A REMARKABLE CLASS OF MANNHEIM-CURVES

Richard Blum

(received October 12, 1965)

Introduction. It is well known that the determination of a (non-isotropic) curve in the euclidean 3-space with given curvature $\kappa(s)$ and torsion $\tau(s)$, where s represents the arc-length, depends upon the integration of a Riccati equation; and that this can be performed only if a particular integral of the equation is known.

The following paper is based on an observation made in connection with this Riccati equation written in a somewhat modified form (see the usual one e.g. in [1] p. 36).

The Riccati equation: let

$$\vec{t}$$
 (ξ_1, ξ_2, ξ_3), \vec{p} (η_1, η_2, η_3), \vec{b} ($\zeta_1, \zeta_2, \zeta_3$)

be the tangent, principal normal and binormal unit vectors respectively, each being, of course, functions of the arc-length s. We have

(1)
$$\xi_m^2 + \eta_m^2 + \zeta_m^2 = 1$$
, (m = 1, 2, 3).

If we put

(2)
$$u = \frac{\xi_m + i\zeta_m}{1 - \eta_m} = \frac{1 + \eta_m}{\xi_m - i\zeta_m}; -\frac{1}{v} = \frac{\xi_m - i\zeta_m}{1 - \eta_m} = \frac{1 + \eta_m}{\xi_m + i\zeta_m};$$

differentiate with respect to s and take into account the Frenet equations

(3)
$$\eta_{m}^{i} = -\kappa \xi_{m} + \tau \zeta_{m},$$

Canad. Math. Bull. vol. 9, no. 2, 1966.

$$\zeta'_m = -\tau \eta_m$$
,

we find that both u and v satisfy the same Riccati equation:

(4)
$$u' = -\frac{u^2}{2} (\kappa + i\tau) - \frac{1}{2} (\kappa - i\tau).$$

<u>Observation</u>: This form of the Riccati equation suggests the choice: $\kappa = \omega \cos \beta s$, $\tau = \omega \sin \beta s$ with ω and β positive constants. In this case the above equation can be written

(5)
$$u' = -\frac{\omega}{2} \left(u^2 e^{i\beta s} + e^{-i\beta s} \right).$$

It is immediately obvious that there exist two particular integrals of (5) of the form $Ae^{-i\beta s}$. If we substitute $u = Ae^{-i\beta s}$ into (5) and cancel $e^{-i\beta s}$ we get the quadratic equation

$$\omega A^2 - 2i\beta A + \omega = 0,$$

whose roots, in terms of $\alpha = +\sqrt{\omega^2 + \beta^2}$, are

$$A_1 = i \sqrt{\frac{\alpha + \beta}{\alpha - \beta}}, \quad A_2 = -i \sqrt{\frac{\alpha - \beta}{\alpha + \beta}}.$$

If we choose $u = A_1 e^{-i\beta s}$, $v = A_2 e^{-i\beta s}$ and substitute into

$$\eta_m = \frac{u+v}{u-v}$$

we get

$$\eta_{\rm m} = \frac{A_1 + A_2}{A_1 - A_2} = \frac{\beta}{\alpha}$$

One of the components of the principal normal \vec{p} can, therefore, be chosen to be constant and we have the

THEOREM 1. A curve (C) in euclidean 3-space defined by $\kappa = \omega \cos \beta s$, $\tau = \omega \sin \beta s$, where ω and β are positive constants, has the property that its principal normal makes a constant angle with a (suitably chosen) fixed direction. Note: The curves (C) belong to the larger class of curves defined by

$$\kappa^2 + \tau^2 = \omega^2 = \text{constant},$$

which appear to have been considered first in 1878 by A. Mannheim (see [2], also [3] and [4]). We shall call them Mannheim-curves and denote them by (M).

The parametric equations of a curve (C): Since equation (5) admits two known particular integrals, its general integral can be obtained by one additional quadrature. Equations (2) will then enable us to determine $\vec{t}(s)$ and a further quadrature will yield $\vec{r}(s)$, the finite parametric equations of (C).

Theorem 1 suggests an equivalent (and simpler) way to solve the problem of curves (C): Since one of the components of \vec{p} can be chosen to be constant = $\frac{\beta}{\alpha}$, consider the linear differential equation satisfied by \vec{p} . If we start from the Frenet equations written in their vectorial form:

(6)
$$\vec{p}' = -\vec{kt} + \vec{\tau}\vec{b},$$
$$\vec{b}' = -\vec{\tau}\vec{p},$$

differentiate the second equation twice and write for \vec{t} , and \vec{b} , their expressions given by the first and third, we obtain as the linear differential equation for \vec{p} :

(7)
$$\overrightarrow{p}^{\prime} \overrightarrow{p}^{\prime} + \alpha \overrightarrow{p}^{\prime} = 0.$$

The general integral of this differential equation subject to the conditions $\vec{p}^2 = 1$, $\vec{p'}^2 = \omega^2$, can be shown to be

(8) $\vec{p} = \frac{\omega}{\alpha} \cos \alpha s \cdot \vec{i} + \frac{\omega}{\alpha} \sin \alpha s \cdot \vec{j} + \frac{\beta}{\alpha} \cdot \vec{k},$

where \vec{i} , \vec{j} , \vec{k} are the unit vectors of a positively oriented, fixed, orthogonal cartesian coordinate system.

