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On an Exponential Functional Inequality
and its Distributional Version

Jaeyoung Chung

Abstract. Let G be a group and K = C or R. In this article, as a generalization of the result of Albert
and Baker, we investigate the behavior of bounded and unbounded functions f : G→ K satisfying the
inequality ∣∣∣ f

( n∑
k=1

xk

)
−

n∏
k=1

f (xk)
∣∣∣ ≤ φ(x2, . . . , xn), ∀x1, . . . , xn ∈ G,

where φ : Gn−1 → [0,∞). Also, as a distributional version of the above inequality we consider the
stability of the functional equation

u ◦ S−
n-times︷ ︸︸ ︷

u⊗ · · · ⊗ u = 0,

where u is a Schwartz distribution or Gelfand hyperfunction, ◦ and ⊗ are the pullback and tensor
product of distributions, respectively, and S(x1, . . . , xn) = x1 + · · · + xn.

1 Introduction

Throughout this paper, we denote by G a group, R the set of real numbers, C the set
of complex numbers, K = C or R, φ : Gn−1 → [0,∞), and ε ≥ 0. We call m : G→ K
an exponential function provided that

m(x + y) = m(x)m(y)

for all x, y ∈ G. Let f : G→ K satisfy the exponential functional inequality

(1.1) | f (x + y)− f (x) f (y)| ≤ ε
for all x, y ∈ G. Then f is either an unbounded exponential function or a bounded
function satisfying

(1.2) | f (x)| ≤ 1

2
(1 +
√

1 + 4ε)

for all x ∈ G (see Baker [3]). In [2], Albert and Baker refined the inequality (1.2)
when G is a vector space over the field Q of rational numbers and proved that if
f : G → R is a bounded function satisfying (1.1) with 0 < ε < 1

4 , then f satisfies
either

(1.3) −ε ≤ f (x) ≤ 1

2
(1−

√
1− 4ε)
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for all x ∈ G, or

(1.4)
1

2
(1 +
√

1− 4ε) ≤ f (x) ≤ 1

2
(1 +
√

1 + 4ε)

for all x ∈ G. The inequalities (1.3) and (1.4) imply that every bounded function
satisfying the inequality (1.1) tends to 0 or 1 (the roots of the algebraic equation
x2 − x = 0) as ε→ 0.

In this paper, we investigate behaviors of bounded functions and unbounded
functions f : G→ K satisfying the exponential functional inequality with n-variables
(n ≥ 2)

(1.5)
∣∣∣ f
( n∑

k=1

xk

)
−

n∏
k=1

f (xk)
∣∣∣ ≤ φ(x2, . . . , xn)

for all x1, . . . , xn ∈ G. When we consider some exponential functional equations or
unbounded solutions of exponential functional inequalities involving n-variables, we
can follow the same approach as in the case of 2-variables. However, when we con-
sider bounded solution of exponential functional inequality with n-variables, such as
the inequality (1.5), the methods are quite different from that of 2-variables, such as
those of Albert and Baker [2].

As a corollary of our main result we obtain that every bounded function f : G →
R satisfying the inequality (1.5) with φ(x2, . . . , xn) = ε for all x2, . . . , xn ∈ G satisfies
the following:

Let α < β < γ be the positive real roots of the equation |tn − t| = ε. If n is
even, then f satisfies either −ε ≤ f (x) ≤ α for all x ∈ G, or β ≤ f (x) ≤ γ
for all x ∈ G, and if n is odd, then f satisfies β ≤ f (x) ≤ γ for all x ∈ G,
−α ≤ f (x) ≤ α for all x ∈ G, or−γ ≤ f (x) ≤ −β for all x ∈ G.

