the corresponding subspace of
Kj . Then for ξ ∈ M we have

Xjkξ = (pjΦ(X)pk)ξ = Φ(Xjk)ξ = (BjX
(n)
jk B∗

k)ξ.
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This implies that each A∗
i,k leaves M invariant. Indeed, since Bj and B∗

k are contractions,
and Xjk achieves its norm on ξ, it follows that B∗

kξ belongs to the subspace M(n) on which
X

(n)
jk achieves its norm. Thus by Lemma 2.3, M is an Ai-reducing subspace contained in

Kk. Since M is non-zero, the minimality of pk gives M = Kk. By considering Xkj = X∗
jk,

we see that N = Kj also. In particular, Xjk and X∗
jk are partial isometries, and it follows

that Wjk = Xjk|Kk
: Kk → Kj is a unitary operator.

The identity above shows that Wjk = BjW
(n)
jk B∗

k . Hence, for ξ ∈ Kk,

‖ξ‖ = ‖Wjkξ‖ = ‖BjW
(n)
jk B∗

kξ‖ � ‖W
(n)
jk B∗

kξ‖ � ‖ξ‖.

Thus Bj acts as an isometry from the range Ran W
(n)
jk B∗

k onto the range RanWjk = Kj .
As Bj is a row contraction, it must be zero on the orthogonal complement of RanW

(n)
jk B∗

k .
Hence, B∗

j is an isometry from Kj onto RanW
(n)
jk B∗

k . Consequently, B∗
j Wjk = W

(n)
jk B∗

k ;
in other words, A∗

i,j = WjkA∗
i,kW ∗

jk for i = 1, . . . , n, as claimed.
Now suppose Φ(Y ) = Y = Y ∗ = (Yjk). If j �= k is a pair which fits into the above

analysis, then

WjkΦk(W ∗
jkYjk) =

n∑
i=1

WjkAi,kW ∗
jkYjkA∗

i,k

=
n∑

i=1

Ai,jYjkA∗
i,k

= pjΦ(Y )pk = Yjk.

Thus by Lemma 2.2, W ∗
jkYjk is scalar. Hence Yjk = yjkWjk for some scalar yjk, and also

Ykj = Y ∗
jk = ȳjkW ∗

jk. The other off-diagonal entries of Y are either zero or have a similar
form.

This analysis gives us a handle on the matrix entries in the decomposition X = (Xjk)
for X = X∗ in B(K)Φ. The corresponding form for each Ai in this decomposition is
given by Ai =

∑
j Aipj =

∑
j Ai,j , and hence a computation shows that XAi = AiX for

i = 1, . . . , n and X = X∗ in B(K)Φ. Since the self-adjoint subspace B(K)Φ is spanned
by its self-adjoint part, it follows that A′ contains the entire fixed-point set B(K)Φ. This
completes the proof. �

Note 2.4. We note that our approach in proving Theorem 2.1 was motivated by work
in [11] on dilation theory, which is discussed in the next section. This connection leads
to an open question posed in § 4 which, if answered, could mesh the theory of quantum
channels with that of certain operator algebras on infinite-dimensional space.

We finish this section by showing how this theorem can be used to classify quantum
channels by their fixed-point sets.

Example 2.5. The quantum channels on M2 = B(C2), the so-called qubit channels,
were recently characterized in [21]. The identity matrix together with the Pauli matrices
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{I, σx, σy, σz} form a basis for M2, where

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Every unital qubit channel is equivalent, through unitary conjugations at both the input
and output stages, to a map Φ which is diagonal and real with respect to this basis. In
other words, Φ(I) = I, Φ(σx) = λ1σx, Φ(σy) = λ2σy, Φ(σz) = λ3σz, where λ1, λ2, λ3 ∈ R

(for more on the geometry of channels see [8]).
Thus describing the set of channels on M2 amounts to deriving conditions on the λk

which guarantee such a diagonal map is completely positive and trace preserving. The
norm of a completely positive map Φ is given by ‖Φ‖ = ‖Φ(I)‖. Hence for these diagonal
maps, a simple necessary condition for complete positivity is that each |λk| � 1. Using
Choi’s Lemma [7], necessary and sufficient conditions on the λk were computed in [21]
which lead to a description of the entire set of qubit channels, though the conditions are
rather technical.

From Theorem 2.1 and the basic theory of finite-dimensional C∗-algebras, we know
there are just three possibilities for the fixed-point algebra MΦ

2 of a unital qubit chan-
nel Φ. Somewhat surprisingly, we do not need the extra conditions on {λ1, λ2, λ3}
from [21] to classify the fixed-point sets.

