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MOVING ERGODIC THEOREMS 
FOR SUPERADDITIVE PROCESSES 

S. E. FERRANDO 

ABSTRACT. Let T = (ju)uçjd be a semigroup of measure preserving transforma
tions on a measure space (Q, f, ji). The main result of the paper is the proof of a.e. 
convergence for the moving averages 

#/„ 

where {Fjn} is a superadditive process and {/„} is a sequence of cubes in Z+ satisfying 
the "cone-condition". The identification of the limit is given. A moving local theorem 
is also proved. 

1. Introduction. In [7] A. Nagel and M. Stein developed a method to investigate 
the pointwise convergence for general approach regions in harmonic analysis which was 
later simplified by J. Sueiro [9]. These techniques have, in turn, been adapted to deal 
with convergence of "moving" averages in Ergodic Theory by A. Bellow, R. Jones and 
J. Rosenblatt [4]. We refer to [1] for a more up to date list of references in the applications 
of these methods to Ergodic Theory. The purpose of this article is to extend some of these 
results to the superadditive setting. More specifically, in Theorem 3.3 we prove pointwise 
convergence for multiparameter superadditive processes when the sequence is indexed 
by a family of cubes (in Z+) satisfying a condition which is equivalent to the "cone-
condition". We also identify the limit function. This result generalises the main result 
in [5] where a.e. convergence was shown to hold for multiparameter additive processes. 
An important step of the proof is an improved maximal inequality, Theorem 3.1, which 
combined with techniques from [2] and [6] gives the a.e. convergence. The proof of 
Theorem 3.1 is related to the one of the central results in [8] (Theorem 1.7, p. 514). In 
fact, using the ideas contained in the proof of Theorem 3.1 it can be seen that there is a 
version of Theorem 1.7 ([8]) which holds for superadditive processes. At the moment it 
is not clear if such a version can be used as it has been done in [8] (e.g. Theorem 4.7 there, 
see also [10]). We remark that our results also generalise results in [2] where stronger 
conditions were imposed on the family of sets of integers. In a final section we prove 
that an alternative definition for the moving averages in the superadditive setting fails to 
give pointwise convergence. In that section we also prove a moving local theorem. 

2. Preliminaries. Let d > 1 be a fixed integer and Si = Z+ be the additive semi
group of ^-dimensional vectors with nonnegative integer coordinates. We denote by 0 
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MOVING ERGODIC THEOREMS 729 

and e the vectors with all coordinates equal to 0 and 1 respectively. For a fixed integer 
m > 1 we let: 

Sm = (ml+)d = {mu | we Si}. 

If a = (at) and b - (bj) are two vectors in Td then [a, b) denotes the set {u \ u = 
(ut) G Td,di < m < bi} and %m = {[a,b) \ a,b G Sm}. If A Ç Zd is finite, the 
number of elements in A is denoted by #A. Also, let Jn = [0,«e) for n G Z+. To 
avoid misinterpretations the notation [v]^ will be used occasionally to indicate the A>th 
component of v G S\. 

Given a measure space (Q, J , jx) we say that a set function 

is a superadditive process (with respect to r) on $ m if there exists r = (rM)MG5m, a 
semigroup of measure preserving transformations on (Q, J , /i), such that the following 
conditions are satisfied: 

Fi°ru= F/+M whenever/ G $m and w G Sm. 
I f / i , . . . , /„ are disjoint sets in $ w and if/ = U"=i h is also in $ m then 

E£i */ ,<*>. 
sup{^ JF/rf/x | / G f f m , # / > 0 } = 7 ( / 0 < oo. 

If — F is superadditive then F is called subadditive. If both F and —F are superadditive 
then F is called additive. 

