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Abstract
Although nanoparticles have been shown to have clear technological advantages, their
use in some consumer products remains controversial, particularly where these products
come in direct contact with our bodies. There has been much discussion about using
metal oxide nanoparticles in sunscreens, and numerous technology assessments aimed at
predicting the type, size and concentration of nanoparticles and surface treatments that
will be best for consumers. Yet, the optimal configuration is ultimately the one that people
actually want and are willing to pay for, but until now consumer preferences have not been
included in model predictions. We describe and discuss a proof of concept study in which
we design and implement a hypothetical sunscreen product configurator to predict how
people tradeoff sun protection factor (SPF), product transparency and potential toxicity
from reactive oxygen species (ROS) in configuring their most preferred sunscreen.We also
show that preferred nanoparticle sizes and concentrations vary across demographic groups.
Our results suggest that while consumers choose to reduce or eliminate potential toxicity
when possible, they do not automatically sacrifice high SPF and product transparency
to avoid the possibility of toxicity from ROS. We discuss some advantages of using
product configurators to study potential product designs and suggest some future research
possibilities.

Key words: demand for new products, optimizing product design, hypothetical product
configurators, stated preference experiments, nanoparticle theory

1. Introduction
The purpose of this paper is to propose and apply a relatively new way to identify
and measure a distribution of consumer preferences for new products and/or
extensions to existing ones. In particular, we focus on a sample of individual
consumers’ optimal configurations of feature levels, subject to constraints,
although one can use the approach we propose without imposing constraints. The
approach we describe and discuss in this paper is called a Hypothetical Product
Configurator (HPC) and we discuss it in detail later in the paper. The objective
of the approach we propose is to provide as much information as possible about
the likely distribution of optimal individual (or group) consumer preferences for
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product configurations (i.e., product feature combinations) as early as possible
in the product design and development process. We view our work as a pilot test
and proof of concept that one can use HPCs for this purpose and obtain useful
strategic and tactical insights that could lead to enhanced design outcomes. We
focus our proof of concept test on sunscreens, which are a widely used product
that faces the prospect of potential near- and longer-term formulation changes
due to rapid changes in the science and technology of nanoparticles. We begin the
paper by discussing current and possible future changes in nanoparticle science
and technology associated with sunscreens and the issues that consumers face in
choosing between competing products.

In recent years development of new nanotechnologies has been accompanied
by several studies examining potential hazards, risks and environmental impacts
of nanomaterials. They used a variety of experimental methods (e.g., Maynard
et al. 2006) to study (a) potential hazards (e.g., Balbus et al. 2007; Seaton et al.
2010; Sayes, Reed &Warheit 2011), (b) appropriate exposure levels or ‘dosimetry’
(e.g., Tsuji et al. 2006; Maynard & Aitken 2007) and/or (c) the appropriateness
of using existing methods to assess potential risks of engineered and adventitious
products of nanotechnologies (e.g., SCENIHR 2005). In addition to cataloguing
outcomes from different nanoparticle organism/environmental interactions, a
variety of predictive models also were proposed, aimed at circumventing the
need for numerous expensive and time consuming experiments. (e.g., Puzyn,
Leszczynska & Leszczynski 2009; Barnard 2009a; Burello & Worth 2011; Puzyn
et al. 2011). These studies received mixed reactions from factions in the scientific
community, but were largely welcomed by broader society who often believe that
knowledge about risks of nanoscale materials is insufficient to inform decisions
about new and existing products.

Consumers make decisions about existing products containing nanomaterials
all the time, whether they take information about risks into account or not. Thus,
better information about the choices consumers are likely to make provided at
early stages of product design and development can help to maximize the chance
of eventual product successes and reduce the risks of public relations issues
downstream. A good example of potential public relations issues involves using
metal oxide nanoparticles in commercial sunscreens (e.g., Hanson, Gratton &
Bardeen 2006; Monteiro Riviere et al. 2011), which includes titanium dioxide or
zinc oxide (e.g., Tyner et al. 2009). These products recently have raised concerns
because the photoactive nanoparticle surfaces produce reactive oxygen species
(ROS) (e.g., Wiseman & Halliwell 1996; Serpone, Salinaro & Emeline 2001;
Hirakawa, Yawata & Nosaka 2007); there also is evidence that ROS generated
by nanoparticles in sunscreens used by workers played a role in unsightly hand
and finger shaped defects on pre-painted steel roofing (e.g., Barker & Branch
2008). Although ex vivo testing indicates that nanoparticles remain on the surface
of the skin and in the stratum corneum among keratinized cells (e.g., Kertesz,
Szikszai & Kiss 2003–2004), this barrier is not impenetrable, and consumers
remain concerned.

