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CLOSED INCOMPRESSIBLE SURFACES IN 2-GENERATOR
HYPERBOLIC 3-MANIFOLDS WITH A SINGLE CUSP

by D. D. LONG and A. W. REID

(Received 10th December 1991)

A knot K is said to have tunnel number 1 if there is an embedded arc A in S3, with endpoints on K, whose
interior is disjoint from K and such that the complement of a regular neighbourhood of K u A is a genus 2
handlebody. In particular the fundamental group of the complement of a tunnel number one knot is 2-
generator. There has been some interest in the question as to whether there exists a hyperbolic tunnel number
one knot whose complement contains a closed essential surface. The aim of this paper is to prove the existence
of infinitely many 2-generator hyperbolic 3-manifolds with a single cusp which contain a closed essential
surface. One such example is a knot complement in RP3. The methods used are of interest as they include the
possibility that one of our examples is a knot complement in S3.

1991 Mathematics subject classification: 57, 57M.

1. Introduction

By a hyperbolic 3-manifold we shall always mean a complete orientable hyperbolic
3-manifold of finite volume. A hyperbolic 3-manifold M is called n-generator if the
minimal number of elements required to generate 7r1(M) is n. It is the aim of this note
to prove the following result. Recall a surface embedded and properly embedded in a
compact orientable 3-manifold with non-empty boundary is called essential if it is
incompressible, boundary incompressible and non-boundary parallel.

Theorem 1. There exist infinitely many 2-generator hyperbolic 3-manifolds with a
single cusp which contain a separating closed essential surface.

Our interest in such a phenomena was motivated by a question of Cameron Gordon
concerning tunnel number one knots, namely: does there exist a hyperbolic tunnel
number one knot whose complement in S3 contains a closed essential surface; such a
surface necessarily separates. Recall that a knot K has tunnel number one if there is an
embedded arc A in S3, with endpoints on K, whose interior is disjoint from K and such
that the complement of a regular neighbourhood of K u A in S3 is a genus 2
handlebody. In particular a tunnel number one knot complement is 2-generator. Our
examples are certain knot complements in Lens Spaces, including the possibility of S3.
In fact our examples can be thought of as "tunnel number 1" knots in Lens Spaces, as it
follows from their construction that they arise by attaching a 2-handle to a genus 2
handlebody.
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With reference to the question stated above concerning tunnel number one knots; it is
known that there exist tunnel number one knots whose complements in S3 contain an
essential torus, see [15]. However, these are of course non-hyperbolic. Indeed tunnel
number one knots whose complements contain an essential torus are classified in [15].
In addition every 2-bridge knot has tunnel number one, so it follows from [13], that
these tunnel number one knots cannot contain a closed essential surface in their
complements. Now if there is an example of a hyperbolic tunnel number one knot with
a closed essential surface in its complement, there are certain geometric restrictions
forced on the surface by the existence of a hyperbolic structure. For example by [14],
the surface cannot be totally geodesic. However, little else seems to be known.

The remainder of the paper is organized as follows. In Section 2 we gather some
standard facts about 2-bridge links which will be required, together with some
preliminary lemmas. In addition, we prove in Theorem 2 a result which limits the
number of non-hyperbolic Dehn surgeries on one component of "most" hyperbolic 2-
bridge link complements. In Section 3 we prove Theorem 1 and in the final section we
give some explicit examples of manifolds as stated in Theorem 1, one of which is a knot
complement in RP3.

2. Preliminaries on 2-bridge links

Our examples will be constructed by performing Dehn surgery on one component of
2-bridge link complements. We first recall some standard facts abour 2-bridge links.
Further details can be found in [6, Chapter 12].

