A REMARKABLE CLASS OF MANNHEIM-CURVES

Richard Blum

(received October 12, 1965)

Introduction. It is well known that the determination of a (non-isotropic) curve in the euclidean 3 -space with given curvature $K(s)$ and torsion $T(s)$, where s represents the arc-length, depends upon the integration of a Riccati equation; and that this can be performed only if a particular integral of the equation is known.

The following paper is based on an observation made in connection with this Riccati equation written in a somewhat modified form (see the usual one e.g. in [1] p. 36).

The Riccati equation: let

$$
\vec{t}\left(\xi_{1}, \xi_{2}, \xi_{3}\right), \vec{p}\left(\eta_{1}, \eta_{2}, \eta_{3}\right), \vec{b}\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)
$$

be the tangent, principal normal and binormal unit vectors respectively, each being, of course, functions of the arc-length s. We have

$$
\begin{equation*}
\xi_{\mathrm{m}}^{2}+\eta_{\mathrm{m}}^{2}+\zeta_{\mathrm{m}}^{2}=1, \quad(\mathrm{~m}=1,2,3) \tag{1}
\end{equation*}
$$

If we put
(2) $u=\frac{\xi_{\mathrm{m}}+\mathrm{i} \zeta_{\mathrm{m}}}{1-\eta_{\mathrm{m}}}=\frac{1+\eta_{\mathrm{m}}}{\xi_{\mathrm{m}}-\mathrm{i} \zeta_{\mathrm{m}}} ;-\frac{1}{\mathrm{v}}=\frac{\xi_{\mathrm{m}}-\mathrm{i} \zeta_{\mathrm{m}}}{1-\eta_{\mathrm{m}}}=\frac{1+\eta_{\mathrm{m}}}{\xi_{\mathrm{m}}+i \zeta_{\mathrm{m}}}$,
differentiate with respect to s and take into account the Frenet equations

$$
\begin{equation*}
\eta_{\mathrm{m}}^{\prime}=-k \xi_{\mathrm{m}}+\tau \zeta_{\mathrm{m}}, \tag{3}
\end{equation*}
$$

Canad. Math. Bull. vol. 9, no. 2, 1966.

$$
\zeta_{\mathrm{m}}^{\prime}=-\tau \eta_{\mathrm{m}}
$$

we find that both u and v satisfy the same Riccati equation:

$$
\begin{equation*}
u^{\prime}=-\frac{u^{2}}{2}(k+i \tau)-\frac{1}{2}(k-i \tau) \tag{4}
\end{equation*}
$$

Observation: This form of the Riccati equation suggests the choice: $k=\omega \cos \beta s, \tau=\omega \sin \beta s$ with ω and β positive constants. In this case the above equation can be written

$$
\begin{equation*}
u^{\prime}=-\frac{\omega}{2}\left(u^{2} e^{i \beta s}+e^{-i \beta s}\right) \tag{5}
\end{equation*}
$$

It is immediately obvious that there exist two particular integrals of (5) of the form $A e^{-i \beta s}$. If we substitute $u=A e^{-i \beta s}$ into (5) and cancel $e^{-i \beta s}$ we get the quadratic equation

$$
\omega A^{2}-2 i \beta A+\omega=0,
$$

whose roots, in terms of $\alpha=+\sqrt{\omega^{2}+\beta^{2}}$, are

$$
A_{1}=i \sqrt{\frac{\alpha+\beta}{\alpha-\beta}}, \quad A_{2}=-i \sqrt{\frac{\alpha-\beta}{\alpha+\beta}} .
$$

If we choose $u=A_{1} e^{-i \beta s}, v=A_{2} e^{-i \beta s}$ and substitute into

$$
\eta_{\mathrm{m}}=\frac{\mathrm{u}+\mathrm{v}}{\mathrm{u}-\mathrm{v}}
$$

we get

$$
\eta_{m}=\frac{A_{1}+A_{2}}{A_{1}-A_{2}}=\frac{\beta}{\alpha}
$$

One of the components of the principal normal \vec{p} can, therefore, be chosen to be constant and we have the

THEOREM 1. A curve (C) in euclidean 3-space defined by $k=\omega \cos \beta s, \tau=\omega \sin \beta s$, where ω and β are positive constants, has the property that its principal normal makes a constant angle with a (suitably chosen) fixed direction.