LEMMA 2.1. TjTF w a superadditive process on $m, then 

1 #<4 

For a proof see [2]. 
To make the connection with the cone-condition (see condition C) below) used in [4] 

and [5] we mention that: for a given sequence of cubes {In = [vw, vn + ern)}n=\,„. in ${ 

(i.e. vn G S\, rn G Z+, r„ > 1) the conditions B) and C) below are equivalent. 
B) There is a constant Z? such that for any cube I=[a,a + re), a G Zd

1 r G Z+, r > 0: 

' # { W G Z ^ | 3 H , W + / „ Ç / } < 5 # / . 

C) There is a constant C and a > 0 such that for all s > 0 

#{w G Zrf | 3w, |u - v„| < a(s - rn)} < Csd. 

The proof of the equivalence goes as in [1]. In this paper only the condition B) 
restricted to Z+ will be used (see the definition of a ̂ -sequence below). 

3. In this section we prove the main result of the paper: Theorem 3.3. As it has been 
mentioned before, the key step is Theorem 3.1 below. For the case of dimension one 
(d = 1) it is possible to give a different proof of Theorem 3.3. This may be done by 
making use of the existence of exact dominants for these processes. However, this proof 
can not be extended to higher dimensions (see [2], Section 5.1). 
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730 S. E. FERRANDO 

DEFINITION. We say that {In}n=\,... is aB-sequenceof cubes in $m if: In = [v„, vn+rne) 
where rn E (mZ+), rn > 0 and v„ E Sm and for every cube I €$m, 

#{u eSm\3n,u+InÇI}< BM 

where B is a constant independent of/. 
Examples of /^-sequences can be found in [4] and [8]. 

THEOREM 3.1. Let {In}n=\,... be a B-sequence of cubes in $m and F a nonnegative 
superadditive process on$m and let a > 0. If 

E= I UJ E Q I sup —FIn(u) > oc\ 
t ' w>1 Win > 

then 

PROOF. If 

KE) < mdl{F). 
a 

EM= I a; E Q I max —-Fj (UJ) > a 
I I \<n<N#In "V 

we just need to show that /i(is#) < ^ mdl(F) for every N > I. Let K > N and denote 
V = Jm(K-N), L = Jm(K+bN) where 

bN = max [er„ + vn]k 
\<n<N 
\<k<d 

and 
/« = [vw, v„ + r„e) 

Therefore F+ /„ = {v + f| vE F,fG/„} Ç Z f o r « = 1,...,N. 
For a given a; E Q define 4̂1 (a;) = {u E FPl5w | rwa; E £#}. Let «:^4i(a;) —> [\,N] 

denote the multiple valued function n:m—> n(u) where n(u) satisfies 

#In(u) 

Now choose (ul, n(u1)) in such a way that: 

> V ) = maxr„ (u ). 

Define 

d = {« e AI(LJ) I M + /„(U) n w1 +/„(Ml) i0} 

A - [ 7 i , 7 i + 3 r „ ( „ , ) e ) 

where [7i]* = max([«1 + v„(ai) — r^ije]*, 0) for & = 1,...,d. Therefore 

C i Ç { « e ^ i ( a ; ) | « + /„(„) Ç A } 
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MOVING ERGODIC THEOREMS 731 

then 

#Q < {u G Ai(u) | u + In{u) Ç Dx} < B#Dl = B3d#In^y 

Continue recursively as follows: A2{uS) = A\(u) \ C\ and choose u2 G A2(to) in such a 
way that 

rn{u2)= max r 

and then define C2 and D2 similarly as above. 

Because the set A\(CJ) is finite we can see that there exists an integer r > 1 which 
satisfies 

. Al(u) = ut;=lci 

• #Q < B3d#In{ui) for 1 < 1 < r 
• w /+4 ( M On^'+4 ( M / ) = 0 i f l <ifj<r. 

Making use of these properties and the fact that Fis a nonnegative superadditive process 
we obtain the following inequalities 

c#Ax(u) < aJ2#d < a3dBj2#^) 
i=l i=l 

< y'B^F^^Lj) <3dBFL(u). 