It may seem obvious that omitting nanoparticles from sunscreens would
eliminate this threat, but including nanoparticles in sunscreens increases sun
protection factors (SPFs) and can increase adoption of more powerful sunscreens
by making them aesthetically appealing, which in turn can reduce risks of skin
cancer. While one can make some predictions of ‘numerically optimal’ product
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Figure 1. Physically optimal region.

configurations based on the underlying physicochemical system parameters (e.g.,
particle size and concentration), the product configuration that will have the
greatest impact on public health is one that consumers actually want. Public
participation and engagement plays an essential part in determining how serious
these issues are in stakeholders’ minds and whether media portrayals and/or
government position statements accurately reflect the public’s appetite for risk.

Studies and reports on societal impacts of nanotechnologies indicate that
consumer decisions often are based on individual values and perceptions
(e.g., Department of Industry, Innovation, Science, Research and Tertiary
Education, Australian Government, 2012), so it is likely that attempts to
predict the optimal sunscreen based exclusively on numerically optimizing the
physicochemical properties of the nanoparticles will fail to identify socially
acceptable configurations. Indeed it may be logical to assume that consumers
want sunscreens that simultaneously are cheap, effective, safe and attractive; but
if consumers cannot have all of these at once, how do they tradeoff these features?
A recent study (Barnard 2010) predicted numerically optimal nanoparticle size
and concentration using structure/property maps of SPF, degree of product
transparency (aesthetics) and potential toxicity from ROS, but assumed all these
factors were equally important (Figure 1). In reality they probably are not equally
important (e.g., Australian Government Department of Industry, Innovation,
Science, Research and Tertiary Education, 2012). Thus, product design and
development methods and processes clearly could benefit from having access
to reliable and accurate information about the likely tradeoffs and choices that
consumers will make in advance.

Indeed, theory and methods are available to model and predict likely future
demand and willingness to pay for new products and/or significant changes to
existing products. One particular class of methods is widely used for this purpose,
which are Discrete Choice Experiments (DCEs). DCEs rely on sophisticated
multivariate experiments to vary product features and other potentially important
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Figure 2. DCE preferences in optimal region.

aspects of choices, such as prices and messages. Each feature variant represents a
product description (or ‘offering’) and the purpose of a DCE is to observe how
consumer choices change as features and associated levels (values) vary. Choice
data produced by DCEs allows analysts to estimate sophisticated probabilistic
discrete choicemodels (DCMs) to predict how the probability of choosing various
choice options of interest are likely to change as one varies features of one or more
competing offerings (one option typically is ‘non choice’). Predictive outputs of
such models can be viewed as the mean preferences of one person who provides
multiple observations of choices and/or the mean preferences of a group (e.g.,
a sample) of people who provide one or more choice observations (Lancaster
1966; McFadden 1974; Louviere & Woodworth 1983; Louviere, Hensher & Swait
2000; Street & Burgess 2007). Recent modelling innovations allow one to estimate
discrete or continuous distributions of preferences using Classical or Bayesian
estimation methods (see, e.g., McFadden & Train 2000; Magidson & Vermunt
2007); and in certain cases, one also can use these new estimation methods to
estimate model parameters for single individuals (see also Frischknecht et al.
2014). DCMs do not predict the exact choice of a person or group; instead,
they only predict the probability that various options will be chosen. DCEs
and associated DCMs are widely used for new product demand forecasting,
identifying attractive potential target groups, and where accurate cost data are
available, estimating likely profitability.