2.1. Every 2-bridge link has a presentation as a 4-plat which is constructed as
follows. Let L be a 2-bridge link with normal form (a,/?); here a and ji are coprime
integers with a positive and even, /? odd and — <x</?<a. We can expand /tya as a
continued fraction, with m odd:

1
/?/« = •

a2+-

We will denote this by [ai,a2,. . . ,am]. From this continued fraction expansion we can
construct the 4-plat, o^^i"2 ...a"™, using the standard braid group generators ax and
<T2, where the a,'s are as above and m is odd; see Figure 1. It is well-known that this
4-plat is equivalent to the 2-bridge link L above, see [6]. Indeed, equivalences of 2-
bridgc knots and links can be transformed to an equivalence of 4-plats, which in turn is
related to "equivalence" of continued fractions, see [6] for details.
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FIGURE 1

' J• < J Q^^-::--=9s
FIGURE 2

Notation. Let L be a 2-bridge link with normal form (a,/?). We shall denote the
complement of L in S3 by M(a,fi), and any continued fraction [a1 , . . . ,am] for /?/a as
above we will refer to as being associated to M(a, /?).

Using this description of 2-bridge links we have the following lemma which is implicit
in Chapter 4 of [1].

Lemma 1. Let M(<x,/?) be as above with associated continued fraction expansion
[a 1 ,a 2 , . . . , a m ] , with m odd. Then M(a,/?) is obtained by performing (1,(— \)l+iai)-Dehn
surgery on the component J, of the hyperbolic link Lm shown in Figure 2.

Proof. Consider the 4-plat presentation of L defined by the continued fraction
[a,,a2, . . . ,a m ] . Evidently as the components J, are unknotted M(<x,P) is obtained by the
sequence of Dehn surgeries described. That Lm is a hyperbolic link is proved in [1,
Lemma 4.2]. Briefly, it is shown in [1, Lemma 4.2] that S3\Lm can be built up by a
succession of cut-and-paste operations called belted sums and these preserve hyperbol-
icity, see [1] and [2]. This operation involves cutting link complements along certain
embedded twice punctured discs (which are necessarily totally geodesic by [2]) and then
pasting (see [1] and [2] for further details). Q

Remark. In fact it is shown in [1, Lemma 4.2] that S3\Lm is obtained from the
belted sum of (m—1) copies of the complement of the link V shown in Figure 3, and
this link is hyperbolic, since it is simply a different projection of the Borromean rings.

Theorem 1 will be derived from our next result, which is of independent interest.

Theorem 2. There exists an integer m0, such that for all m odd > m0, and sufficiently
large positive integers au...,am, all but (l,0)-Dehn surgery on one component of M(<x,/?)
with associated continued fraction [au...,am~] is a hyperbolic 3-manifold.

The proof of Theorem 2 occupies most of Section 2.2. The idea of the proof of
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Theorem 2 is to get a description of the "shape" of the cusps of S2\Lm which remain
true cusps under the sequence of Dehn surgeries given above and apply the 2?t-Theorem
of Gromov and Thurston, see [11] or [5]. We therefore need to describe in more detail
the geometry of these cusps of S3\Lm. This is intimately related to the geometry of the
cusp CA of S3\V corresponding to the component labelled A in Figure 3. Let us briefly
recall some salient points.

2.2. Let M be hyperbolic 3-manifold which is diffeomorphic to the complement of a
link in S3 and C a cusp of M. The homological cusp shape of C is defined as follows, cf.
[3]. Let oo be the centre of a horoball covering C, and let T^ and Tx be the two
covering transformations which fix oo which are lifts of the meridian and longitude of
the link component corresponding to C. Then TM and Tx act by translation on the
complex plane by complex numbers Jt and / respectively. The ratio l/Jt is a complex
number which describes the parallelogram which is a fundamental domain for the
action of the group (T^T^ acting on the complex plane. In particular the magnitude
of l/Jt describes the ratio of the lengths of two adjacent sides and the argument the
angle between two adjacent sides. This ratio is the homological cusp shape of C. In the
sequel we will refer to this as simply the shape of the cusp. In [3] it is the ratio Jt/l that
is defined to be the homological cusp shape.

