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ALMOST COMPLEX STRUCTURES ON

FOUR-DIMENSIONAL COMPLETE INTERSECTIONS

HOWARD HILLER*

Suppose X is a ̂ -dimensional complete intersection in

of multidegree d-,...,d . We show that X supports infinitely

many almost complex structures for exactly 8 possible multi-

degrees. In particular, a hypersurface of degree d in CP

admits infinitely many almost complex structures if and only if

d = 2 or 6. This generalizes a result of E. Thomas [4] for

CP . We give also some tables of possible Todd genera and a

result for complex surfaces.

If M is a 2rz-dimensional differentiable manifold, then an almost

complex structure (acs) on M is a complex vector bundle u satisfying

ta-g - TM, where TM denotes the real tangent bundle of M. Hirzebruch [2]

has posed the general problem of determining the possible total Chern

classes of acss on M.

E. Thomas [4] showed that M = €P admits precisely 6 acss and

wrote down their Chern classes. If we view CP as a degree 1 hyper-

surface Xjd) in <̂ P i it is natural to consider Hirzebruch's question

for X4(d)3 d > 1. If we define N(d) = (d-2)(d-6)(Sd2 - 8d + 8), the

answer can be described in the following fashion:
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THEOREM, (a) If d ? 2,6 , then X (d) admits only finitely

many aass each uniquely determined by their first Chern class. If d is

odd (resp. even) then the possible first Chern classes are the (resp. even)

divisors of N(d) (resp. N(d)/8).

(b) For all d, if UJ is an acs over X (d) and

2
cAu) = c^x € H (X.(d)), c1 a non-zero integer, then the total Chern class

of a) is given by:

oU) = 1 + of + (j(c2+d2)-3)x2 +

,1,3 N(d) . M2 . .3 X 4
(-x(c + + 2c-(a -6))x + -jx
8 1 c~ 1 d

where x denotes the Euler characteristic of XAd) and x is a

generator of H2(X4(d)).

(c) If d = 2,6 X4(d) admit an acs with total Chern

class (*), c~ any non-zero integer. Furthermore for any integer k,

2 3 4
X (2) has an acs with Chern class 1 - x + kx + 3x and X (6) has an

2 3 4
acs with Chern class 1 - ISx + kx + 43Sx .

There is a similar result for hypersurfaces in €P involving the

middle-dimensional pairing that we describe below and a result for four-

dimensional complete intersections.

Elsewhere we will consider Hirzebruch's problem for odd-dimensional

complete intersections.

1. Hypersurfaces in CP .

Up to diffeomorphism there is unique hypersurface X (d) of degree

d in €F defined by a single homogeneous polynomial of degree d.

The topology of X (d) is well-known and is described in Kulkarni-Wood [3].

We restrict our attention to n = 4 but the facts we quote apply in

2 5
complete generality. If a € H (CP ) denotes the first Chern class of

o
the hyperplane bundle H, then x = i*ct generates H (XAd)). The classes
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7 ft A

X is d times a generator of H (X.(d)) and x evaluated on the

fundamental class is d. The odd-dimensional cohomology groups are zero

and H2(X4(d)) is a free abelian group of rank &£ = ̂ {(d-1)6 - 1} + 2,

so that the Euler characteristic x = Bp + 4. Finally we will need the

characteristic classes of XAd) that are easily computable from the
basic relation

One gets:

TJX.(d)) © Pd = i*Tj€P5) .
€/ tf (If

d.o.) o ( X 4 ( d ) ) =

so that

Ul + x)6 if d s 0(2)

(1.0b) w(X4(d)) =

[(1 + x)5 if d = 1(2) .

Similarly:

(1.0c) p(X4(d)) = 2 + (6-d
2)x2 + (d4-6d2+15)x4 .

If id is any acs over a 2n-manifold W, then (1) c (u>) = \(M)

and (2) e .(u>®u) = p.(M), 1 < i < n/2. Hence if W is 3-dimensional,

we get

(l.Od) (ii) ,2

2
(iii) vn = cAisi) - 2o.(u)cJu>) + 2c.(m) .z z i o t

Substituting (i) and (ii) in (iii) and rearranging we obtain as in [4,

Theorem 1.8]:

LEMMA 1.1. If u is an acs over n , c, = c-(u), c, = c (a) then
J. A o o
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in H8(M;7Z)

8x(M) + p^M)2 - 4p2(M) =

It is now easy to compute the left-hand side of this identity for
M = X4(d).

LEMMA 1.2. In H8(}

8\ + P-, - 4p- = N(d)x

where N(d) = (d-2) (d-6) (5d2-8d+8), as above.

Proof. From (1.0a) or the formula for the second Betti number

above, one can compute x = °J-XJ-d-)) ~ (d -6d +15d -20d+lS)x . Combined

with (1.0c) we get:

8x + P2, - 4po = Sd
4 - 48d3 + 132d2 - 160d + 96 = N(d)

after some easy computing.

COROLLARY 1.3. If u is an aas over X (d) and a (u) = ax,

c,(W = bx , a,b 6 7L y then:

(1.3.1) a(8b - a3 + 2a(6-d2)) = N(d).

Proof. This is immediate from (1.1) and (1.2).

It remains to prove the converse of (1.3). According to Thomas

[4, Theorem 3.1] it suffices to check

2 3 2
(1.3.2) Sq (CjfwJ + e^u) w^ + c^i^w^ + c^u)) = 0

in H (X (d);2Z/2). For d = 0(2) this is immediate as x s 0(2).