We also notice that 

Jil ue(vnsm)Jil 

= £ Kr~lEN) = #(VnSmMEN) 
ue(vnsm) 

where 1/̂  is the indicator function of the set £ C Q . 
Combining these two results we obtain: 

#(VnSm)n(EN)<x < a J #Ai(u>) < 3dB J FL. 

So 

,(EN) < ^ _ i _ ! FL = ^Brn"{K + bNY X_ r tonty + brf 
m N)- a #(VDSm)h L a (K-Ny* #L h L ~ a (K -Nf K } 

Taking K —->• 00 gives the desired inequality. • 

REMARK. We will now prove the a.e. convergence for multidimensional additive 
moving averages. This result is Theorem 2.1 in [5], therefore we only sketch a proof 
and add the identification of the limit function, which we will need for the proof of 
Theorem 3.4. 
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732 S. E. FERRANDO 

THEOREM 3.2. Let H\^x —» Li(Q, J , /i) &£ a« additive process on $ t and {In} a 
B-sequence of cubes in $ i with #In —> oo, then 

—Hin{uj) converges a.e. 
#In 

to a function h G Z,i(Q, F̂, p) which is invariant under r (where r is the semigroup 
associated to the additive process H). If /x(Q) < oo, ^-Hjn converges also in L\-norm 
to h. Moreover, if I denotes the o-algebra ofr-invariant subsets ofCl then 

[ h = [ Hme) VAe I andp(A) < oo 
J A J A 

PROOF. Let f(u) = H[^e){u) therefore 

Define 

pf(u) = limsup — Y,f(ruuj) - liminf — £ / ( T M O ; ) . 
n-^oo rtJn u£l„ ™n u£ln 

Fix £ > 0, it can be seen that 

where 

1=1 

gi £ A», /i ^ L2 and/i o TM =/i Vw e Si, 

| [ / i | |O Û<£and| l /3 | | i<£2 . 

We also used the notation e, = (5()i=i,...,</,̂  = j n . / . Using 

lim = 0 
n-^oo #7,2 

we obtain 
p(gi-giOTei)(u)) = 0. 

Clearly p/i(a;) = 0 and pf2(u) < 2\\f2\\oo < 2s. 
Now notice that 

pf(u) < 2 s u p — J2 l/3(rwo;)|. 
n>\ ™n uel„ 

Therefore for a given a > 0 

1 v , _ „ . a i \ . 2 3 ^ , , , , , . 2 3J£e 

«>1 ttlfi u£l„ 

( ( 1 en \ 2 3d B 2 3dB 
MP/3 > 0i) = JL | SUp-i- £ l/3(T^)| > £}) < — 1 | £ | | , < — 

v l «>i #4 ue/. 2 J / a a 
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MOVING ERGODIC THEOREMS 733 

Since 
3 

Pf{u) < E P{(Si - g ° Tei{u) + E Pfi(v) 
/=1 7 i=l 

by making use of the above inequalities and choosing e appropriately we can make 

/i({o; | pfQJ) > a}) arbitrarily small. This ends the proof of a.e. convergence. 

To prove the other statements in Theorem 3.2 it is enough to consider / > 0. The 

integrability of h(u) - l im^oo ^-HIn{uS) follows from Fatou's lemma. Consider v £ Si, 

h(rvu) = lim — E/ ( T "+v^) = lim f— J^ f(rucj) + 0n(u) 
L#/w ua„ 

where 

Now 

mn u£(v+I„\In)
 mn u€(I„\v*-In) 

0 < / l i m \0n(<jj)\ < liminf [ \6„(OJ)\ 
J n—>oo «—->oo J 

< lim inf -L[#(v + /„ \ /„) + #(/„ \ v + /„)] f / = 0. 