Thus, it is fair to say that DCEs and associated DCMs currently are the
‘gold standard’ for new product demand forecasting. Consequently, we began our
research to identify potentially optimal sunscreen designs (feature configurations)
by designing and implementing a DCE (also called ‘Case 3 Best-Worst Scaling’:
Louviere, Flynn & Marley 2015) and a parallel Case 2 Best-Worst Scaling
experiment (Louviere et al. 2015). As shown in Figure 2, the DCE and associated
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DCMs produced insufficient granularity about the distribution of preferences
to allow us to reliably and accurately identify potentially desirable products in
the feasible production space, despite estimating both continuous and discrete
distributions of parameters to represent individual differences (McFadden&Train
2000; Magidson & Vermunt 2007; Fiebig et al. 2010). Nonetheless, it is worth
noting that the vast majority of DCEs and associated DCMs can and do give
sufficient granularity. Unfortunately, however, for whatever reasons, this is not
always the case. In our case, the reason why the DCE produced insufficient
granularity is that we could not impose suitable restrictions on the feature space to
enable reliable and accurate parameter estimation due to the constraints posed by
the underlying physical science, as we later explain. So, we do not mean to imply
that all DCEs and DCMs give insufficient granularity to estimate distributions of
preferred configurations, but in our case the sample size (N = 720) should have
been sufficient to do so, yet we could not achieve it. As a result, we were led to try
a different approach, namely a Hypothetical Product Configurator (HPC).

If properly designed and implemented, HPCs allow each person to directly
choose a feature level combination (here, nanoparticle size and concentration)
that yields a product (here, sunscreens) that optimizes their personal preferences
(here, best meets their needs and reflects risk preferences). In many cases,
researchers choose to constrain DCEs by designing them to create and offer only
options that actually can be produced. However, it is important to note that one
of the inventors of DCEs (i.e., Louviere & Woodworth 1983) notes that in the
vast majority of DCE applications, consumers have no idea what can/cannot be
produced. In such cases, imposing constraints can result in serious identification
and efficiency limitations in a DCE design that will impact the models that can be
estimated from it (see, e.g., Louviere 2013). In contrast, HPCs can be constrained
by physical reality, such that participants only can choose products that actually
can be produced. These constraints not only do not impact the outputs of the
HPCs, they actually ensure these outputs satisfy the underlying product and
design constraints (here, constraints associated with physical theory). HPCs are
not new; they are widely used in IT and industry, where they play roles in ‘Mass
Customization’ (e.g., Dellaert & Stremersch 2005; Franke, Schreier &Kaiser 2010).

We do not viewHPCs as replacements for or competitors of DCEs; instead, we
view them as highly complementary, each providing a different view of consumer
preferences. So, despite the fact that in this application, they gave more detailed
preference information than the DCEs we designed, this is not necessarily true in
general. Thus, it is up to researchers to decide whether to use one or both and
whether their different views of preferences are useful and in what ways they
are useful. For example, one key advantage of DCEs has been that they allow
one to forecast likely future choices in cases where product features (attributes)
differ from the present (e.g., features have new values and/or new features are
added). However, HPCs also can provide information about distributions of
choices of such future offerings to the extent that the HPC incorporates new
product features, values of such features or new values for existing features.
Thus, HPCs can produce distributions of preferences for future features and/or
feature levels that reflect actual physical and other constraints, such as prices
and production/distribution costs. A second advantage of DCEs and DCMs has
been the ability to calculate willingness to pay for new configurations, changes
in feature values, etc. While we believe that this also is possible for HPCs, we do
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not include this extra complication in our study as it is a pilot test and proof of
concept. Nonetheless, we can say that we have in fact incorporated prices directly
into several prior HPCs designed and applied by members of this research team,
and prices are regularly incorporated in real product configurators, such as the
one on the Dell Computer website.

In the following sectionswe introduce, discuss and apply aHPC todescriptions
of sunscreens based on combinations of three features (SPF, transparency and
potential toxicity from ROS). We note that most DCE applications involve more
than three features; we simplified our HPC for this proof of concept test, but
it is not a limitation of HPCs in general. In reality, there can be (and likely
are) many more features/attributes associated with the properties of a sunscreen
preparation (McCall 2011; Smijs & Pavel 2011). Indeed, the feature ‘product
transparency’ that we studied is only one physical attribute that consumers may
consider (in addition to, for example, texture and/or mode of application); and
there are other possible sources of the feature ‘potential toxicity’ that may be due
to sources other than generation of free radicals. As previously noted, whether
nanoparticles in sunscreens are toxic remains a matter of much debate and
study; and surveys indicate this can be a highly emotive issue, with consumer
decisions not necessarily related to or swayed by the underlying science. (e.g.,
Australian Government Department of Industry, Innovation, Science, Research
& Tertiary Education, 2012). A recent review of the underlying science can be
found inOsmond&McCall (2010). As alluded to earlier, members of this research
team have previously developed and applied much more complex HPCs with
many more features for laptop computers, cell phones, websites and incentives
to participate in surveys, to name only a few. So, we simplified the HPC in this
study only for proof of concept purposes.