Corollary 2.6. Let Φ : M2 → M2 be a unital quantum channel. Then the fixed-point
set for Φ is a ∗-subalgebra of M2 containing the identity operator and satisfying one of
the following conditions.

(i) MΦ
2 = M2 if and only if each λk = 1 and Φ is the identity map.

(ii) MΦ
2 = CI if and only if λk �= 1 for k = 1, 2, 3.

(iii) MΦ
2 = span{|v1〉〈v1|, |v2〉〈v2|}, where {v1, v2} is an orthonormal basis for C

2 and
|vi〉〈vi| is the rank-one projection of C

2 onto span{vi}, and this case holds if and
only if exactly one of {λ1, λ2, λ3} is equal to 1.

Proof. By the previous discussion we may assume Φ is diagonal with respect to the
Pauli basis and that |λk| � 1 for k = 1, 2, 3. An elementary computation shows that the
Pauli basis has the property that projections p = p2 = p∗ ∈ M2 are either trivial (p = 0
or p = I) or represented as

p = 1
2I + aσx + bσy + cσz,

where a, b, c ∈ R and a2 + b2 + c2 = 1
4 . Thus Φ(p) = p exactly when a = aλ1, b = bλ2

and c = cλ3.
In particular, the case λ1 = λ2 = λ3 = 1 corresponds to a, b, c being free variables and Φ

being the identity map on M2. By Theorem 2.1 the operator algebraic characterizations
of MΦ

2 in (ii) and (iii) are the only remaining possibilities for the fixed-point set. Further,
the finite-dimensional C∗-algebra MΦ

2 is spanned by its projections. Thus MΦ
2 = CI
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exactly when there are no non-trivial projections fixed by Φ. Equivalently, there are no
solutions a, b, c to the above identities. Clearly, this holds if and only if each λk �= 1.

Hence the remaining cases must satisfy (iii), and we claim this is when exactly one
of the λk is equal to 1. Indeed, either one or two of the λk must be equal to 1 for the
case (iii) maps, since otherwise we would be in one of the first two cases by the previous
paragraph. If, say, λ1 = λ2 = 1, then Φ fixes σx and σy. Whence, (−i)σxσy = σz is also
fixed by Φ since the fixed-point set is an algebra. But this would imply that λ3 = 1, and
we are really in case (i). Similarly, it is easy to see that when any two of {λ1, λ2, λ3} are
equal to 1, the third must be as well. Thus the operator algebra characterization of MΦ

2
in (iii) occurs precisely when there is exactly one λk equal to 1. �

3. Applications to representation theory for On

In this section we show that representations of the Cuntz C∗-algebra On arising from
dilations and wavelets can be classified through an analysis of completely positive maps.
Given a positive integer n � 2, On is the universal C∗-algebra generated by the relations

s∗
i sj = δijI for 1 � i, j � n and

n∑
i=1

sis
∗
i = I.

An n-tuple S = (S1, . . . , Sn) of operators in B(H) which satisfies these relations con-
sists of isometries with pairwise orthogonal ranges, for which the range projections of
the isometries span the entire (necessarily infinite-dimensional) Hilbert space H. Up to
isomorphism, On is the C∗-algebra generated by any such n-tuple, since it is simple. A
theorem of Glimm’s [13] suggests it is not possible to find a meaningful classification of
all representations of On (it is an ‘NGCR’ algebra). However, there are good reasons for
attempting to classify particular subclasses of these representations, including connec-
tions with the study of endomorphisms of B(H), finitely correlated states, dilation theory,
wavelet analysis, and the theory of non-self-adjoint operator algebras (see [3,4,10,11,15]
for examples from different perspectives).

The representations π of On on a space H which are of interest here have the property
that there exists a finite-dimensional subspace K of H which is co-invariant and cyclic
for the isometries S = (S1, . . . , Sn), where π(si) = Si. In other words,

(i) S∗
i K ⊆ K for 1 � i � n; and

(ii) H =
∨

i1,...,ik
Si1 . . . Sik

K, where the closed span is over all indices 1 � i1, . . . , ik � n

and k � 1.

We let A = (A1, . . . , An) be the row contraction of matrices consisting of the compres-
sions to K of the isometries, so that Ai = PKSi|K = (S∗

i |K)∗. Notice that

n∑
i=1

AiA
∗
i = IK
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and thus

Φ(X) =
n∑

i=1

AiXA∗
i

defines a completely positive unital map on B(K). These representations were classified
in [11]. They form the subclass of representations of On which arise through the minimal
isometric dilations of row contractions of matrices [6, 12, 20]. They also include the
representations of On which come from wavelet analysis.