Returning to the consideration of the geometry of the cusps of S3\Lm. It is known
that (cf. [3]) the shape of each cusp of the complement of the Borrome.an rings is 2i. In
particular the shape of the fundamental domain (as above) tor each cusp is reciaiiguitu.
With this we can describe the shapes of the cusps of S3\Lm corresponding to the
components labelled U\ and U2 in Figure 2. In the sequel we will use U^m) and U2{m)
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to denote the cusps corresponding to the link components labelled l/j and U2 of Lm in
Figure 2.

Lemma 2. Denote the cusp shape of l/,-(m) by the complex number r^m). Then |r,(wi)|
gets arbitrarily large as m-*co.

Proof. Let us first consider L3. In this case S3\L3 is obtained from the belted sum of
two copies of S3\V. That is, we cut open S3\V along the twice punctured disc S
bounded by the component of V labelled B in Figure 3 and then paste two copies of the
result together along S—see Figure 4. Indeed, the manifold S3\L3 is simply the double
cover of S3\V which is obtained as the double branched cover of S3 branched over the
component B of V. In particular the other two cusps of S3\V are each covered by two
tori whose cusp shapes are those of CA. From this we deduce the shape of the cusps
17,(3) is 2i for f = 1,2.

We can also analyze the effect of the cut-and-paste as follows, this will be useful in
subsequent discussions. Let ml and m2 be the meridian curves shown in Figure 3. The
cut-and-paste operation described above that results in S3 \L3 cuts a torus correspond-
ing to a horospherical cross-section of the cusp CA into a pair of annuli as shown in
Figure 5.

The effect on a fundamental domain for the group of translations, as described above,
corresponding to the cusp CA of this pasting is described in Figure 6.

Let us now consider the case of S3\L5; this is obtained as the belted sum of two
copies of S3\L3 along the twice punctured disc labelled S' in Figure 4. Repeating the
analysis of the cusps in this case we see that fundamental domains for the cusps C/i(5)
(respectively U2(5)) will consist of two copies of the rectangle which is the fundamental
domain for C/^3) (respectively U2(3)). Also note that the meridional translations remain
the same. In particular the shape of the cusps in this case is 4i.

Repeating this procedure for arbitrary large m it is clear that fundamental domains
for the cusps U^m) and U 2{m) will continue to be rectangles, and it can be checked in
analogous manner to the above that r;(m) = (m — l)i. It is clear from this that |r,(m)| will
get arbitrarily large with m. •

We are now in a position to prove Theorem 2.

Proof of Theorem 2. By Thurston's theory of hyperbolic Dehn surgery [16], for at

(i = l,...,m) sufficiently large the geometry of the manifolds obtained by the sequence of
Dehn surgeries on the cusps corresponding to the components Ju...,Jm of Lm stated in
Lemma 1 approximates that of S3\Lm. In particular for sufficiently large a;'s the shape
of the cusps of M(<x, /?) is approximately that of t/1(w) and U2(m). Thus the fundamental
domains of the cusps of M(<x,fS) are approximately rectangular and by Lemma 2 the
shape of these cusps can be made arbitrarily large by choosing m large.

In the remainder of the proof let us fix attention on the cusp of M(<x,/J) which
approximates Ut(m). Let us denote this cusp by C. An analogous argument applies to
the other cusp.
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BelttdL Sum

FIGURE 4
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FIGURE 5

Lifting C to H3, choose a maximal cusp corresponding to C and arrange so that one
of the horoballs is centred at oo. In addition, we can arrange it so that the horosphere,
which we shall denote by Jf, bounding this horoball is at Euclidean height one above
the complex plane. Let T^ and Tx be the lifts of the meridian and longitude which
generate 7t,(C) acting by translation on Jf. Since the fundamental domain for
G = (TII,TX} acting on Jf is approximately rectangular the shortest translation in G is
simply that given by TM—choosing the integers a, suitably large—and this (by choice of
3f) is at least 1.