We now describe and discuss how we measured consumer preferences
for different product configuration possibilities and linked them directly to
nanoparticle sizes and concentrations that can produce these configurations. As
we later discuss, the HPC is a tool to enable individual consumers to identify their
preferred product based on logical, emotional and personal factors inherent in
their decision processes. HPCs do not measure the impact of potential toxicity,
only how people feel about it, and whether they would configure a product to
avoid it if they could and/or howmuch of it they would accept or avoid to achieve
certain levels of aesthetics (i.e., transparency). Thus, the HPC we introduce,
discuss and apply is directly linked to the underlying physical theory (i.e., the
materials science), which serves to directly constrain the preferences to the feasible
production space.

2. Implementation and analysis methods
In principle, HPCs can be implemented with established survey methods, making
their application intuitive and relatively simple.We use Barnard’s (2010) results to
justify the three physicochemical properties mentioned earlier (SFP, transparency
and potential toxicity from ROS) as fundamental factors; and we designed and
implemented an online web survey to obtain a sample of consumers’ preferred
product configurations. As part of this survey, participants were asked to read
three different instructions to learn how to use the sunscreen HPC and how to
configure their ‘most preferred’ product. We recruited survey respondents from
the Pureprofile online webpanel, a large Australian research panel that recruits
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and maintains approximately 600 000 households closely representative of the
Australian population (we say ‘closely’ because some groups are under- or over-
represented, such as rural residents, the elderly and low incomes). We screened
potential participants by whether or not they had used sunscreen products in the
last 12 months. The survey was conducted in October 2010, and a total of 720
people participated. Demographic profiles for age, gender and location closely
matched the population statistics from the Australian Bureau of Statistics (ABS).
Excluding those screened out (i.e., did not use sunscreen in the last year), the
completion rate was 81%.

The survey offered (i.e., displayed) two horizontal sliders to each participant
that represented, respectively, ‘Nanoparticle Size’ and ‘Number of Nanoparticles’.
When participants moved the two horizontal sliders, three vertical sliders
representing ‘SPF’, ‘Relative Potential Toxicity’ (assumed linearly dependent on
ROS generation) and ‘Aesthetics’ changed in real time. Participants could not
move the three vertical sliders directly; they changed only in response to the
horizontal sliders that participants could manipulate. However, as these attributes
are intrinsically linked (via nanoparticle size and concentration), all vertical
sliders changed simultaneously, but not necessarily in the same direction. For
example, depending on the nanoparticle size, reducing concentration reduces
SPF (potentially undesirable) but can increase product transparency (potentially
desirable). Participants made choices based on attributes represented by the
vertical sliders, not product configurations produced by moving the horizontal
sliders. A screenshot of the HPC screen is shown in Figure 3.

Awareness of SPF and potential toxicity have been studied in past surveys (e.g.,
Australian Government Department of Industry, Innovation, Science, Research
& Tertiary Education, 2012). Product transparency is hard to convey to survey
participants because the visual appearance of a sunscreen preparation depends
on an individual’s skin tone. So, visual appearance (not theoretical degree of
transparency) is what consumers ultimately assess. To allow preference differences
associated with differences in skin tones we developed 10 different renderings of
forearms and elbows for each of six skin types, as shown in Figure 4. Early in the
survey we asked participants to choose one skin tone from the display in Figure 4
that they thought most closely matched their own. The sunscreen HPC page
displayed a skin tone that matched their earlier choice. In addition, two images
showed the appearance of an arm covered by sunscreen that also changed in real
time to match the levels of transparency a participant chose. Because this was a
proof of concept test, we did not provide participants with descriptions and/or
justifications of SPF and potential toxicity because consumers rarely research the
meaning of scientific terms and/or measures described on product labels, and if
they do this research does not necessarily drive their choice(s).

Survey participants could adjust the sliders as much as they wanted until
they had their ideal combination, at which point they submitted their preferred
nanoparticle size and concentration to be captured by the survey software. The
degree of sensitivity in these outcome measures was limited only by participant
dexterity. The data captured can be represented as a 3D model using a standard
kernel density smoothing method applied to the collection of variable height
impulses on a grid of rows and columns (x and y coordinates of the impulse,
denoting nanoparticle concentration and nanoparticle size, respectively). Kernel
density smoothing is discussed in many sources, such as Silverman (1981), so
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Figure 3. Screenshot of the hypothetical product configurator (HPC).

we do not go into detail about its use here to save space. The height, or z
coordinate, of the impulse denotes the number of times the same configuration
was chosen by the participants (Figure 5). We graph these choices on the same
<size; concentration> manifold used in the physicochemical modeling (Barnard
2010) for the same <size; concentration> range.

