ALMOST COMPLEX STRUCTURES ON FOUR-DIMENSIONAL COMPLETE INTERSECTIONS

Howard Hiller*

Abstract

Suppose X is a 4-dimensional complete intersection in $\mathbb{C} P^{r+4}$ of multidegree d_{1}, \ldots, d_{r}. We show that X supports infinitely many almost complex structures for exactly $\&$ possible multidegrees. In particular, a hypersurface of degree d in $C P^{5}$ admits infinitely many almost complex structures if and only if $d=2$ or 6. This generalizes a result of E. Thomas [4] for $C P^{4}$. We give also some tables of possible Todd genera and a result for complex surfaces.

If M is a $2 n$-dimensional differentiable manifold, then an almost complex structure (acs) on M is a complex vector bundle ω satisfying ${ }^{\omega_{R}} \cong T M$, where $T M$ denotes the real tangent bundle of M. Hirzebruch [2] has posed the general problem of determining the possible total Chern classes of acss on M.
E. Thomas [4] showed that $M=\mathbb{C P}{ }^{4}$ admits precisely 6 acss and wrote down their Chern classes. If we view $C P^{4}$ as a degree 1 hypersurface $X_{4}(1)$ in $\mathbb{C} P^{5}$, it is natural to consider Hirzebruch's question for $X_{4}(d), d>1$. If we define $N(d)=(d-2)(d-6)\left(5 d^{2}-8 d+8\right)$, the answer can be described in the following fashion:

Received 12 March 1984. "Partially supported by the Alexander von Humboldt Stiftung.

[^0]THEOREM. (a) If $d \neq 2,6$, then $X_{4}(d)$ admits only finitely many acss each uniquely determined by their first Chern class. If d is odd (resp. even) then the possible first Chern classes are the (resp. even) divisors of $N(d)$ (resp. $N(d) / 8)$.
(b) For all d, if ω is an acs over $X_{4}(d)$ and $c_{1}(\omega)=c_{1} x \in H^{2}\left(X_{4}(d)\right), c_{1}$ a non-zero integer, then the total Chern class of ω is given by:

$$
\left\{\begin{array}{r}
c(\omega)=1+c_{1} x+\left(\frac{1}{2}\left(c_{1}^{2}+d^{2}\right)-3\right) x^{2}+ \tag{*}\\
\\
\left(\frac{1}{8}\left(c_{1}^{3}+\frac{N(d)}{c_{1}}+2 c_{1}\left(d^{2}-6\right)\right) x^{3}+\frac{x}{d} x^{4}\right.
\end{array}\right.
$$

where x denotes the Euler characteristic of $X_{4}(d)$ and x is a generator of $H^{2}\left(X_{4}(d)\right)$.
(c) If $d=2,6 X_{4}(d)$ admit an acs with total Chern class (*), c_{1} any non-zero integer. Furthermore for any integer k, X_{4} (2) has an acs with Chern class $1-x^{2}+k x^{3}+3 x^{4}$ and $X_{4}(6)$ has an acs with Chern class $1-15 x^{2}+k x^{3}+435 x^{4}$.

There is a similar result for hypersurfaces in $\mathbb{C} P^{3}$ involving the middle-dimensional pairing that we describe below and a result for fourdimensional complete intersections.

Elsewhere we will consider Hirzebruch's problem for odd-dimensional complete intersections.

1. Hypersurfaces in $\mathbf{C P}^{5}$.

Up to diffeomorphism there is unique hypersurface $X_{n}(d)$ of degree d in $\mathbb{C} P^{n+1}$ defined by a single homogeneous polynomial of degree d. The topology of $X_{n}(d)$ is well-known and is described in Kulkarni-Wood [3]. We restrict our attention to $n=4$ but the facts we quote apply in complete generality. If $\alpha \in H^{2}\left(\mathbb{C} P^{5}\right)$ denotes the first Chern class of the hyperplane bundle H, then $x=i^{\star} \alpha$ generates $H^{2}\left(X_{4}(d)\right)$. The classes
x^{3} is d times a generator of $H^{6}\left(X_{4}(d)\right)$ and x^{4} evaluated on the fundamental class is d. The odd-dimensional cohomology groups are zero and $H^{2}\left(X_{4}(d)\right)$ is a free abelian group of rank $\beta_{2}=\frac{1}{d}\left\{(d-1)^{6}-1\right\}+2$, so that the Euler characteristic $x=\beta_{2}+4$. Finally we will need the characteristic classes of $X_{4}(d)$ that are easily computable from the basic relation

$$
T^{\left(X_{4}(d)\right) \oplus H^{\otimes d}=i \star T} \mathbb{C}^{\left(\mathbb{C} P^{5}\right)}
$$