As a direct consequence of this result, we also obtain that if n is even, then f satisfies
either

−ε ≤ f (x) ≤ n

n− 1
ε

for all x ∈ G, or

− n−1
√

nε ≤ f (x)− 1 ≤ ε

n− 1

for all x ∈ G, and if n is odd, then f satisfies

− n

n− 1
ε ≤ f (x) ≤ n

n− 1
ε

for all x ∈ G,

− n−1
√

nε ≤ f (x)− 1 ≤ ε

n− 1

for all x ∈ G, or

− ε

n− 1
≤ f (x) + 1 ≤ n−1

√
nε
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for all x ∈ G. We also consider the unbounded functions f : G → K satisfying (1.5)
and prove that if there exist q1, q2, . . . , qn ∈ G such that∣∣ f (q1)

(
| f (q2) · · · f (qn)| − 1

) ∣∣ > φ(q2, . . . , qn),

then the function f satisfying (1.5) is unbounded and has the form f (x) = Cm(x),
where C ∈ K with Cn−1 = 1 and m is an exponential function. In the last sec-
tion of the paper, as a distributional version of the inequality (1.5), we consider the
inequality

(1.6) ‖u ◦ S−
n-times︷ ︸︸ ︷

u⊗ · · · ⊗ u ‖ ≤ ε,

where u is a Schwartz distribution[6] or Gelfand hyperfunction [4,5], ◦ and⊗ denote
the pullback and the tensor product of distributions, respectively, and ‖ · ‖ ≤ εmeans
that |〈 · , ϕ〉| ≤ ε‖ϕ‖L1 for all test functions ϕ (see Section 3). As a result, we prove
that if u satisfies (1.6), then either u is a bounded measurable function satisfying

‖u‖L∞ ≤ γ,

where γ > 1 is the root of the algebraic equation zn − z = ε, or

u = e
i2kπ
n−1 ec·x

for some k ∈ {0, 1, 2, . . . , n − 2}, c ∈ Cn. We refer the reader to [7–9, 11–14] for
related results of Hyers–Ulam stability of functional equations.

2 Classical Solutions of (1.5)

In this section we investigate behaviors of bounded functions and unbounded func-
tions f : G→ K satisfying the exponential functional inequality (1.5). We first inves-
tigate behaviors of bounded functions satisfying the inequality (1.5).

Lemma 2.1 Let f : G → K be a bounded function satisfying the inequality (1.5).
Then f satisfies

(2.1)
∣∣ f (x1)

(
1− | f (x2) · · · f (xn)|

) ∣∣ ≤ φ(x2, . . . , xn)

for all x1, . . . , xn ∈ G.

Proof Let M = supx∈G | f (x)|. Using the triangle inequality with (1.5) we have

(2.2) | f (x1) f (x2) · · · f (xn)| ≤ | f (x1 +· · ·+xn)|+φ(x2, . . . , xn) ≤ M +φ(x2, . . . , xn)

for all x1, . . . , xn ∈ G. From (2.2) we have

(2.3) M| f (x2) · · · f (xn)| = sup
x1∈G
| f (x1)| | f (x2) · · · f (xn)| ≤ M + φ(x2, . . . , xn)

for all x2, . . . , xn ∈ G. Thus from (2.3), we get

(2.4) M
(
| f (x2) · · · f (xn)| − 1

)
≤ φ(x2, . . . , xn)
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for all x2, . . . , xn ∈ G. Replacing x1 by x1 − x2 − · · · − xn in (1.5) and using the
triangle inequality with the result we have

| f (x1)| ≤ | f (x1 − x2 − · · · − xn)| | f (x2) · · · f (xn)| + φ(x2, . . . , xn)

≤ M| f (x2) · · · f (xn)| + φ(x2, . . . , xn)

(2.5)

for all x1, . . . , xn ∈ G. From (2.5) we have

M = sup
x1∈G
| f (x1)| ≤ M| f (x2) · · · f (xn)| + φ(x2, . . . , xn)

for all x2, . . . , xn ∈ G, which implies

(2.6) M
(

1− | f (x2) · · · f (xn)|
)
≤ φ(x2, . . . , xn)

for all x2, . . . , xn ∈ G. Thus, from (2.4) and (2.6) we have

M
∣∣1− | f (x2) · · · f (xn)|

∣∣ ≤ φ(x2, . . . , xn)

for all x2, . . . , xn ∈ G, which implies (2.1). This completes the proof.