One obvious feature in Figure 5 is the peak on the right side of the
graph, indicating that the most preferred product configurations involve a high
concentration of particles below ∼10 nm in size. Small particle sizes were more
likely to be chosen than larger, submicron particles, in sharp contrast to many
assumptions in the media. However, substantial subgroups prefer sunscreens that
contain larger particles (∼30 nm to ∼60 nm), and are willing to tradeoff a lower
concentration to configure a product that meets their needs.

Aside from statistical variation in choice results, nanoparticles samples rarely
are monodispersed (Li et al. 2006; Dinh et al. 2009); so there will naturally
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Figure 4. Renderings representing sunscreen transparency and visual appearance of
consumers with different skin tones (Percentages in left column represent degrees of
transparency).

be some polydispersivity in a sunscreen (Wokovich et al. 2009), even when
efforts are made to reduce it (Nischwitz & Goenaga Infante 2012). In some
cases the degree of sunscreen polydispersivity can be quite large (Samontha,
Shiowatana & Siripinyanond 2011). Similarly, according to Regulators (e.g.,
Aust Dept of Health & Aging, Therapeutic Goods Admin: Aust regulatory
guidelines for OTC medicines, 2003; U.S. Food & Drug Admin, Table A1,
Appendix A, EPA/600/R09/057F), there is an allowable range of values of the
concentration of nanoparticles in a sunscreen. So, although consumers may want
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Figure 5. Raw data from the HPC (each spike represents one person’s choice).

to choose a particular value, they actually could be offered any concentration in
this acceptable range. Nanoparticle polydispersivity and allowable variations in
concentrations provide a kernel (or cutoff) to our smoothing, with the individual
choices being small overlapping areas in <size; concentration> space.

3. HPC results
The raw data in Figure 5 clearly indicate that no one product configuration
can satisfy everyone. While a few configurations are chosen by more than one
person, the optimal nanoparticle size and concentration is largely an individual
choice. We display the kernel density smoothing results in Figure 6 over the same
<size; concentration> range. This reveals several distinct groupings of raw data
points, indicating that a number of people chose very similar configurations. In
this way the sparse collection of individual choices becomes a distribution, and
the collective behaviour of participants becomes as important as the individual
choices themselves, indicating emergence of group behaviour (clusters of choices).

HPC results also allow one to study potential differences in size/concentration
combinations for different demographic groups. For example, Figures 7(a)
and 7(b) show results for male and female participants, respectively. Here,
the gender differences may not be commercially important, as both display
strong preferences for large concentrations of small (<10 nm) nanoparticles.
Yet, translation into commercial outcomes is not a primary motivation of all
public engagement, and this high degree of fidelity may prove valuable in other
applications.

There also were somewhat larger differences associated with participant ages,
and (to some extent) the climatic region where they lived (omitted). Figure 8(a)
shows people aged 18 to 19 are more likely to prefer small nanoparticles, in
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Figure 6. Preferred size and concentration of titania nanoparticles in sunscreens.

Figure 7. HPC-derived preferred size and concentration of titania nanoparticles in a sunscreen.

either large or moderate concentrations. Figure 8(b) shows people aged 30 to 34
also prefer small nanoparticles, but tend to avoid high concentrations. Finally,
Figure 8(c) shows people aged 45 to 49 prefer moderate concentrations of
nanoparticles; the bimodal distribution of sizes suggests two subgroups exist in
this age range with different preferences.

The above demographic differences suggest that one may be able to profile
individuals who participate in HPC tasks using demographics or answers to other
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Figure 8. HPC produced preferred sizes and concentrations of titania nanoparticles in sunscreens for.

survey questions (e.g., attitudes, opinion, values, etc.). Similarly, the HPC results
also suggest that one potentially can identify unobserved heterogeneity by using
one or more taxonomic methods, such as cluster analysis, archetypal analysis
(Cutler &Breiman 1994) or Latent Class (e.g.,Magidson&Vermunt 2007) applied
to the individual HPC configurations, and then using the individuals’ answers
to survey questions, sampling conditions or other between-subjects measures to
explain differences in the resulting segments. For example, our results reveal an
unusually high probability of a very low concentration of very small nanoparticles
in Figures 8(a) and 8(c); it also is in Figure 6, but is more difficult to see. These
peaks are not the result of group behaviour (choice clustering); instead they are
directly related tomany people choosing this configuration (see Figure 5). Yet, this
nanoparticle size/concentration configuration makes no logical sense: the SPF is