One gets:

$$
\begin{equation*}
c\left(X_{4}(d)\right)=\frac{(1+x)^{6}}{1+d x} \tag{1.0a}
\end{equation*}
$$

so that
(1.0b)

$$
w\left(X_{4}(d)\right)=\left\{\begin{array}{lll}
(1+x)^{6} & \text { if } & d \equiv 0(2) \\
(1+x)^{5} & \text { if } & d \equiv 1(2)
\end{array}\right.
$$

Similarly:
(1.0c)
$p\left(X_{4}(d)\right)=1+\left(6-d^{2}\right) x^{2}+\left(d^{4}-6 d^{2}+15\right) x^{4}$.

If ω is any acs over a $2 n$-manifold M, then (1) $c_{n}(\omega)=\chi(M)$ and (2) $c_{2 i}(\omega \oplus \bar{\omega})=p_{i}(M), 1 \leqslant i \leqslant n / 2$. Hence if M is 8 -dimensional, we get
(1.0d)

$$
\left\{\begin{array}{l}
\text { (i) } c_{4}(\omega)=x(M) \\
\text { (ii) } p_{1}=c_{1}(\omega)^{2}-2 c_{2}(\omega) \\
\text { (iii) } p_{2} \equiv c_{2}(\omega)^{2}-2 c_{1}(\omega) c_{3}(\omega)+2 c_{4}(\omega)
\end{array}\right.
$$

Substituting (i) and (ii) in (iii) and rearranging we obtain as in [4, Theorem 1.8]:

LEMMA 1.1. If ω is an acs over $u^{8}, c_{1}=c_{1}(\omega), c_{3}=c_{3}(\omega)$ then
in $H^{8}(M ; \mathbb{Z})$

$$
8 \times(M)+p_{1}(M)^{2}-4 p_{2}(M)=8 c_{1} c_{3}-c_{1}^{4}+2 p_{1}(M) c_{1}^{2} .
$$

It is now easy to compute the left-hand side of this identity for $M=X_{4}(d)$.

LEMMA 1.2. In $H^{8}\left(X_{4}(d)\right):$

$$
8 \chi+p_{1}^{2}-4 p_{2}=N(d) x^{4}
$$

where $N(d)=(d-2)(d-6)\left(5 d^{2}-8 d+8\right)$, as above.
Proof. From (1.0a) or the formula for the second Betti number above, one can compute $x=c_{4}\left(X_{4}(d)\right)=\left(d^{4}-6 d^{3}+15 d^{2}-20 d+15\right) x^{4}$. combined with (1.0c) we get:

$$
8 x+p_{1}^{2}-4 p_{2}=5 d^{4}-48 d^{3}+132 d^{2}-160 d+96=N(d)
$$

after some easy computing.
COROLLARY 1.3. If ω is an acs over $X_{4}(d)$ and $c_{1}(\omega)=a x$, $c_{3}(\omega)=b x^{3}, a, b \in \mathbb{Z}$, then:

$$
\begin{equation*}
a\left(8 b-a^{3}+2 a\left(6-d^{2}\right)\right)=N(d) \tag{1.3.1}
\end{equation*}
$$

Proof. This is immediate from (1.1) and (1.2).
It remains to prove the converse of (1.3). According to Thomas [4, Theorem 3.1] it suffices to check

$$
\begin{equation*}
S q^{2}\left(c_{1}(\omega)^{3}+c_{1}(\omega)^{2} w_{2}+c_{1}(\omega) w_{4}+c_{3}(\omega)\right)=0 \tag{1.3.2}
\end{equation*}
$$

in $H^{8}\left(X_{4}(d) ; \mathbb{Z} / 2\right) . \quad$ For $d \equiv O(2)$ this is immediate as $x^{3} \equiv O(2)$.
If $d \equiv 1(2)$, we use (1.0b) to observe that $w_{2} \equiv 1(2)$ and $w_{4} \equiv O(2)$, so that the condition reduces to $b \equiv O(2)$. Hence it suffices to show:

LEMMA 1.4. If $a, d \equiv 1(2)$, then $a^{4}+N(d)+2 a^{2}\left(d^{2}-6\right) \equiv 0(16)$.