The first of equations (6) with $\kappa = \omega \cos \beta s$ gives us

by integration (taking into account that $\vec{t}^2 = 1$ and $\vec{t} \cdot \vec{p} = 0$):

(9)
$$\vec{t} = \frac{\omega^2}{2\alpha} \left[\frac{\sin(\alpha + \beta)s}{\alpha + \beta} + \frac{\sin(\alpha - \beta)s}{\alpha - \beta} \right] \vec{t} - \frac{\omega^2}{2\alpha} \left[\frac{\cos(\alpha + \beta)s}{\alpha + \beta} + \frac{\cos(\alpha - \beta)s}{\alpha - \beta} \right] \vec{j} + \frac{\omega}{\alpha} \sin\beta s.\vec{k}.$$

A further integration yields, finally, the position vector \vec{r} of the curve (C):

(10)
$$\vec{r} = -\frac{\omega^2}{2\alpha} \left[\frac{\cos(\alpha + \beta)s}{(\alpha + \beta)^2} + \frac{\cos(\alpha - \beta)s}{(\alpha - \beta)^2} \right] \vec{i} \\ -\frac{\omega^2}{2\alpha} \left[\frac{\sin(\alpha + \beta)s}{(\alpha + \beta)^2} + \frac{\sin(\alpha - \beta)s}{(\alpha - \beta)^2} \right] \vec{j} - \frac{\omega}{\alpha\beta} \cos\beta s.\vec{k}.$$

Formula (10) provides the "canonical" form for the parametric equations of a curve (C) in the sense that an orthogonal cartesian coordinate system in the euclidean 3-space can be found and an origin and direction for measuring the arc-length s on (C) chosen such that the parametric equations of (C) are given by (10).

Properties of curves (C): Theorem 1 gives a first property of these curves which can, of course, be read directly from formula (8). Furthermore, the same formula shows that as a point moves with constant velocity on (C) the corresponding principal normal \vec{p} rotates with constant angular velocity about the fixed direction \vec{k} . Further interesting properties can easily be obtained from (10). If we denote the coefficients of \vec{i} , \vec{j} , \vec{k} by x, y, z respectively, we notice that these coordinates satisfy the equation:

(11)
$$\frac{\frac{x^{2}+y^{2}}{(2\beta/\omega^{2})^{2}}-\frac{z^{2}}{(2/\omega)^{2}}=1.$$

We therefore have the

THEOREM 2. A curve (C) in euclidean 3-space defined by $\kappa = \omega \cos \beta s$, $\tau = \omega \sin \beta s$, where ω and β are positive constants, lies on the hyperboloid of revolution (11). If we calculate $\vec{r}^2 = x^2 + y^2 + z^2$, we obtain

$$\frac{1}{r}^2 = \frac{4\beta^2}{\omega^4} + \frac{1}{\beta^2} \cos^2\beta s ;$$

 \overrightarrow{r}^2 satisfies, therefore, the double inequality

$$\frac{4\beta^2}{\omega^4} \le \frac{r^2}{r} \le \frac{4\beta^2}{\omega^4} + \frac{1}{\beta^2}$$

and we have the

THEOREM 3. A curve (C) in euclidean 3-space defined by $\kappa = \omega \cos \beta s$, $\tau = \omega \sin \beta s$, where ω and β are positive constants, is "bounded"; more precisely, it is wholly located in the space between the two concentric spheres with radii

$$\frac{2\beta}{\omega^2}$$
 and $\sqrt{\frac{4\beta^2}{\omega^4}} + \frac{1}{\beta^2}$, respectively.

It follows from equation (10) that a curve (C) will be algebraic and closed if and only if the ratio $\frac{\alpha}{\beta}$ is a rational number. We have, therefore, an infinite number of closed curves (C), which are all algebraic. The simplest of these will be those for which α is an integral multiple of β . In this case the curve (C) can be considered as the intersection of the hyperboloid of revolution (11) with the cylinder parallel to the y-axis obtained by eliminating cos β s between x and z. We list the first two cases:

1).
$$\alpha = 2\beta$$
:
(C)
$$\begin{cases} x^{2} + y^{2} - \frac{1}{3} z^{2} = \frac{4}{9}, \\ x = \frac{8}{9\sqrt{3}} z^{3} + \frac{1}{\sqrt{3}} z; \end{cases}$$
2). $\alpha = 3\beta$:
(C)
$$\begin{cases} 16(x^{2} + y^{2}) - 2z^{2} = 1, \\ x = \frac{27z^{4}}{32} - \frac{1}{4}. \end{cases}$$

Boundedness considerations concerning general Mannheimcurves: For a curve (M) we can write $\mathbf{x} = \omega \cos \varphi$, $\boldsymbol{\tau} = \omega \sin \varphi$, with φ a function of s, which is assumed to be at least twice differentiable, and ω a positive constant. If φ is a constant, (M) is a circular helix; if φ is a non-constant linear function of s we have the case of the curve (C) just treated. The question under what conditions a general curve (M) will be a bounded curve seems to the author to be an attractive one. The differential equation satisfied by the principal normal \vec{p} reduces in this case to

(12)
$$\varphi^{\dagger}\left[\overrightarrow{p}^{\dagger}\right]^{\dagger} + \left(\omega^{2} + \varphi^{\dagger}\right) \overrightarrow{p}^{\dagger} - \varphi^{\dagger}\left[\overrightarrow{p}^{\dagger}\right]^{\dagger} + \omega^{2} \overrightarrow{p} = 0.$$

Certainly the stability of equation (12) is a necessary condition for the boundedness of (M). That it is not sufficient can be seen from the example of the circular helix.

REFERENCES

- D.J. Struik, Differential Geometry, Cambridge, Mass. (1950).
- 2. A. Mannheim, Paris C. R. 86 (1878), p. 1254-1256.
- G. Scheffers, Theorie der Kurven, Leipzig (1901), p. 252-253.
- Encyklopädie der Mathematischen Wissenschaften III/3, p. 246.

University of Saskatchewan and Summer Research Institute of the Canadian Mathematical Congress