From now on, for each integer n ≥ 2, we denote by cn := (n − 1)n−
n

n−1 and
D := {x ∈ G : φ(x, . . . , x) < cn}. Note that cn is the (local) maximum of the
polynomial p(t) := t−tn. One can see that 1

4 ≤ cn < cn+1 < 1 for all n = 2, 3, 4, . . . .
It is easy to see that for each x ∈ G, the equation

(2.7) |tn − t| = φ(x, . . . , x)

has only one real root γ(x) > 1, and for each x ∈ D, the equation (2.7) has the three

positive real roots α(x) < β(x) < γ(x). Note that 0 < α(x1) < n−
1

n−1 < β(x2) <
1 < γ(x3) for all x1, x2, x3 ∈ D. In particular, we denote by α < β < γ the positive
real roots of the equation |tn − t| = ε when ε < cn.

As a main result of this section we have the following.

Theorem 2.2 Let f : G → K be a bounded function satisfying the inequality (1.5).
Then f satisfies

(2.8) | f (x)| ≤ γ(x)

for all x ∈ G. Furthermore, f satisfies either

(2.9) | f (x)| ≤ α(x)

for all x ∈ D, or

(2.10) β(x) ≤ | f (x)| ≤ γ(x)

for all x ∈ D.

Proof Replacing x1, x2, . . . , xn by x in (2.1) we have

(2.11)
∣∣ | f (x)| − | f (x)|n

∣∣ ≤ φ(x, . . . , x)

for all x ∈ G. From (2.11), for each x ∈ G, | f (x)| satisfies

| f (x)| ≤ γ(x),
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which gives (2.8). For each x ∈ D, f (x) satisfies either

(2.12) | f (x)| ≤ α(x)

or

(2.13) β(x) ≤ | f (x)| ≤ γ(x).

Now, we prove that f satisfies (2.12) for all x ∈ D or (2.13) for all x ∈ D. Assume
that there exist y1, y2 ∈ D such that

(2.14) | f (y1)| ≤ α(y1), β(y2) ≤ | f (y2)|.

Putting x1 = y2 and x2 = x3 = · · · = xn = y1 in (2.1) we have

(2.15) | f (y2)|
(

1− | f (y1)|n−1
)
≤ φ(y1, . . . , y1).

On the other hand, from (2.14) we have

| f (y2)|
(

1− | f (y1)|n−1
)
≥ β(y2)

(
1− α(y1)n−1

)
> α(y1)

(
1− α(y1)n−1

)
= φ(y1, . . . , y1),

which contradicts (2.15). Thus, we get (2.9) or (2.10). This completes the proof.

Let φ(x2, . . . , xn) = ε < cn for all x2, . . . , xn ∈ G in Theorem 2.2. Then we have
the following.

Corollary 2.3 Let f : G → K be a bounded function satisfying the inequality (1.5).
Then f satisfies either

(2.16) | f (x)| ≤ α

for all x ∈ G, or

(2.17) β ≤ | f (x)| ≤ γ

for all x ∈ G.

In particular, if G is 2-divisible, K = R and φ(x2, . . . , xn) = ε < cn for all
x2, . . . , xn ∈ G, then we have the following.

Corollary 2.4 Assume that G is 2-divisible and f : G → R is a bounded function
satisfying the inequality

(2.18)
∣∣∣ f
( n∑

k=1
xk

)
−

n∏
k=1

f (xk)
∣∣∣ ≤ ε

for all x1, . . . , xn ∈ G. If n is even, then f satisfies either

(2.19) −ε ≤ f (x) ≤ α

for all x ∈ G, or

(2.20) β ≤ f (x) ≤ γ

for all x ∈ G. If n is odd, then f satisfies (2.20) for all x ∈ G,

(2.21) −α ≤ f (x) ≤ α
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for all x ∈ G, or

(2.22) −γ ≤ f (x) ≤ −β
for all x ∈ G.