Proof. From the proof of (1.2) we know

$$
N(d) \equiv 5 d^{4}+4 d^{2} \equiv 9(16)
$$

since $d^{2} \equiv 1(8)$ and $d^{4} \equiv 1(16)$. Similarly $a^{4} \equiv 1(16), 2 a^{2} d^{2} \equiv 2(16)$ and $-12 a^{2} \equiv 4(16)$. Hence $a^{4}+N d+2 a^{2}\left(d^{2}-6\right) \equiv 1+9+2+4 \equiv 0(16)$.

Proof of Theorem. For d odd, (a) follows from (1.3), (1.4) and Thomas' criterion (1.3.2). If d is even, a is also even, so letting $a=2 k$ in (1.3.1) provides the result. (b) follows by computing c_{2}, c_{3} explicitly from (1.0d). Finally (c) follows by observing that $d=2,6$ are roots of $N(d)$, so if $c_{1}=0, c_{3}$ is arbitrary, and if $c_{1} \neq 0$, it determines c_{3} uniquely from (1.3.2).

REMARKS. 1. The case $d=1$ of the theorem agrees with Thomas' result for $\mathbb{C} P^{4}$ [4, Theorem 3.2].
2. It is easy to compute now the precise number of acss on $X_{4}(d)$. For example, if d is odd then it is $2 d(N(d)$) where $d($.) is the usual divisor function. (The 2 comes from allowing negative divisors.) See Table 1 for low values of d.
3. The formula

$$
\operatorname{Todd}(\omega)=\frac{1}{720}\left(-c_{4}+c_{1} c_{3}+3 c_{2}^{2}+4 c_{1}^{2} c_{2}-c_{1}^{4}\right)
$$

allows one to compute the possible Todd genera of acss on $X_{4}(d)$. See Table 2 for low values of d. If $d=2,6$ one can easily show:

COROLLARY 1.5. (a) A non-zero integer t occurs as the Todd genus of an acs on the Klein quadric $X_{4}(2)$ if and only if $t=\frac{1}{12}\left(k^{4}-k^{2}\right)$, for some $k \in \mathbb{Z}$.
(b) A non-zero integer t occurs as the Todd genus of an acs on X_{4} (6) if and only if $t=\frac{1}{4}\left(k^{4}+15 k^{2}+8\right)$, for some $k \in \mathbb{Z}$.
2. Four-dimensional complete intersections

A complete intersection $X_{n}=X_{n}\left(d_{1}, \ldots, d_{n}\right) \subseteq \mathbb{C} P^{n+r}$
is the transverse intersection of hypersurfaces of degrees d_{1}, \ldots, d_{r} in $\mathbb{C} P^{n+r}$. The ordered r-tuple $d_{1}<\ldots<d_{r}$ is called the multidegree of $X_{n} \subseteq \mathbb{C} P^{n+r}$ and determines it up to diffeomorphism. The product $d_{1} \ldots d_{r}$ is the degree of X.

The results of $\$ 1$. admit generalization to 4 -dimensional complete intersections. We describe these here while omitting most of the details.

We will need some terminology from the theory of symmetric functions to define the analogue of $N(d)$. Fix a positive integer r and view d_{1}, \ldots, d_{r} as formal variables. If $I=\left(i_{1}, \ldots, i_{r}\right)$ is a partition of $k=i_{1}+\ldots+i_{r}$ then

$$
m_{I}\left(d_{1}, \ldots, d_{r}\right)=\left[d_{1}^{i_{1}} \ldots d_{r}^{i_{r}}\right.
$$

is the usual monomial symmetric function containing the indicated monomial. The complete elementary symmetric function h_{k} is then given by:

$$
h_{k}=\sum_{I} m_{I}
$$

where I varies over all partitions of k. The power-sum symmetric function is given by:

$$
P_{k}=\sum_{i=1}^{r} d_{i}^{k}
$$

We now introduce the following symmetric polynomial

$$
\begin{aligned}
N_{r}\left(d_{1}, \ldots, d_{r}\right)= & \left(8 h_{4}-2 p_{4}-p_{2}^{2}\right)-8(r+5) h_{3}+ \\
& 4(r+5)(r+4) h_{2}+2(r+5) p_{2}- \\
& 8\binom{r+5}{3} h_{1}+8\left(_{4}^{r+5}\right)-(r+5)^{2}+2(r+5)
\end{aligned}
$$