Note: The curves (C) belong to the larger class of curves defined by

$$
k^{2}+\tau^{2}=\omega^{2}=\text { constant }
$$

which appear to have been considered first in 1878 by A. Mannheim (see [2], also [3] and [4]). We shall call them Mannheim-curves and denote them by (M).

The parametric equations of a curve (C): Since equation (5) admits two known particular integrals, its general integral can be obtained by one additional quadrature. Equations (2) will then enable us to determine $\overrightarrow{\mathrm{t}}(\mathrm{s})$ and a further quadrature will yield $\vec{r}(s)$, the finite parametric equations of (C).

Theorem 1 suggests an equivalent (and simpler) way to solve the problem of curves (C): Since one of the components of \vec{p} can be chosen to be constant $=\frac{\beta}{\alpha}$, consider the linear differential equation satisfied by \vec{p}. If we start from the Frenet equations written in their vectorial form:

$$
\begin{align*}
& \overrightarrow{t^{\prime}}=k \vec{p}, \\
& \overrightarrow{p^{\prime}}=-k \vec{t}+\tau \vec{b}, \tag{6}\\
& \overrightarrow{b^{\prime}}=-\tau \vec{p},
\end{align*}
$$

differentiate the second equation twice and write for $\overrightarrow{t^{\prime}}$ and $\overrightarrow{b^{1}}$ their expressions given by the first and third, we obtain as the linear differential equation for \vec{p} :

$$
\begin{equation*}
\overrightarrow{\mathrm{p}}^{\prime \prime}+\alpha^{2} \overrightarrow{\mathrm{p}^{\prime}}=0 \tag{7}
\end{equation*}
$$

The general integral of this differential equation subject to the conditions $\overrightarrow{\mathrm{p}}^{2}=1, \overrightarrow{\mathrm{p}}^{2}=\omega^{2}$, can be shown to be

$$
\begin{equation*}
\overrightarrow{\mathrm{p}}=\frac{\omega}{\alpha} \cos \alpha \mathrm{s} \cdot \overrightarrow{\mathrm{i}}+\frac{\omega}{\alpha} \sin \alpha \mathrm{s} \cdot \overrightarrow{\mathrm{j}}+\frac{\beta}{\alpha} \cdot \overrightarrow{\mathrm{k}}, \tag{8}
\end{equation*}
$$

where $\vec{i}, \vec{j}, \vec{k}$ are the unit vectors of a positively oriented, fixed, orthogonal cartesian coordinate system.

The first of equations (6) with $K=\omega \cos \beta s$ gives us
by integration (taking into account that $\vec{t}^{2}=1$ and $\vec{t} \cdot \vec{p}=0$):

$$
\begin{gather*}
\vec{t}=\frac{\omega^{2}}{2 \alpha}\left[\frac{\sin (\alpha+\beta) s}{\alpha+\beta}+\frac{\sin (\alpha-\beta) s}{\alpha-\beta}\right] \vec{i}- \tag{9}\\
\frac{\omega^{2}}{2 \alpha}\left[\frac{\cos (\alpha+\beta) s}{\alpha+\beta}+\frac{\cos (\alpha-\beta) s}{\alpha-\beta}\right] \vec{j}+\frac{\omega}{\alpha} \sin \beta s . \vec{k}
\end{gather*}
$$

A further integration yields, finally, the position vector \vec{r} of the curve (C):

$$
\begin{gather*}
\overrightarrow{\mathbf{r}}=-\frac{\omega^{2}}{2 \alpha}\left[\frac{\cos (\alpha+\beta) s}{(\alpha+\beta)^{2}}+\frac{\cos (\alpha-\beta) s}{(\alpha-\beta)^{2}}\right] \vec{i} \tag{10}\\
-\frac{\omega^{2}}{2 \alpha}\left[\frac{\sin (\alpha+\beta) s}{(\alpha+\beta)^{2}}+\frac{\sin (\alpha-\beta) s}{(\alpha-\beta)^{2}}\right] \vec{j}-\frac{\omega}{\alpha \beta} \cos \beta s . \vec{k} .
\end{gather*}
$$

Formula (10) provides the "canonical" form for the parametric equations of a curve (C) in the sense that an orthogonal cartesian coordinate system in the euclidean 3-space can be found and an origin and direction for measuring the arc-length s on (C) chosen such that the parametric equations of (C) are given by (10).