Proof Replacing x1, x2 by x
2 and putting x3 = x4 = . . . = xn = 0 in (2.18) we have

(2.23) f
( x

2

) 2
f (0)n−2 − ε ≤ f (x) ≤ f

( x

2

) 2
f (0)n−2 + ε

for all x ∈ G. We first consider the case when n is even or f (0) ≥ 0. From (2.23) we
have

(2.24) −ε ≤ f
( x

2

) 2
f (0)n−2 − ε ≤ f (x)

for all x ∈ G. Note that

(2.25) ε = α− αn < α.

From (2.16), (2.24), and (2.25) we have

(2.26) −ε ≤ f (x) ≤ α
for all x ∈ G, or from (2.17), (2.24), and (2.25) we have

(2.27) β ≤ f (x) ≤ γ
for all x ∈ G. Thus, if n is even, from (2.26) and (2.27) we get (2.19) or (2.20). Now,
we consider the case when n is odd and f (0) < 0. From (2.24) we have

(2.28) f (x) ≤ f
( x

2

) 2
f (0)n−2 + ε ≤ ε

for all x ∈ G. Thus, from (2.16), (2.25), and (2.28), we have

(2.29) −α ≤ f (x) ≤ ε
for all x ∈ G, or from (2.17), (2.25), and (2.28) we have

(2.30) −γ ≤ f (x) ≤ −β
for all x ∈ G. Thus, if n is odd, from (2.26), (2.27), (2.29), and (2.30), we get (2.20),
(2.21), or (2.22). This completes the proof.

Note that α, β, γ satisfy

(2.31) 0 < α <
n

n− 1
ε, 1− n−1

√
nε < β < 1, 1 < γ < 1 +

ε

n− 1
.

As a consequence of the Corollary 2.4 together with the inequality (2.31), we have
the following.

Corollary 2.5 Assume that G is 2-divisible and f : G → R is a bounded function
satisfying the inequality (2.18) for ε < cn. If n is even, then f satisfies either

−ε ≤ f (x) ≤ n

n− 1
ε

for all x ∈ G, or

− n−1
√

nε ≤ f (x)− 1 ≤ ε

n− 1
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for all x ∈ G. If n is odd, then f satisfies

− n

n− 1
ε ≤ f (x) ≤ n

n− 1
ε

for all x ∈ G,

− n−1
√

nε ≤ f (x)− 1 ≤ ε

n− 1
for all x ∈ G, or

− ε

n− 1
≤ f (x) + 1 ≤ n−1

√
nε

for all x ∈ G.

Remark 2.6 From Corollary 2.5, if n is even, every bounded solution of (2.18)
tends to 0 or 1 as ε → 0, and if n is odd, every bounded solution of (2.18) tends to
0, 1, or−1 as ε→ 0.

If n = 2 and 0 < ε < 1
4 , then it is easy to see that

α =
1

2
(1−

√
1− 4ε), β =

1

2
(1 +
√

1− 4ε), γ =
1

2
(1 +
√

1 + 4ε).

Thus, by Corollary 2.5 we obtain a improved version of the result of Albert and
Baker for vector space [2].

Corollary 2.7 Let 0 < ε < 1
4 . Assume that G is a 2-divisible group and f : G→ R is

a bounded function satisfying the inequality

| f (x + y)− f (x) f (y)| ≤ ε

for all x, y ∈ G. Then f satisfies either

−ε ≤ f (x) ≤ 1

2
(1−

√
1− 4ε)

for all x ∈ G or

1

2
(1 +
√

1− 4ε) ≤ f (x) ≤ 1

2
(1 +
√

1 + 4ε)

for all x ∈ G.

Finally, we investigate the unbounded solutions of the inequality (1.5).