We leave it to the reader to check the analogue of (1.2), that $8 x+p_{1}^{2}-4 p_{2}=N_{r}\left(d_{1}, \ldots, d_{r}\right)$ in $H^{8}\left(X_{4}\left(d_{1}, \ldots, d_{r}\right)\right)$, in particular, $N_{1}=N$. It is now easy to describe a parametrization of the acss over
$X_{4}\left(d_{1}, \ldots, d_{r}\right)$ as in section 1.
It remains only to determine which multidegrees support infinitely many acss or equivalently acss with zero first Chern class. These correspond precisely to the integral zeros of $N_{r}\left(d_{1}, \ldots, d_{r}\right)$. It is possible to check the following.

PROPOSITION 2.1. The following multidegrees support infinitely many acss:

$\frac{r=1}{2}$	$\frac{r=2}{2}$	2,5	$\frac{r=3}{}$	$\underline{r=4}$
6	3,4	$2,3,3$	$2,2,2,3$	$2,2,2,2,2$
		$2,3=5$		

and these are all of them.
3. Hypersurfaces in $\mathbf{C P}{ }^{3}$

The main result is:
THEOREM 3.1. The almost complex structures on $X_{2}(d) \subseteq \mathbb{L} P^{3}$ correspond to the elements $\beta \in H^{2}\left(X_{2}(d) ; \mathbb{Z}\right)$ satisfying $B \equiv d x(2)$ and $\beta^{2}=(d-4)^{2} x^{2}$.

Proof. According to Wu [5] and Ehresmann [1] acss on a 4-manifold M are classified by elements $\beta \in H^{2}(M)$ satisfying $\beta \equiv w_{2}(M)(2)$ and $\beta^{2}-2 \times(M)=p_{1}(M) . \quad$ If $M=X_{2}(d)$, we have $p_{1}=\left(4-d^{2}\right) x^{2}$, $x(M)=c_{2}(M)=\left(d^{2}-4 d+6\right) x^{2}$ and $w_{2} \equiv d(2) ;$ so the result follows.

COROLLARY 3.2. If X is a smooth $K 3$ surface, then acss on X correspond to even null vectors in \mathbb{Z}^{22} with respect to the form $2 E_{8} \oplus 3\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

Proof. X is realized by the smooth quartic hypersurface in $\mathbb{C} P^{3}$.
degree d
number of acss on X_{4} (d)

1

2

3

4

5

6

7

8

9
10
11

12

6
∞

8

8
12
∞

8

24

32

16
48

32

TABLE 1

Chern classes of almost complex structures on $X_{4}(d)$.

$\pm c_{1}$	${ }^{\text {c }}$ 2	$\pm c_{3}$	${ }^{\text {c }}$	Todd genus
$d=3$				
1	2	-10	9	0
3	6	2	9	1
29	422	3070	9	5565
87	3786	82378	9	447931
$d=4$				
2	7	-8	47	1
4	13	11	47	6
14	103	376	47	441
28	397	2813	47	6566
$\mathrm{d}=5$				
1	10	-30	165	1
3	14	6	165	6
9	50	130	165	126
31	490	3870	165	12501
93	4334	100986	165	978306
279	38930	2716030	165	78934630

TABLE 2

References

[1] C. Ehresmann, "Sur les variétés presque complexes", Proc. Int. Cong. Math. 2 (1950), 412-419.
[2] F. Hirzebruch, "Some problems on differentiable and complex manifolds", Ann. of Math. (2) 60 (1954), 213-236.
[3] R. Kulkarni and J. Wood, "Topology of non-singular complex hypersurfaces", Advances in Math. 35 (1980), 239-263.
[4] E. Thomas, "Complex structures on real vector bundles", Amer. J. Math. 89 (1967), 887-908.
[5] W. T. Wu, "Sur les espaces fibrés", Actual. scient. ind. (1952), 1183.

Mathematiches Institut
Universitat Gottingen
D-4500 GƠttingen
West Germany
and

Department of Mathematics
Columbia University
New York, N.Y. 10027
U.S.A.

[^0]: Copyright Clearance Centre, Inc. Serial-fee code : 0004-9729/84 $\$ \mathrm{~A} 2.00+0.00$