By choosing m large enough, it follows from Lemma 2 that the Euclidean length of a
simple closed curve pT^ + qT^ on the torus boundary component corresponding to C
will be at least In whenever q#0. Thus by the 27i-Theorem of Gromov and Thurston,
cf. [11] and [5], the manifold obtained by any Dehn surgery on C other than (1,0)-
Dehn surgery will carry a metric of negative curvature. If a manifold obtained by such a
Dehn surgery is not the solid torus (which of course admits a metric of negative
curvature) then the manifold is irreducible by the Cartan-Hadamard Theorem (see [4,
Chapter 2] for example) and any embedded incompressible torus is boundary parallel,
see [4, Chapter 10] for example. Thus the manifold is atoroidal and Haken. Hence by
Thurston's Geometrization Theorem for Haken manifolds, the manifold constructed is
hyperbolic.

It remains to rule out the possibility that we could obtain the solid torus by Dehn
surgery on one component of M(a,p). Let us denote the boundary components of
M(a,/?) by 7\ and T2, where the cusp corresponding to Tj approximates that of the
component l/,(wi) of Lm. Suppose that (p,q) Dehn surgery on 7\ yields a solid torus.
Then every Dehn surgery on T2 will produce a Lens Space. However, by the argument
just used we know that large Dehn surgeries on T2 have a negligible effect on the shape
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Paste

FIGURE 6

of the cusp corresponding to 7\. Hence for large enough Dehn surgeries on T2, (p,q)
Dehn surgery on 7\ will admit a metric of negative curvature. In particular, the
universal cover will be R3 by the Cartan-Hadamard Theorem, thus excluding the
possibility of a Lens Space. This complete the proof of Theorem 2. •

3. Proof of Theorem 1

We require the following Lemma which is simply a special case of Theorem 2 of [10].
We shall give a proof for the sake of completeness.

Lemma 3. Let L be a hyperbolic 2-bridge link with 2-bridge normal form (a, /?). Then
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) contains an embedded properly embedded incompressible surface S whose boundary
meets only one boundary component of M(a,/?). Moreover, we may choose S to be
separating.

Proof. Let X denote the component of the character variety of M(a,/J) containing
the complete structure. The complex dimension of X is at least two, see [16, Chapter 5];
indeed as M(a,j3) has no closed essential surface it is exactly 2, cf. [9, Proposition 3.2.3].
Let the two torus boundary components of M(a,P) be labelled Ti and T2, and let p be a
non-trivial element of n^T,). Under the complete representation p becomes parabolic.
Let us assume that under the complete representation the trace of p is 2 as opposed to
— 2—an analogous argument works for T2.

As in [9] let /p:Z->C be the map defined by Ip(x) — x(P)- By standard results in
algebraic geometry the pre-image of every point is an affine algebraic set all of whose
components have dimension at least one.

Let C be the component of the pre-image of 2 under Ip which contains the character
corresponding to the complete representation. One can check that C has dimension
exactly one. Thus C is a complex curve of characters all of which satisfy Ip(x) = 2. In
brief the trace of p under the representation associated to these x's remains constant
with value 2. Furthermore, if x is any other element of it^Tj), this also must satisfy
x(x) = 2, for any ^eC, since there is a Zariski open subset of C for which this is true,
namely characters associated to representations induced by hyperbolic Dehn surgery on
the component T2.

Now let C be the smooth model of the projective completion of C, cf. [9]. From
above it follows that on degenerating to an ideal point of C the characters remain
constant with value 2. By [9], we deduce a splitting of the group for which n^T^) lies in
a vertex stabilizer. Hence by standard 3-manifold techniques, see [9, Proposition 2.3.1],
we can find an incompressible, boundary incompressible surface which is disjoint from
7\. Moreover, as a 2-bridge link complement cannot contain a closed essential surface
(see for instance [13]) the boundary of the surface constructed is non-empty. Let us
denote the surface by Sx and assume its boundary curves are all homotopic to the
simple closed non-contractible curve gt on T2. That the surface is separating follows by
an elementary homology calculation given in [10]. For completeness we sketch the
argument.