Theorem 2.8 Let f : G → K satisfy the inequality (1.5). Assume that there exist
q1, q2, . . . , qn ∈ G such that

(2.32)
∣∣ f (q1)

(
| f (q2) · · · f (qn)| − 1

) ∣∣ > φ(q2, . . . , qn).

Then f is unbounded and there exists an exponential function m : G → K and C ∈ K
with Cn−1 = 1 such that

(2.33) f (x) = Cm(x)

for all x ∈ G.
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Proof By Lemma 2.1, we can see that if f satisfies (2.32), then f is unbounded and
f (0) 6= 0. Let zk ∈ G, k = 1, 2, 3, . . . be a sequence such that | f (zk)| → ∞ as
k → ∞. Replacing x1 by zk, k = 1, 2, 3, . . . , x2 by x, putting x3 = · · · = xn = 0 in
(1.5) and dividing the result by | f (zk)| we have

(2.34)
∣∣∣ f (x) f (0)n−2 − f (zk + x)

f (zk)

∣∣∣ ≤ φ(x, 0, . . . , 0)

| f (zk)|
.

Letting k→∞ in (2.34) we have

(2.35) f (x) f (0)n−2 = lim
k→∞

f (zk + x)

f (zk)

for all x ∈ G. Thus, using (1.5) and (2.35) we have

f (x + y) =
1

f (0)n−2
lim

k→∞

f (zk + x + y)

f (zk)

=
1

f (0)n−2
lim

k→∞

f (zk + x) f (y) f (0)n−2

f (zk)

= f (y) lim
k→∞

f (zk + x)

f (zk)

= f (y) f (x) f (0)n−2

(2.36)

for all x, y ∈ G. Putting y = 0 in (2.36) we have

(2.37) f (0)n−1 = 1.

Dividing (2.36) by f (0)n and using (2.37) we have

(2.38)
f (x + y)

f (0)
=

f (x)

f (0)
· f (y)

f (0)

for all x, y ∈ G. From (2.38) we get (2.33). This completes the proof.

3 Distributions and Hyperfunctions

We briefly introduce the space D′(Rn) of distributions and the space (S1/2
1/2)′(Rn) of

Gelfand hyperfunctions. Here we use the notations, |α| = α1 + · · · + αn, α! =

α1! · · ·αn!, xα = xα1
1 · · · xαn

n , |x| =
√

x2
1 + · · · + x2

n and ∂α = ∂α1
1 · · · ∂αn

n , for x =
(x1, . . . , xn) ∈ Rn, α = (α1, . . . , αn) ∈ Nn

0 , where N0 is the set of non-negative inte-
gers and ∂ j =

∂
∂x j

. We also denote by C∞c (Rn) the set of all infinitely differentiable

functions on Rn with compact supports.

Definition 3.1 A distribution u is a linear form on C∞c (Rn) such that for every
compact set K ⊂ Rn there exist constants C > 0 and k ∈ N0 such that

|〈u, ϕ〉| ≤ C
∑
|α|≤k

sup |∂αϕ|

for all ϕ ∈ C∞c (Rn) with supports contained in K. The set of all distributions is
denoted by D′(Rn).

https://doi.org/10.4153/CMB-2014-012-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2014-012-x


38 J. Chung

Definition 3.2 We denote by S1/2
1/2(Rn) the space of all infinitely differentiable func-

tions ϕ(x) on Rn satisfying the following; there exist positive constants A and B such
that

(3.1) ‖ϕ‖A,B := sup
x∈Rn,α,β∈Nn

0

|xα∂βϕ(x)|
A|α|B|β|α!1/2β!1/2

<∞.

The topology on the space S
1/2
1/2(Rn) is defined by the seminorms ‖ · ‖A,B in the left-

hand side of (3.1) and we denote by (S1/2
1/2)′(Rn) the dual space of S1/2

1/2(Rn) and the

elements of (S1/2
1/2)′(Rn) are called Gelfand hyperfunctions.