This proves the r-invariance of the limit function. To prove JA^ = SA f VA E I and 
li(A) < oo it is enough to prove Jn h = JQf when /z(Q) < oo. If /LX(Q) < oo it is 
easy to see that the sequence #r#/„ is uniformly integrable and so we have Li-norm 
convergence to, necessarily, h. Then J*Q/ = JQ /* follows from j n #)-#/„ = JQ/- For details 
see [6] p. 10. • 

REMARK. The same results are true when H is an additive process on $m and the sets 
/„ are replaced by the sets InnSm. This follows by using the natural bijection between 
Sm and Si. When fi(Q) < oo, it follows from Theorem 3.2 that the limit function h is 
independent of the ^-sequence of cubes {/„} with #I„ —•» oo. 

THEOREM 3.3. Let {In}n=i,... be a B-sequence of cubes in $ t and#In —• oo, F: $i —-> 
Li(Q, jF, /i) a superadditiveprocess on $h with semigroupr = {TV}VGS,, then: 

lim —Fin(u)) = F(UJ) exists a.e., 
n-*oo #In 

where F is invariant under r and integrable. If n(Cl) < oo, ^-Fjn converges also in 

L\-norm to F. Moreover if I denotes the o-algebra of r-invariant subsets ofQ. then 

[F=lim-±-[Fj. 
J A «—>oo #Jn J A 

\/A e I and fi(A) < oo. 
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734 S. E. FERRANDO 

PROOF. Define 

GI(UJ) = Y/FJ1(TUU;) V / G ^ 
we/ 

then G is an additive process on $ j and F — G a nonnegative superadditive process on 
3V Then by Theorem 3.2 it is enough to assume, for the a.e. convergence, that F is 
nonnegative. 

Let e > 0, using Lemma 2.1 find m G Z+ such that 

Define 

^ < TT lFj* + £ Vm > m, m G Z+. 

where 

uansm 

Notice that FT1 and F™ are respectively nonnegative additive and superadditive processes 
on $ m . Moreover 

l i m 57 is:/,5.-Jfe[ic/^-ic*t'-n«K] 
7 ( ^ - ^ / ^ < £ 

so 7(F") < £ by Lemma 2.1. 
Define: 

1% - largest possible cube in $m such that 1% Ç /„. 
7JJ1 = smallest possible cube in $ w such that 7 „ Ç Ç . 

We will now estimate the ̂ -constant associated to the sequence {7^}w=i... (considered 
as a sequence in $w). Let / = [a, a + re) be a cube in $ w and P = [a,a + Ire). Then 

#{ueSm | 3«,w+7^ Ç / } < - L # { H G S I | 3«,w + 7^ Ç f } 

< -^#{wGSi I 3«,w + / „Ç /*} 

where the first inequality follows easily once we notice that if u G Sm and u+7JJ1 Ç I then 

[u,u + me)Q {u G Si | 3/I,K + # C f } . 

Hence the 5-constant associated with {/JJ1},^... is #w = ^ . 
As regards the sequence {7^}w=iv„ notice that 7JJ1 ̂  0 for n large enough. Moreover if 

/ ^ 0 is a cube in $} there exists I1, a cube in $ j , such that 

#Il =(rl)d <(r + 2m)d 
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where M-r4 and 

{u <E Sm | 3n,u+% CI}Ç{ueSm\ 3n,u + In C 71}. 

This shows that we can consider {I%}n=\,... as a ̂ -sequence of cubes in $ m with constant 
Bm=B(l+2m)d. 