If d = 1(2), we use (1.0b) to observe that W^ s 1(2) and V>4 = 0(2)3

so that the condition reduces to b = 0(2). Hence it suffices to show:

LEMMA 1.4. If a,d = 1(2), then a4 + N(d) + 2a2(d2-6) = 0(16).
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Proof. From the proof of (1.2) we know

N(d) = Sd4 + 4d2 = 9(16)

since d2 = 1(8) and d4 = 1(16). Similarly a4 = 1(16), 2c?d2 = 2(16)

and -12a2 = 4(16). Hence a4 + N, + 2a2(d2-6) =1 + 9 + 2 + 4 = 0(16).
d

Proof of Theorem. For d odd, (a) follows from (1.3), (1.4) and

Thomas' criterion (1.3.2). If d is even, a is also even, so letting

a = 2k in (1.3.1) provides the result. (b) follows by computing cn, e,

explicitly from (l.Od). Finally (c) follows by observing that d = 2,6

are roots of N(d), so if c, = 0, e_ is arbitrary, and if e ^ 0, it
1 o 1

determines o7 uniquely from (1.3.2).
o

REMARKS. 1. The case d = 1 of the theorem agrees with Thomas'

result for CP [4, Theorem 3.2].

2. It is easy to compute now the precise number of acss on X (d). For

example, if d is odd then it is 2d(N(d)) where d( . ) is the usual

divisor function. (The 2 comes from allowing negative divisors.) See

Table 1 for low values of d.

3. The formula

Toddfo,; = ̂  (-c4 + Clc3 + So\ + 4c2Lc2 - e\)

allows one to compute the possible Todd genera of acss on X (d). See

Table 2 for low values of d. If d = 2,6 one can easily show:

COROLLARY 1.5. (a) A non-zero integer t occurs as the Todd

genus of an acs on the Klein quadrio X (2) if and only if t = JK (k -k ),

for some k £ 2Z.

(b) A non-zero integer t occurs as the Todd genus of an acs on X (6)

if and only if t = -y(k4 + 15k2 + 8), for some k £ 2.

2. Four-dimensional complete intersections

A complete intersection X = X (d , ..., d ) c
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is the transverse intersection of hypersurfaces of degrees d-, •••, d

in Cr . The ordered r-tuple cL < .. . < d is called the multidegree

of X c CP and determines it up to diffeomorphism. The product

d~. . .d is the degree of X.

The results of §1. admit generalization to 4-dimensional complete

intersections. We describe these here while omitting most of the details.

We will need some terminology from the theory of symmetric functions

to define the analogue of N(d). Fix a positive integer r and view

d~3 ..., d as formal variables. If J = (i>~, . . ., ~L ) is a partition

of k = i- + . .. + i then

nT(dr ..., dr) -Id]
1 ... d]

is the usual monomial symmetric function containing the indicated monomial.

The complete elementary symmetric function 7z, is then given by:

where I varies over all partitions of k. The power-sum symmetric

function is given by:

We now introduce the following symmetric polynomial

Sr(dlt ..., dj = (8h4 - 2p4 - V\) - 8(v +

4(r + 5)(r + 4)h£ + 2(r + 5)p£ -

- (r+S)2 + 2(r+S)

We leave it to the reader to check the analogue of (1.2) , that

8X + ?\ - 4p2 = *r<dv ..., dr) in H8(X4(dv ..., dp))t in particular,

tf = N. It is now easy to describe a parametrization of the acss over
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X (d., ..., d ) as in section 1.

It remains only to determine which multidegrees support infinitely

many acss or equivalently acss with zero first Chern class. These

correspond precisely to the integral zeros of N (d., ..., d j . It is

possible to check the following.

PROPOSITION 2.1. The following multidegrees support infinitely

many acss:

r = 1 r = 2 r = 3 r = 4 r = 5

2 2,5 2,2,4 2,2,2,3 2,2,2,2,2

6 3,4 2,3,3

and these are all of them.

3. Hypersurfaces in CP

The main result is:

THEOREM 3.1. The almost complex structures on Xg(d) c f f
3

X
p

correspond to the elements 6 £ H (X (d);2L) satisfying 6 = dx(2) and

2 2 2
B = (d-4) x .

Proof. According to Wu [5] and Ehresmann [1] acss on a 4-manifold

o
M are classified by elements 6 € H (M) satisfying & = W2<M)(2) and

B2 - 2X(M) =p (M). If M = Xjd), we have p, = (4 - d2)x2 ,
J. a 1

X(M) = c2(M) = (d
2 - 4d + 6)x2 and wg = d(2); so the result follows.

COROLLARY 3.2. If X is a smooth K3 surface, then acss on X

22
correspond to even null vectors in 2Z with respect to the form

2E8®3(°
1
0).

Proof. X is realized by the smooth quartic hypersurface in ffP .
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degree d number of acss on X.(d)

1 6

2 oo

3 8

4 8

5 12

6 oo

7 8

8 24

9 32

10 16

11 48

12 32

TABLE 1
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Chern classes of almost complex structures on XA(d).

±c_

d = 3

1

3

29

87

2

6

422

3786

-10

2

3070

82378

9

9

9

9

Todd genus

0

1

5565

447931

d = 4

2

4

14

28

7

13

103

397

-8

11

376

2813

47

47

47

47

1

6

441

6566

d = 5

1

3

9

31

93

279

10

14

50

490

4334

38930

-30

6

130

3870

100986

2716030

165

165

165

165

165

165

1

6

126

12501

978306

78934630

TABLE 2
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