It is known that the space S1/2
1/2(Rn) consists of all infinitely differentiable functions

ϕ(x) on Rn that can be continued to an entire function satisfying

(3.2) |ϕ(x + i y)| ≤ C exp(−a|x|2 + b|y|2)

for some a, b > 0.

Definition 3.3 Let u j ∈ D′(Rn j ) [resp. (S1/2
1/2)′(Rn)] for j = 1, 2. Then the tensor

product u1 ⊗ u2 of u1 and u2, defined by

〈u1 ⊗ u2, ϕ(x1, x2)〉 =
〈

ux1 , 〈ux2 , ϕ(x1, x2)〉
〉

for ϕ(x1, x2) ∈ C∞c (Rn1 × Rn2 ), belongs to D′(Rn1 × Rn2 ) [resp. (S1/2
1/2)′(Rn1 × Rn2 )].

4 Distributional Solution of (1.6)

In this section, as a distributional version of the functional inequality (1.5) we con-
sider the inequality

(4.1) ‖u ◦ S−
n-times︷ ︸︸ ︷

u⊗ · · · ⊗ u ‖ ≤ ε,
where⊗ is tensor product of distributions, S(x1, . . . , xn) = x1 + · · ·+ xn, the pullback
u ◦ S is defined by

〈u ◦ S, ϕ(x1, . . . , xn)〉

=
〈

u,

∫
ϕ(x1, . . . , xn−1, x − x1 − · · · − xn−1) dx1 · · · dxn−1

〉
, ϕ ∈ C∞c (Rn2

),

and ‖ · ‖ ≤ ε means that |〈 · , ϕ〉| ≤ ε‖ϕ‖L1 for all test functions ϕ ∈ C∞c (Rn) [resp.

(S1/2
1/2)(Rn)].
We denote by δ(x) the function on Rn,

δ(x) =

{
qe
− 1

1−|x|2 , |x| < 1

0, |x| ≥ 1,

where

q =

(∫
|x|<1

e
− 1

1−|x|2 dx

)−1

.
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It is easy to see that δ(x) an infinitely differentiable function with support
{x : |x| ≤ 1}. Now we employ the function δt (x) := t−nδ(x/t), t > 0. Let
u ∈ D′(Rn). Then for each t > 0, (u ∗ δt )(x) = 〈uy , δt (x − y)〉 is a smooth function
in Rn and (u ∗ δt )(x) → u as t → 0+ in the sense of distributions, that is, for every
ϕ ∈ C∞c (Rn),

〈u, ϕ〉 = lim
t→0+

∫
(u ∗ δt )(x)ϕ(x) dx.

We also employ the heat kernel

Et (x) = (4πt)−
n
2 e−

|x|2
4t , x ∈ Rn, t > 0.

In view of (3.2) it is easy to see that the heat kernel Et (x) belongs to S
1/2
1/2(Rn) for each

t > 0. It is well known that the heat kernel satisfies the semigroup property

Et ∗ Es = Et+s

for all t, s > 0, which will be useful. We first consider the inequality (4.1) in the space
of Schwartz distributions.

Theorem 4.1 Let u ∈ D′(Rn) satisfy the inequality (4.1). Then either u is a bounded
measurable function satisfying

(4.2) ‖u‖L∞ ≤ γ,
where γ > 1 is the root of the algebraic equation zn − z = ε, or

(4.3) u = e
i2kπ
n−1 ec·x

for some k ∈ {0, 1, 2, . . . , n− 2}, c ∈ C.