12/17

https://doi.org/10.1017/dsj.2016.12 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.12


low, the product is unattractively opaque, and the relative potential toxicity is no
lower than many other regions in the configuration space. We suspect that this is
a subset of outlier participants, who confirmed that they use sunscreens, but did
not move the horizontal sliders for reasons known only to them. We need a more
extensive study to understand this behaviour, but Figure 5 shows they are a very
small fraction of the sample.

Before concluding, we note again that our results are derived from an HPC. In
reality, manufacturers can treat nanoparticles used in sunscreens in many ways
to mitigate hazards, and in fact there are many ways to pacify toxicity and/or
quench ROS. Currently, many formulations encapsulate inorganic nanoparticles
to achieve acceptable cosmetic results and coat them to preserve colloidal stability.
Beyond this, actual risk issues are moderated by the exposure of each individual,
and while one can provide recommendations, scientists, manufacturers and/or
regulators have little control over this.

4. Conclusions
We introduced and discuss a hypothetical proof of concept study and pilot test
of a Hypothetical Product Configurator used to obtain data about consumers’
optimal combinations of nanoparticle sizes and concentrations. Naturally, we
would require more data for a real public engagement or technology assessment
study, but it is nonetheless worth noting that our HPC approach offers some
advantages over simple methods like focus groups and surveys, or more advanced
methods like DCEs (Louviere et al. 2000; Louviere et al. 2015: (1) an HPC can
predict the expected behaviour of individuals or groups of individuals in particular
contests, so to the extent that one can incorporate future contexts into an HPC,
one can predict distributions and/or groupings of individual preferences and/or
choices, and (2) a properly designed HPC will capture the fact that people have
to tradeoff good and bad features of products; in our case, they had to tradeoff
sunscreen transparency and SPF vs. potential toxicity to choose a compromise that
best met their needs and preferences. Methods that ask people how they feel about
one ormore properties or features one-at-a-time inherently do not capture the fact
that real products can have many features that can be (and often are) intrinsically
linked. In such cases, changes in one feature can automatically change others,
such that one particular feature rarely can be enhanced or reduced in isolation.
In turn, this implies that understanding consumer perceptions and preferences
for concentration/size combinations of nanoparticles in commercial products like
sunscreens is necessarily more complex than suggested by widespread use of
attitudinal surveys (e.g., Department of Industry, Innovation, Science, Research
and Tertiary Education, Australian Government, 2012).

Although our proof of concept study is a modest step towards understanding
and quantifying the complexity of designing and applying HPCs, our results
suggest several interesting conclusions. For example, we show differences in ways
that some demographic groups value transparency, SPF and potential toxicity;
and some of these differences are inconsistent with what many vocal political,
social and environmental groups claim. That is, taking everything into account,
our sample had a surprisingly high tolerance for potential toxicity. It varies across
demographics, but in general people do not seem to be as ‘anti-nano’ as some in the
media suggest. Of course, we do not necessarily advocate using our results to draw
conclusions about the use of nanoparticles in sunscreens, but we think that they
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do show that consumers do not automatically sacrifice high SPF (protects against
skin cancer) and product transparency (promotes adoption, consistentwith public
health) to avoid possible toxicity from ROS. Indeed, our results suggest this issue
is complex even in a simple research setting like our HPC; so, it is likely to provide
a rich area for further research.

Barnard (2009b) noted that issues relating to potential hazards in nanoscale
materials are more than just multidisciplinary problems. They are multi-field
problems; hence, the final, and arguably the best, result of our proof of concept
study is a demonstration that the physical and social sciences can be integrated
in meaningful ways. While such collaborations have scientific and technical
challenges, one nonetheless can envisage many other potential HPC applications
and ways to refine and expand the data processing and analysis using expertise
from different academic disciplines. Moreover, we think HPCs could be used as
part of (or even a proxy for) public engagement activities to ensure statistical
validity and reduce problems associated with bipolar reactions from groups that
may be over-represented in voluntary public forums. They also can be used to
capture public perceptions or voice of the customer-type inputs traditionally done
in other ways.
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