For later use we notice that 

hm -f- = lim - i = 1 

and 

lim — ^ — - = lim 
»££) #7™ f^S> #7™ w^' 

Due to the fact that {!%} and {7JJ7} are 5-sequences, an application of Theorem 3.2 
gives the existence of both limits below 

(3.4) lim —^ HZ 

(3-5) lim ^T
 l

 o ^HZ 

Using 

lhn#[(%nsm)\(innsm)]_0 

(similarly for the sets 7JJ2) we conclude that both limits, (3.4) and (3.5), are equal to 

Define 

n->oo#[I„nSm] n 

/ ( ^ ) = lim s u p — FIn(u)) 
n—>oo "-»« 

/(o;) = liminf— F/, (a;) 

both functions are finite a.e. by an application of Theorem 3.1, then 

f(u) -f(u) < lim sup —Fyiu) -f(uj) 

- limsuP £ 7 ^ ^ ) + lim sup —H%(UJ) -f_{u) 

< sup ^F%(u>) + - 1 lim l mL(u)) - liminf ^-Hfm(u;) 

= sup —Fym(uj) + —yA'V) ^ ( a ; ) . 
„>i # # 7"v 7 m^ v ' md y ' 
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Therefore 

KW l / (") -f^) > <*}) < M ( { H sup ^F%{u>) > a}) 

Let a, e > 0 and find m G Z+ as above, /.e. 7(F) < 77- J F 4 + e. We obtain the 

ldmdBm rrm^ 2d2dB / r ^ x 3d2rfSe 
< - 7 ( i ^ ) = —7(F") < • 

a a a 
Because a and e are arbitrary, we have proved/(o;) =f(uf) a.e. 

To prove the rest of the statements of the theorem it is enough to consider that F is 
nonnegative. We use the notation F{u) - lim^oo ^-Fin((J). We will follow the ideas in 
[6] p. 37-38. 

To prove F = F o ru Vw G S\ it is enough to prove F = F o re. for7 = 1 , . . . , d, where 

1 j - i 

; Z+ as above, *.e. 7(F) < #J 

following inequalities: 

0 < lim - U > > ) - lim ^ » 

< lim ^ F f f ( w ) - lim ^ / ^ ( w ) 

= lim ŝ O") ̂  ^ i ^ ) 
Let vm £ Sm, and hm(u>) = ^shm(w), then: 

,i({w I \FQJ) - F(rVmW)| > 2a}) < H({OJ \ \F(UJ) - hm{uS)\ > a}) 

+li({uj\\hm(Lo)-F(TVmuj)\>a}) 

= 2n({uj\\F(oj)-hm(oj)\ >a}) 

1 ™ , . n 2d+l3dBe 
w I sup ^ - / ^ ( ^ ) > a ) ) < , 

n TT*n 

where we made use of the inequalities above and the fact that hm = hm o rM Vw G Sm9 a.e. 
Take vm = mej, then we obtain 

(3.6) n({u | | F M - F ( T W , ^ ) | > 2a}) < 2 J + 1 ~ . 

Inequality (3.6), by an application of Lemma 2.1, is also valid for m + 1. Therefore (3.6) 
for m and m + 1 implies the following inequality: 

/x({a; | |F(a;) - F(r,.a;)| > 4a}) = /x({a; | |F(rw,,a;) - F(r(w+1),.a;)| > 4a}) 

< M ( { a ; | | F ( a ; ) - F ( T m ^ ) | > 2 a } ) 

+/x({a; | \F(u) - F(r{m+X)ejuj)\ > 2a}) 

2d+2B3d£ 

~ a 
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Now, a and e being arbitrary, this proves the r-invariance of F. 
To prove JAF = limw_,oo p - JA FJn VA e I and ji(A) < oo it is enough to consider the 

case A = Q and /x(Q) < oo. So assuming /i(Q) < oo, we will show below that ^-Fin 

converges in L\ to h°°, necessarily h°° = F. Therefore, if/„ = [vw, v„ + ern) 

||F||, = H^ll , = lim i - H F / J , = lim ^ - / F [ 0 , v ) = lim ^ - /' Fj. 