Properties of curves (C): Theorem 1 gives a first property of these curves which can, of course, be read directly from formula (8). Furthermore, the same formula shows that as a point moves with constant velocity on (C) the corresponding principal normal \vec{p} rotates with constant angular velocity about the fixed direction \vec{k}. Further interesting properties can easily be obtained from (10). If we denote the coefficients of $\vec{i}, \vec{j}, \vec{k}$ by x, y, z respectively, we notice that these coordinates satisfy the equation:

$$
\begin{equation*}
\frac{x^{2}+y^{2}}{\left(2 \beta / \omega^{2}\right)^{2}}-\frac{z^{2}}{(2 / \omega)^{2}}=1 \tag{11}
\end{equation*}
$$

We therefore have the

THEOREM 2. A curve (C) in euclidean 3-space defined by $k=\omega \cos \beta s, \tau=\omega \sin \beta s$, where ω and β are positive constants, lies on the hyperboloid of revolution (11).

If we calculate $\vec{r}^{2}=x^{2}+y^{2}+z^{2}$, we obtain

$$
\vec{r}^{2}=\frac{4 \beta^{2}}{\omega^{4}}+\frac{1}{\beta^{2}} \cos ^{2} \beta s
$$

\vec{r}^{2} satisfies, therefore, the double inequality

$$
\frac{4 \beta^{2}}{\omega^{4}} \leq \overrightarrow{\mathrm{r}}^{2} \leq \frac{4 \beta^{2}}{\omega^{4}}+\frac{1}{\beta^{2}}
$$

and we have the

THEOREM 3. A curve (C) in euclidean 3-space

defined by $k=\omega \cos \beta s, T=\omega \sin \beta s$, where ω and β are positive constants, is 'bounded''; more precisely, it is wholly located in the space between the two concentric spheres with radii

$$
\frac{2 \beta}{\omega^{2}} \text { and } \sqrt{\frac{4 \beta^{2}}{\omega^{4}}+\frac{1}{\beta^{2}}}, \text { respectively }
$$

It follows from equation (10) that a curve (C) will be algebraic and closed if and only if the ratio $\frac{\alpha}{\beta}$ is a rational number. We have, therefore, an infinite number of closed curves (C), which are all algebraic. The simplest of these will be those for which α is an integral multiple of β. In this case the curve (C) can be considered as the intersection of the hyperboloid of revolution (1i) with the cylinder parallel to the y-axis obtained by eliminating $\cos \beta s$ between x and z. We list the first two cases:
1). $\alpha=2 \beta$:
(C) $\left\{\begin{array}{l}x^{2}+y^{2}-\frac{1}{3} z^{2}=\frac{4}{9}, \\ x=\frac{8}{9 \sqrt{3}} z^{3}+\frac{1}{\sqrt{3}} z ;\end{array}\right.$
2). $\alpha=3 \beta$:
(C) $\left\{\begin{array}{l}16\left(x^{2}+y^{2}\right)-2 z^{2}=1, \\ x=\frac{27 z^{4}}{32}-\frac{1}{4} .\end{array}\right.$

Boundedness considerations concerning_general Mannheimcurves: For a curve (M) we can write $K=\omega \cos \varphi, \tau=\omega \sin \varphi$, with φ a function of s, which is assumed to be at least twice differentiable, and ω a positive constant. If φ is a constant, (M) is a circular helix; if φ is a non-constant linear function of s we have the case of the curve (C) just treated. The question under what conditions a general curve (M) will be a bounded curve seems to the author to be an attractive one. The differential equation satisfied by the principal no rmal \vec{p} reduces in this case to

$$
\begin{equation*}
\varphi^{\prime}\left[\overrightarrow{\mathrm{p}}^{\prime \prime \prime}+\left(\omega^{2}+\varphi^{2}\right) \overrightarrow{\mathrm{p}}^{\prime}\right]-\varphi^{\prime \prime}\left[\overrightarrow{\mathrm{p}^{\prime \prime}}+\omega^{2 \vec{p}}\right]=0 . \tag{12}
\end{equation*}
$$

Certainly the stability of equation (12) is a necessary condition for the boundedness of (M). That it is not sufficient can be seen from the example of the circular helix.

REFERENCES

1. D.J. Struik, Differential Geometry, Cambridge, Mass. (1950).
2. A. Mannheim, Paris C. R. 86 (1878), p. 1254-1256.
3. G. Scheffers, Theorie der Kurven, Leipzig (1901), p. 252-253.
4. Encyklopädie der Mathematischen Wissenschaften III/ 3, p. 246.

University of Saskatchewan and
Summer Research Institute
of the
Canadian Mathematical Congress