Proof Convolving (δt1 ⊗ · · · ⊗ δtn )](x1, . . . , xn) := δt1 (x1) · · · δtn (xn) in each side
of (4.1) we have

[(u ◦ S) ∗ (δt1 ⊗ · · · ⊗ δtn )](x1, . . . , xn)

=
〈

uξ1 ,

∫
δt1 (x1 + ξ2 + · · · + ξn − ξ1)δt2 (x2 − ξ2) · · · δtn (xn − ξn) dξ2 · · · dξn

〉

=
〈

uξ1 ,

∫
(δt1 ∗ δt2 )(x1 + x2 + ξ3 + · · · + ξn − ξ1)

× δt3 (x3 − ξ3) · · · δtn (xn − ξn) dξ3 · · · dξn

〉

=
〈

uξ1 ,

∫
(δt1 ∗ · · · ∗ δtn−1 )(x1 + · · · + xn−1 + ξn − ξ1)δtn (xn − ξn) dξn

〉
= 〈uξ1 , (δt1 ∗ · · · ∗ δtn )(x1 + · · · + xn − ξ1)〉

= (u ∗ δt1 ∗ · · · ∗ δtn )(x1 + · · · + xn).
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We also have

[(u⊗ · · · ⊗ u) ∗ (δt1 ⊗ · · · ⊗ δtn )](x1, . . . , xn) = (u ∗ δt1 )(x1) · · · (u ∗ δtn )(xn).

Thus, the inequality (4.1) is converted to the following inequality

(4.4) |(u ∗ δt1 ∗ · · · ∗ δtn )(x1 + · · · + xn)− (u ∗ δt1 )(x1) · · · (u ∗ δtn )(xn)| ≤ ε

for all x1, . . . , xn ∈ Rn, t1, . . . , tn > 0. It follows from (4.4) that the limit

f (x) := lim sup
t→0+

(u ∗ δt )(x)

exists for all x ∈ Rn. In (4.4), fixing x2, . . . , xn and letting t2, t3, . . . , tn → 0+ so that
(u ∗ δt j )(x j)→ f (x j) as t j → 0+ for all j = 2, 3, . . . , n, we have

(4.5) |(u ∗ δt1 )(x1 + · · · + xn)− (u ∗ δt1 )(x1) f (x2) · · · f (xn)| ≤ ε.

Replacing xn by x, letting x1 = x2 = · · · = xn−1 = 0 and t1 → 0+, so that
(u ∗ δt1 )(0)→ f (0) as n→∞ in (4.5), we have

(4.6) ‖u− f (0)n−1 f (x)‖ ≤ ε.

If f is bounded, then from (4.6) u is defined by a bounded measurable function, i.e.,

〈u, ϕ〉 =
∫

h(x)ϕ(x) dx, ϕ ∈ C∞c (Rn)

for some bounded measurable function h. Now, using the heat kernel Et instead of δt

and convolving (Et1 ⊗ · · · ⊗ Etn )(x1, . . . , xn) in each side of (4.1), we have

|U (x1 + · · · + xn, t1 + · · · + tn)−U (x1, t1) · · ·U (xn, tn)| ≤ ε(4.7)

for all x1, x2, . . . , xn ∈ Rn, t1, t2, . . . , tn > 0, where U (x, t) = (u ∗ Et )(x). Using the
same method as in the proof of Lemma 2.1 with (4.7), we can prove that

|U (x1, t1)|
(
|U (x2, t2) · · ·U (xn, tn)| − 1

)
≤ ε(4.8)

for all x1, x2, . . . , xn ∈ Rn, t1, t2, . . . , tn > 0. Letting x1 = x2 = · · · = xn = x,
t1 = t2 = · · · = tn = t in (4.8) we have

|U (x, t)| ≤ γ(4.9)

for all x ∈ Rn, t > 0. Letting t → 0+ in (4.9), we get (4.2). Now, we consider the case
when f is unbounded. Let ck, k = 1, 2, 3, . . . , be a sequence such that | f (ck)| → ∞ as
k → ∞. Replacing x2 = · · · = xn = ck in (4.5) and dividing the result by | f (ck)|n−1

and letting k→∞ we have

(4.10) (u ∗ δt1 )(x1) = lim
n→∞

(u ∗ δt1 )
(

x1 + (n− 1)ck

)
f (ck)n−1

.
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Multiplying both sides of (4.10) by f (x2) · · · f (xn), and using (4.5) and (4.10), we
have