We will now define h°°. By Theorem 3.2 and the remark that follows it we know that ^ j -

Hpn converges in the Li-norm to some function hm i.e. 

hm=Li- lim — / / £ 

and that the limit is independent of the 5-sequence chosen, hence 

hm=Lx-\\m-^—m 
n-^oo #Jnm

 Jnm 

Using this last expression for hm it is easy to obtain (using superadditivity of F) the 
following inequality 

hm < h2m 

so h°° = L\ — lim/^oo h2' exists. 
Given 77 > 0 fix m = T such that 

| |A°°-*" | | i<f j and <y(F)-jj-fQFJm<r,. 

We remark that 
K<rm rn<(f^ + 2m) where # # = (fj)". 

Hence 

/ n ( ^ - ^ ) = / n F t o , r „ e ) - # [ ^ n 5 m ] / n ^ 

<(^7(/0-(f)7fi^ 
< (r£)V «(»,«, <W) 

where a(B, m,d) = (r^ + 2m)d - (r^)d and so lim„_^o ?&%& = 0 
Now: 

lim 
w—>oo 

w Z,oo| | F/ . -A 0 0 ! < l imf—HF/.-TCIh + l — / Ç - A - l + | | À m - # 
111 «—>ool#ln

 ln \\nin
 ln 111 

< 

< 2r? where we used lim — = 1 andF/ —HZ, > 0. 

Because 77 was arbitrary this gives the Li-norm convergence of ^-Fjn to h°°, and this 
ends the proof. • 
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4. In this final section we present a counterexample related to the material in Sec
tion 3. We also state a local theorem. 

The following counterexample is related to an alternative definition for the moving 
averages in the superadditive setting. In [3] and [6], for example, the following type of 
superadditive process is considered: 

{S/i}/i=0,l,2,...,So = ^ 
Sw :Q-^Li(Q,^,/x)and 
r : Q - > Q a measure preserving transformation such that: 

• SnOT* <Sm+n~Sm\/m,n>0 

• suP«>i JiSnSn < o o 
The connection between this one parameter type of superadditive process and the 

two-parameter processes considered in Section 2 (taking d = 1 in that definition) is the 
following: 

F[m,n){u) = Sn-mi^Uj) fOTH > m > 0. 

Defining/, = Sn+\ — S„, n > 0 we can write Sn -fo + • • • +f„-\,fn G L\. In the additive 
case^(cj) =fo(rnuj). The moving averages in the additive case can be written, for a given 
^-sequence [v*, v* + rk) v*, rk G Z+, in two equivalent ways, namely (fj =fo o T7'): 

1 a-l 1 vk+rk-\ rVk+rk-\ Vit—1 

(4-1) - J2fj(rVko;) = - E « = E fM - EJ5(W) 
r* y=o r* y=vt

 L y=o y=o 
In the superadditive version, the left-hand side of (4.1) can be written as follows: 

-Srk(T
v"w) = -F[v^k+rù{uS) 

'k rk 

which by Theorem 3.3 it converges a.e. if rk —» oo. The superadditive analog of the 
right-hand side of (4.1 ) is: 

-(SVk+rk(u)-SVk(uj)). 
'k 

We show below that this quantity does not converge in general. 
Pick a 2?-sequence of intervals {[v*, vk + 0:)}*=i,... satisfying 

00 rv 1 
(4-2) H^-<J 

PiVk + n 4 
and 

0 < Vi < V2 < V3 < • • • 

0 < rx < r2 < r3 < • • •. 

Set Q = {xo}, /i(xo) = 1- We will define a new sequence {(v£, r'k)}k=\ Ç {v*, r̂ )}jk=i,... a s 

follows: 

(v ,
iy i) = (vi,r1) 

V2 = v„2, v„2 such that v„2 > v[ + rj 

/ / , , v U r l 1 , , r2 = r»2^
 r3 = rn3,rn3 such that -^ *• < - and v3 = v„3. 