Every orthogonal wavelet of scale n is determined by a scaling function ϕ in L2(R)
that determines functions which generate a ‘wavelet basis’ for L2(R). On the other hand,
the Fourier expansion of ϕ also determines so-called wavelet filter functions m1, . . . , mn

in L∞(T). Let ρ be a primitive nth root of unity. The orthogonality of the wavelet is
embedded in the statement that the complex matrices (1/

√
n)(mi(ρkz))n

i,k=1 are unitary
for a.a. z ∈ T. Given such a wavelet, a representation of On on L2(T) is obtained by
defining isometries Sif(z) = mi(z)f(zn) for 1 � i � n.

Extensive analysis has been conducted on these and other related wavelet representa-
tions (see [3,4,15,16] for instance). When the scaling function ϕ is compactly supported,
the associated representation possesses a finite-dimensional subspace K which satisfies (i)
and (ii) above for the isometries Si. In fact, these representations are quite specialized
in that K can be chosen to be spanned by Fourier basis vectors. Thus, the orthogonal
wavelet representations form a subclass of the On representations arising through dila-
tion theory. Hence, the analysis in [11] can be applied to these representations, and it
has been recently by Jorgensen [15].

The decomposition theory of [11] can quickly become computationally cumbersome.
This basic problem provided the initial motivation for this paper.

Question 3.1. Given a row contraction A = (A1, . . . , An) of matrices, or equivalently
a completely positive map Φ on finite-dimensional space, is it possible to classify the asso-
ciated representation of On just in terms of Φ, without reference to the n operators Ai?

It was shown in [11] that decomposing these representations, which act on infinite-
dimensional space, amounts to an exercise in finite-dimensional matrix algebra. This
matrix algebra essentially consists of identifying a maximal family of pairwise orthogonal
minimal A∗

i -invariant subspaces. Each of these minimal ‘anchor’ subspaces generates an
irreducible subspace for the Si, and with this information the representations can be
classified. Thus we have the following.

Answer 3.2. Theorem 1.1 answers Question 3.1 in the affirmative. In particular, such
anchor subspaces are identified by finding any maximal family of mutually orthogonal
minimal projections satisfying p � Φ(p), and these subspaces only depend on Φ. Thus all
the classification results for these representations in previous papers [3,4,11,15] can be
restated without reference to the minimal A∗

i -invariant subspaces, only to the minimal
projections satisfying this inequality. For instance, this gives a new characterization of
irreducibility: one of these representations is irreducible precisely when there is a unique
minimal projection p satisfying p � Φ(p).
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We show how this new perspective can ease the computational burden by considering
an example from each of the dilation and wavelet settings.

Example 3.3. The following example is due to Arveson, and appeared in the seminal
paper [2] as an example of a completely positive map for which the fixed-point set
B(K)Φ is not an algebra. Nonetheless, it provides a satisfying application of the method
introduced here. For k � 2, let Φ : Mk → Mk be the completely positive unital map
defined by (assuming an orthonormal basis for C

k has been fixed)

Φ([xij ]) =




x11 0
. . .

xk−1k−1

0
1

k − 1

k−1∑
i=1

xii




.

Without the new perspective discussed above, classifying a representation of On

generated by Φ through dilation theory would first require finding a row contraction
A = (A1, . . . , An) which determines Φ as in (1.1). Next, the minimal A∗

i -invariant sub-
spaces would have to be computed. With the new perspective this becomes a triviality:
the rank-one projections E1,1, . . . , Ek−1,k−1 clearly satisfy Eii � Φ(Eii), and are obvi-
ously minimal with respect to this property. This is all the information we need here to
describe a representation of On generated by Φ, and we emphasize that no reference is
required to a row contraction A which determines Φ.

Indeed, it follows that such a representation breaks up into the direct sum of k − 1
irreducible subrepresentations. In particular, the representation will be irreducible if
and only if k = 2. The ranges of E1,1, . . . , Ek−1,k−1 provide one-dimensional ‘anchor’
subspaces which generate the irreducible subspaces associated with the irreducible sub-
representations. Further, some thought shows that the free semigroup algebra S (the
wot (weak operator topology)-closed algebra generated by the isometries from the dila-
tion [9–11]) associated with each subrepresentation is unitarily equivalent to the tractable
‘one-dimensional atomic’ free semigroup algebra arising in the literature [9]. Thus the
free semigroup algebra of the full representation is unitarily equivalent to the direct sum
of k − 1 copies of this algebra.