First of all notice that there are at least two incompressible boundary incompressible
surfaces meeting only the torus T2. To see this observe that if qenl(T2) then lq:X->C
defined by Iq(x) = xi.4) is non-constant on C. For if it were the case that / , were constant
on C, then since at the character corresponding to the complete structure q is parabolic
it would follow that Jq would take the value —2 or 2 on C. However this yields
degenerations which remain constant with values 2 on 7\ and +2 on T2. Thus by the
results of [9] it would follow that M(a,f}) would contain a closed essential surface,
which as we noted above is false. It follows from this discussion that there exists
another way of degenerating to an ideal point of C to give a distinct boundary slope
on T2.

Let S2 be the surface that corresponds to this second boundary slope constructed
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above. Let boundary components of S2 be parallel to g2. Assume that both of Sj and S2

are non-separating. In what follows all coefficients for homology are rational. As H2(T2)
surjects onto H2(M(a,0)) it follows that the map H2(M(a,fl), 71

2)-»H1(T2) is injective.
Since both of the surfaces are non-separating, it follows that the homology class of the
boundary of S,, 5S, in dT2 is fc;g,- for non-zero integers kh i = l and 2. However, a
standard intersection argument shows that for surfaces meeting only one boundary
component, there is at most one non-zero class in Kerfc^.H^TJ-tH^M)} and this is a
contradiction. Whence one of the surfaces must be separating. •

To complete the proof of Theorem 1, we argue as follows. We shall be using the
contents of [8, Chapter 2] and the reader is referred there for all terminology.

Observe that by Lemma 3 any hyperbolic 2-bridge link complement M(a.,P) (with the
two torus boundary components of M(a, ft) labelled by 7\ and T2) contains a properly
embedded incompressible surface S with non-empty boundary meeting only one
boundary component of M(<x, /?). Let the boundary slope of S be p/q, and assume that
dS lies entirely on T2. We remark that we will always assume that S has been chosen so
that it is minimal with respect to the action, i.e., it has minimal number of boundary
components.

Claim 1. There are infinitely many Dehn surgeries on 7\ for which S remains
incompressible.

Denote the manifold obtained by doubling M(a,/?) along T2 by D(<x,/?). Then the
double of S along its boundary yields a closed surface DS <= D(ct, /?). By the minimality of
S, DS is incompressible. Let us fix attention on one copy of T1; say T, in the boundary
of D(tx, P). To prove the claim we use the contents of Section 2.4 of [8]. The argument
splits into two cases depending on the existence of certain annuli as we now describe.

If there is no annulus in D(<x, /}) with one boundary component on DS and the other
on T, then [8, Theorem 2.4.2] implies that if rl=pjq1 and r2 = p2/q2 are slopes on T
with &(rl,r2)>2 (where A(x, y) denotes the geometric intersection number of a pair of
slopes x and y) DS remains incompressible in at least one of (pi,qi) or (p2,q2) Dehn
surgery on T. If there is an annulus of the type described above then in this case,
denoting the slope of the boundary curve of the annulus on T by ro = po/qo, we can
apply [8, Theorem 2.4.3] to deduce that for any slope r = p/q with A(ro,>')>l, ^S
remains incompressible in the manifold obtained by (p, <j)-Dehn surgery on T. Note that
the case of T2xl of Theorem 2.4.3 of [8] is excluded, as D(a, /?) is the double of a
hyperbolic manifold.

In either case we can conclude that there are infinitely many Dehn surgeries on T
that keep DS incompressible. In particular splitting the manifold open again, we deduce
infinitely many Dehn surgeries on Tt for which S remains incompressible which justifies
the claim.