^«3 «J 
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In general 
v2t = vnu and v„24 > v'2k_x + 4 _ , 

and r^ = r„2t for k - 1,2,... and 

4 n = rn^ w h e r e * ^ < ô and v^+1 = v„2M for * = 1,2,.. 
r«2/Hl ^ 

Def ined = (A?*)y=i,... where 

^ik _ j 1 if; G [wv^ + (n — \)r'2k, nv'2k + nr2^j for some « > 1 
7 10 otherwise 

for&= 1,2,... and 

I2W=(0)y=i,... * = 0 ,1 ,2 , . . . 

oo « 

7r = £ ^ a n d S w = £ r r Sb = 0, F0 = 0. 

Using (4.2) we obtain 
Sn / 1 sup— < - . 

n>\ " 3 

By making use of the definitions it can be seen that 

Sm < Sm+n - 5,, Vm, n > 0 

and 

and 
4 

- ^ > 1 f o r £ = l , 2 , . . . 

-SV 1 
^ - < - forifc = 0 , l , 2 , . . . . 

r2£+l ^ 

Therefore 
1- ^ + ^ ~ ^n 

lim -

does not exist. 
To state the moving local theorem we need to consider the previous concepts in /?+, 

the additive semigroup of nonnegative real numbers. From now on we will consider 
intervals in Rf, i.e. if a = (at) and b = (6/) are two vectors in /?+, [a, fr) will now denote 
[a,b) = {x \ x = (xt) E Rd

+, at < xt < bha,b, G 7^} and ^ = {[a,b) \ a,b G 7^}. 
The definition of a continuous superadditive process, i.e. on ^ , is similar to the one 
in Section 2. More precisely, replace $m by ^ and r = (TM)MG5/W by T = (ru)ueRd in the 
definition of Section 2. Moreover we need to assume that r = (ru)u<ERd is a measurable 
semigroup of measure preserving transformations (see [6] p. 223). We say that {Iq}, 
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where q ranges over a subset of the positive rational numbers, is a continuous B-sequence 
of cubes in Rd+ if lq = [vq, vq + erq) G ̂ , rq > 0, for every q and: 

\{peRi\3qlP + lqçi}\<B\l\ VIen. 

where B is a constant independent of/ and |>4| denotes the Lebesgue measure of the 
measurable set ,4 Ç Rd. For the sake of simplicity we will drop the adjective "continuous" 
from now on. We now prove the maximal inequality that we will need for the local 
theorem. 

THEOREM 4.3. Let {In = [v„, vn + ern)}n=\^^N be a finite B-sequence of cubes in ^ 
and F a nonnegative superadditive process on ^ and let a > 0. If 

EM = | u G Q I max 7-7 7/ (V) > a 

and V and L are sets in ^ such that 

V + In = {u + t\ ueV,teI„}CL forn= l , . . . , t f 

then 
3d B 

\v\ 
3dB 1 r 

(KEN)-rf*\R))<—m{RFL 

holds for any R G 7-

PROOF. The proof is similar to the proof of Theorem 3.1. For a given w ^ Q define 

A\(uj) = {u G V | TUU G EN} 

For u eA\(uj)wQ let n(u) to denote all the n's in [1, N] such that: 

77—\Fln{u){ruu) > a. 
Iy"(«)l 

Choose (w1, rw(Mi)) as in Theorem 3.1 and define D\ as in that theorem too. Let 

Gx = {u(ERd \3n=l,...,N;u+In Ç A } 

Moreover, due to {In}n=\,...,N is a 5-sequence with constant B we also have: 

\Gl\<B\D[\<3dB\In(u>)\. 

Letv42(^) = A\((J) \ G\. Choose (w2, rw(w2)), with u2 G A2(w), similarly as above. Contin
uing recursively in this way we obtain: 

"'' + /„(„••) H Î / ' + 7w(l/) = 0 if i 7̂ 7 

|G,| < ldB\In{ul) 
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and 

K«(w')i 

We show below that, a.e. in u, there exists r + 1 (r = r(o;)) an integer such that 
J4,H.I(CJ) = 0. Suppose we have done f-steps in the recursion. Let 8 = miny=iv..̂ v |^/| then 
\Gt\ > 8 > 0 for i = 1 , . . . , t. Therefore 

t8 < £ \d\ < 3dB±\In(ul)\ < ^ £ F , • <?uu) < ^FL(u). 