Example 3.4. Matrix representations were worked out in [3] for the completely posi-
tive maps Φ determined by wavelet representations of O3 with K = span{z0, z−1, z−2} ⊆
L2(T). The authors show how combining an eigenvalue analysis of the matrix, together
with a computation of the fixed-point set for the map, can be used to discern information
on the representation. The method presented in this section streamlines this analysis, in
that it can be used to obtain this information in one fell swoop.

Consider the ordered basis of standard matrix units for M3

B = {E0,0, E−1,−1, E−2,−2, E0,−1, E0,−2, E−1,−2, E−2,−1, E−1,0, E−2,0},

corresponding to the ordered basis {z0, z−1, z−2} of K. An example of a matrix repre-
sentation [Φ]B in this basis for a completely positive map Φ determined by a wavelet
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representation of O3 is given by

[Φ]B =




1 0 0 0 0 0 0 0 0

0
1√
2

1 − 1√
2

0 0 0 0 0 0

0
1√
2

1 − 1√
2

0 0 0 0 0 0

0 0 0
1√
2

0 − 1√
2

0 0 0

0 0 0
1√
2

0 − 1√
2

0 0 0

0
1√
2

− 1√
2

0 0 0 0 0 0

0
1√
2

− 1√
2

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0




(for the reader of [3], this example is generated by taking g = 2, N = 3, λ0 = 1,
λ1 = (1/

√
2) = λ2).

The rank-one projection E0,0 satisfies Φ(E0,0) = E0,0 and is clearly minimal with this
property. Solving for projections p = (pij), with ranges orthogonal to that of E0,0 (so
pij = 0 if i = 0 or j = 0), and such that p � Φ(p), yields the inequalities

p11 � p11√
2

+ p22

(
1 − 1√

2

)
and p22 � p11√

2
+ p22

(
1 − 1√

2

)
.

Hence p22 � p11 and p11 � p22, so that equality is achieved. Further elementary analysis
shows that p12 = p21 = 0. Thus Φ(E−1,−1 + E−2,−2) = E−1,−1 + E−2,−2 and this rank-
two projection is minimal satisfying p � Φ(p) since any smaller projection satisfying this
inequality would also have to satisfy the above inequalities involving p11 and p22.

It now follows that the associated wavelet representation has two irreducible subrep-
resentations, and the corresponding irreducible subspaces are generated by the anchor
subspaces

(E−1,−1 + E−2,−2)K and E0,0K.

Also, O3 cyclic vectors for the corresponding irreducible summands can be obtained
simply by taking bases for the generating anchor subspaces. In particular, {z0} and
{z−1, z−2} will suffice for the two subspaces.

4. Open questions

We finish by taking the opportunity to pose some open problems motivated by the work
in this paper.
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Question 4.1. As Remark 1.4 points out, the equivalences (i)–(iii) in Theorem 1.1
are valid when the Ai act on infinite-dimensional space. Thus we ask whether there
are subclasses of representations of On arising from dilations of infinite-rank n-tuples A

which can be classified using just the associated completely positive map Φ? At present
there is not even a non-trivial subclass of such representations which has been classified
in any way.

A natural class to consider could be wavelet representations of On for which the asso-
ciated scaling function is not compactly supported. It can be shown that these represen-
tations have a co-invariant cyclic subspace K which is infinite dimensional, hence they
do indeed arise from the dilations of infinite-rank n-tuples. These representations also
have the advantage of having an explicit formula for the generating isometries, which is
determined by the wavelet filter functions and the scaling function.

We mention that this class could provide examples that shed light on a deep problem
in free semigroup algebra theory, posed in [10], which is related to the invariant subspace
problem.

Question 4.2. In many respects, quantum information theory is still in its infancy.
For instance, there are certainly connections with operator theory and operator algebras,
but these seem to be underdeveloped at present.

A natural question to ask here is whether the representations of On determined by
quantum channels through dilation theory have a meaningful interpretation in quan-
tum information theory? Could they provide a theory for describing the ‘external noise’
associated with quantum transmissions?

Question 4.3. We also wonder how the distinguished fixed points Φ∞(p) from The-
orem 1.1 fit into the analysis of completely positive maps. A connection with eigenvalue
analysis is suggested by Lemma 1.3, but we are unable to say anything substantial at
this point.

Acknowledgements. This work was partly supported by a Canadian NSERC post-
doctoral fellowship.

The author is grateful to Palle Jorgensen and Stephen Power for helpful discussions.
Thanks also to members of the Department of Mathematics at the University of Iowa
and the Department of Mathematics and Statistics at Lancaster University for kind
hospitality during the preparation of this article.

Note added in proof

We mention that Theorem 2.1 has motivated forthcoming work [14] on quantum error
correction. Furthermore, a new simpler proof of Theorem 2.1 in included in [14].
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