Claim 2. Choose L so that a continued fraction [al,...,am'] associated to M(a,/?)
satisfies the hypothesis of Theorem 2. Then the surface S is non-planar.
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This follows from a similar analysis to that above. Briefly, observe that by performing
a sufficiently large Dehn surgery on Tx we may arrange that the shape of the cusp
corresponding to T2 is not changed much. Therefore, any subsequent nontrivial surgery
on Tj gives a manifold of negative curvature, which has as its universal cover Euclidean
space; in particular, this violates all the possibilities of 2.3.1 in [8] which establishes the
claim.

The claims established above have shown the existence of (infinitely many) 2-bridge
link complements containing an incompressible, boundary incompressible surface meet-
ing only one boundary component (in the convention established, it is the component
T2) of the link complement which remains incompressible upon infinitely many Dehn
surgeries on 7\.

By Hatcher's theorem on boundary slopes [12], there can be at most finitely many
incompressible, boundary incompressible embedded surfaces meeting only the boundary
component T1 of Af(<x,/?). Combining this observation, Claim 1 and Thurston's
Hyperbolic Dehn Surgery Theorem [16], it follows that there is some Dehn surgery on
7\, which is a hyperbolic 3-manifold containing no essential closed surfaces and for
which S remains incompressible. By Claim 2 S is non-planar, therefore by [8,
Proposition 2.2.1] Dehn surgery on the boundary slope p/q of S yields a closed
manifold with an essential surface S. If we now remove the surgery torus from Tu S
remains incompressible.

To summarize; we have constructed a compact, orientable 3-manifold, say M with
torus boundary containing a closed essential surface. To complete the proof we need to
exclude the possibility that the boundary slope p/q (as above) is infinity. For then by a
judicious choice of L, (as in Claim 2) Theorem 2 shows that M admits a metric of
negative curvature and is therefore hyperbolic. As a 2-bridge link complement is 2-
generator, the manifold obtained by Dehn surgery is also 2-generator. In addition as L
is 2-bridge, both components of L are unknotted, thus the result of (p, q) Dehn surgery
on one component yields a knot complement in a Lens Space—including the possibility
ofS3.

To prove that infinity is not a boundary slope of a surface meeting only one
boundary component of M(a, /?) we argue as follows. As above assume the boundary of
the surface (denoted as above by S) lies entirely on T2. Doing 1/0-Dehn surgery on T2

will produce a solid torus, so that a subsequent Dehn surgery on 7\ will produce a
Lens Space. Arguing as above we can perform po/qo-Dehn surgery on 7\ such that the
resultant manifold is hyperbolic, does not contain a closed essential surface and the
surface S remains incompressible. However, as noted above 1/0-Dehn surgery will then
produce a Lens Space. This contradicts the possible outcomes of surgery on a boundary
slope exhibited by Theorem 2.0.3 of [8]. •

4. An example

The statement of Theorem 2 might suggest that one needs to take rather a
complicated 2-bridge, link in order to obtain an example. However in practice using
Snappea (see [3] for a discussion of this program), one can find 2-bridge link

https://doi.org/10.1017/S0013091500018575 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018575


512 D. D. LONG AND A. W. REID

complements in the link tables whose cusp shapes make them amenable to the methods
indicated in Section 2 and Section 3. For example the link 9 | yields examples. We
briefly sketch the calculation. Full details of the ideas that are the basis of this method
of calculating boundary slopes can be found in [7].

Let L denote the link 9%, and let x and y be a pair of meridional generators for the
fundamental group of the complement of L. We seek to find a curve of representations
for which the trace of y remains bounded. As in the proof of Lemma 3, we see that to
do this it suffices to consider deformations of the complete structure keeping the element
y parabolic. As discussed in [7], standard computations using elimination theory show
that the slopes of incompressible boundary incompressible surfaces which arise from
surfaces meeting only the boundary component whose meridian is x are 0 , - 2 and +4.
Using Snappea one may compute the shape of this cusp and one finds that all the
manifolds obtained by doing Dehn surgeries on the boundary slopes are hyperbolic
manifolds. As observed in the proof of Theorem 1, these manifolds are knot com-
plements in Lens Spaces. The boundary slope —2 gives an example of a knot
complement in RP3.
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