So 
3dB 

t < —rFL(u) 
ao 

because FL G Li(Q, J , //), we conclude that t is finite a.e. Then A\(uS) Ç |J/=i G/ for 
some integer r = r{uS). 

Take # G J , then: 

a|K|[/z(^)-/i(Q\/?)] = aJ^ir^E^-fiiQXR^du^aj^ir^EMn^du 

= aJR\Al(cj)\dfi(u)<B3dJRFL(uj)dfi(u;) 

where we used or|^i(o;)| < B3dFi(cj) a.e. • 

We conclude with the sketch of a derivation of the moving local theorem. We only 
present a sketch because the proof is similar to the proof of Theorem 2.9 in [2]; the 
difference is that the maximal inequality used there (Theorem 4.2 in that paper) is 
replaced by our more general Theorem 4.3. 

We first introduce some notation. We define lim^o Iq = 0 by: Va > 0 there exists 
qo > 0 such that Iq QJa

 = [0, ea) G ̂  for all q < q$. The notation q — lim indicates that 
the the limit is taken along the rational numbers (see [6] p. 230). We will call a process 
F a bounded process if it satisfies 

1 r 

sup g J |F/| < oo 

where the supremum is taken over all I G ̂  with |/| > 0. 

THEOREM 4.4. Let F be a boundedsuperadditiveprocess on %.. Let {Iq} be a contin
uous B-sequence of cubes in ^ with lim^o Iq

 = 0 then 

q — lim —FI(UJ) exists a.e. 
<7-0 \I\ 

https://doi.org/10.4153/CJM-1995-038-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-038-3


742 S. E. FERRANDO 

PROOF. By making use of Lemma 4.7 in [2] we can write F= G + F' where F' is a 
nonnegative superadditive process on ^ satisfying: 

1 r 

r—>0 \Jr\ J 

and G is a bounded additive process on H^. As mentioned in [2], p. 62, G is always the 
difference of two bounded nonnegative processes. So we can assume G > 0. We will 
first prove q — lim^o ^iFIq{u) = 0 a.e. 

Let E = {UJ e Q I f(uj) = glimsup^o 4rFIq(uj) > a} with a > 0. It is enough to 

show /i(£) = 0. Let e > 0 and choose t > 0 such that 4T J Fj, < e. We also choose r > 0 
satisfying the following properties 

• Iq Q Jt/2 whenever 0 < q < f 
• there exist positive rationals qt satisfying 0 < q\ < qi < • • • <qN <r moreover 

if E' = {u I supj^ t f \^\FIqn(uj) > a} then //(£) < 2/x(£"). 

We will apply Theorem 4.3 to the finite 5-sequence {Igi,..., IqN} and the process F' 
with V = Jt/2, R - Q and L = 7/. Hence: 

23*5 1 r 2d+l3dBe 
KE) < 2KE') < yy-y FJt < . 

To prove the a.e. convergence of q — limr_^o 177^(0;) w e write G = G' + G" (for this 
decomposition see [2], p. 63) where 

• G' is absolutely continuous; i.e. there is a nonnegative integrable function g on Q 
and 

G'^UJ) = Jg{ruuj) du, for all / G ^ . 

• G" is singular; i.e. for each e > 0 there is a number £ > 0 and a set /? G 7 such 
that /i(Q \R)<£ and such that /# G" d\i < 31/| whenever / G ̂  and / Ç J,. 

The proof of a.e. convergence for G' and G" is done as in Lemmas 4.11 and 4.12 in 
[2] and making use of Theorem 4.3 as we did above for the process F'. m 
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