(u ∗ δt1 )(x1) f (x2) · · · f (xn) = lim
k→∞

(u ∗ δt1 )
(

x1 + (n− 1)ck

)
f (x2) · · · f (xn)

f (ck)n−1

= lim
k→∞

(u ∗ δt1 )
(

x1 + · · · + xn + (n− 1)ck

)
f (ck)n−1

= lim
k→∞

(u ∗ δt1 )
(

x1 + · · · + xn + (n− 1)ck

)
f (ck)n−1

= (u ∗ δt1 )(x1 + · · · + xn)

(4.11)

for all x1, x2, . . . , xn ∈ Rn, t1, t2, . . . , tn > 0. Putting x2 = x3 = · · · = xn−1 = 0
in (4.11) we have

(4.12) (u ∗ δt1 )(0) f (0)n−2 f (x) = (u ∗ δt1 )(x)

for all x ∈ Rn. Choosing t1 > 0 such that (u∗δt1 )(0) 6= 0 and putting (4.12) to (4.11)
we have

f (x1) f (x2) · · · f (xn) = f (x1 + · · · + xn)(4.13)

for all x1, x2, . . . , xn ∈ Rn. Choosing a sequence sk, k = 1, 2, 3, . . . so that
(u ∗ δsk )(0) → f (0) as k → ∞, replacing t1 by sk in (4.12) and letting k → ∞
we have

〈u, ϕ〉 = lim
k→∞

∫
(u ∗ δsk )(x)ϕ(x) dx

= lim
k→∞

∫
(u ∗ δsk )(0) f (0)n−2 f (x)ϕ(x) dx

= f (0)n−1

∫
f (x)ϕ(x) dx =

∫
f (x)ϕ(x) dx

(4.14)

for all ϕ ∈ C∞c (Rn). Now, it is easy to see that the solution f of (4.13), being a
measurable function, is given by

(4.15) f (x) = f (0)ec·x = e
i2kπ
n−1 ec·x

for some k ∈ {0, 1, 2, . . . , n− 2}, c ∈ Cn. Thus, from (4.14) and (4.15), we get (4.3).
This completes the proof.

Note that every locally integrable function f defines a distribution via the corre-
spondence

ϕ −→
∫

f (x)ϕ(x) dx.

As a direct consequence of the above result we obtain the following.

Corollary 4.2 Let f : Rn → C be a locally integrable function satisfying

‖ f (x1 + · · · + xn)− f (x1) · · · f (xn)‖L∞(Rn) ≤ ε.
Then either f is a bounded measurable function satisfying

‖ f (x)‖L∞ ≤ γ,
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where γ > 1 is the root of the algebraic equation zn − z = ε, or

f (x) = e
i2kπ
n−1 ec·x

for almost every x ∈ Rn, where k ∈ {0, 1, 2, . . . , n− 2}, c ∈ Cn.

As a consequence of the method of proof of Theorem 4.1 we obtain the stability

of the inequality (4.1) in the space (S1/2
1/2)′(Rn) of Gelfand hyperfunctions.

Theorem 4.3 Let u ∈ (S1/2
1/2)′(Rn) satisfy the inequality (4.1). Then either u is a

bounded measurable function satisfying

‖u‖L∞ ≤ γ,

where γ > 1 is the root of the algebraic equation zn − z = ε, or

u = e
i2kπ
n−1 ec·x

for some k ∈ {0, 1, 2, . . . , n− 2}, c ∈ Cn.

Proof Let u ∈ (S1/2
1/2)′(Rn). Then using the heat kernel Et instead of δt and convolv-

ing (Et1 ⊗ · · · ⊗ Etn )(x1, . . . , xn) in each side of (4.1) we have

|U (x1 + · · · + xn, t1 + · · · + tn)−U (x1, t1) · · ·U (xn, tn)| ≤ ε

for all x1, x2, . . . , xn ∈ Rn, t1, t2, . . . , tn > 0, where U (x, t) = (u ∗ Et )(x). Using the
same method as in the proof of Theorem 4.1, we get the result.
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