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ABSTRACT 
Flexibility analysis helps improve the expected value of engineering systems under uncertainty 
(economic and/or social). Designing for flexibility, however, can be challenging as a large number of 
design variables, parameters, uncertainty drivers, decision making possibilities and metrics must be 
considered. Many available techniques either rely on assumptions that are not suitable for an 
engineering setting, or may be limited due to computational intractability. This paper makes the case 
for an increased integration of Machine Learning into flexibility and real options analysis in 
engineering systems design to complement existing design methods. Several synergies are found and 
discussed critically between the fields in order to explore better solutions that may exist by analyzing 
the data, which may not be intuitive to domain experts. Reinforcement Learning is particularly 
promising as a result of the theoretical common grounds with latest methodological developments e.g. 
decision-rule based real options analysis. Relevance to the field of computational creativity is 
examined, and potential avenues for further research are identified. The proposed concepts are 
illustrated through the design of an example infrastructure system. 
 
Keywords: Flexibility in Design, Large-scale engineering systems, Machine learning, Real Options, 
Computational design methods 
 
Contact: 
Cardin, Michel-Alexandre 
Imperial College London 
Dyson School of Design Engineering 
United Kingdom 
m.cardin@imperial.ac.uk 

https://doi.org/10.1017/pds.2021.573 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.573


3122  ICED21 

1 INTRODUCTION 

Climate change impacts, pandemics, evolving economies, volatile markets and innovation are just a few 

examples of the sources of uncertainty driving the need for adaptability as a means to improve lifetime 

performance of engineering systems, making their design increasingly challenging. These systems are 

characterized by a high degree of complexity, multidisciplinary interactions, and large irreversible capital 

investments with a long operating life. Uncertainty in the context of an engineering design problem may 

then be defined as making up the difference between the knowledge available to decision makers and 

that necessary to optimally plan the system (de Neufville et al., 2019). Given system design 

configurations are often determined in early decision-making phases, current design frameworks tend to 

simplify considerations of uncertainty, partly to maintain tractability and partly because of limited 

knowledge, leading to designs that can be highly vulnerable to change (de Neufville and Scholtes, 2011).  

Flexibility has emerged as a potential and underexploited paradigm to help systematically improve 

system performance under uncertainty, by allowing it to capture more upside opportunities and reduce 

downside exposure through the potential for reconfiguration and changeability. The definition of 

flexibility used here, inspired from real options theory, is the “right, but not the obligation, to change a 

system in the face of uncertainty” (Trigeorgis, 1996). The higher the associated level of uncertainty, 

generally the more enhanced the value of embedding flexibility into the system for its expected 

performance. Flexibility in design, however, is a paradigm which is not fully exploited in the 

engineering community as decision makers often do not fully understand the added value it may bring 

to a project, while the costs are readily evident. There are tools available already which are well suited 

to designing for flexibility, both qualitative and quantitative based, helping to identify possible 

strategies and estimating their value. These can be very important as they help bridge the gap between 

the perceived and actual value of inclusion of flexibility measures in the system. In fact, previous 

studies have shown improvements routinely ranging from 10-30% in economic terms when using 

flexible design methods compared to standard ones, with applications across energy (Kuznetsova et 

al., 2019), infrastructure (Cardin et al., 2015) and telecommunications (de Weck et al., 2004),  among 

others. Flexibility, therefore, changes the objective from optimizing for a “design point” to finding 

solutions that maintain strong performance across the entire distribution of outcomes (Cardin, 2014). 

Nonetheless, current flexibility design tools present significant limitations on scope, applicability and 

integration into holistic systems engineering methods. The complexity of the design problem can be very 

significant, as a large number of design variables, parameters, uncertainties, decision making possibilities 

and metrics must be considered in the context of the system, with a great computational expense. The 

majority of flexibility design tools, partly to maintain computational feasibility, are therefore focused on 

recognizing the value of flexibility measures rather than generating designs or suggestions for how to 

implement them. There has been little work done on stimulating creativity for alternative solutions by 

exploration of the design space, with some qualitative based frameworks or generic flexibility strategies 

normally employed. These generic strategies, however, are not well suited to easily identify system 

specific flexibility value enhancing measures outside of a few applications.   

The complexity of flexible design, therefore, tends to necessitate taking assumptions which may be 

unrealistic in an engineering setting and/or a significant limitation of the design space from that found in 

the true problem. These methodological limitations, combined with the emergence of newly available 

datasets, such as patents or open access design databases, highlight the potential role for Machine 

Learning (ML) in this field. By extracting useful patterns out of available datasets and increasing the 

ability to tackle high dimensional problems with neural networks, the role of ML within engineering 

design offers great promise and has been increasingly investigated in recent years (Rolnick et al., 2019).   

This paper makes the case for further integration of ML techniques into the design process for flexible 

engineering systems, shifting the focus from previous works by specifically focusing on ML as an 

enabler of flexibility. Starting from a short review of the literature on flexibility in design tools and ML, 

the argument is made that there may be a number of optimal solutions embedded within the design space 

not being considered with standard methods. Several synergies are identified between ML and flexibility 

in design which point to the potential for greater combination of these two fields and a preliminary 

framework integrating some of the methods identified as most promising is presented, based on an 

adaptation of some previous work, illustrated through a simple design case study. Some general 

recommendations and directions for further research to complement available techniques are then made. 
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2 BACKGROUND AND RELATED WORK 

2.1 Flexibility in Design 

A flexible design provides the potential for changeability of a system under different and unpredictable 

conditions through inclusion of some potential strategy into the system configuration. Typical project 

evaluation approaches for engineering systems tend to be based on likely scenario predictions for major 

uncertainty drivers and Discounted Cash Flow (DCF) analysis, which is not able to account for the value 

of decision making over the project lifetime (de Neufville et al., 2019). A review of flexibility in 

engineering design from (Cardin, 2014) builds upon the definition of a flexible design concept as 

providing the ability for an engineering system to "adapt, change and be reconfigured, if needed, in light 

of uncertainty realizations". This definition, therefore, extends past the technical domain to consider 

managerial decision-making as an enabler of valuable flexibility during operation, also known as a "real 

option". A real option “in” the system is composed of flexibility within the design, also referred as 

technical enablers, which give decision makers the choice to strategically decide when and how to 

exercise this flexibility based on uncertainty realizations. Real option “on” the system involves 

managerial flexibility, and do not require as much technical and engineering expertise to be enabled e.g., 

abandonment, investment deferral (Bowman and Moskowitz, 2001; Trigeorgis, 1996).   

Previous works have generally attempted at structuring designing for flexibility through a sequential 

process workflow in order to provide standardized and reproducible procedures. In the framework and 

taxonomy presented by Cardin (2014), five main phases are recognized for a flexible design process: 1) 

Baseline Design; 2) Uncertainty Recognition; 3) Concept Generation; 4) Design Space Exploration; 5) 

Process Management. Baseline design, conducted with traditional methods, is necessary to provide a 

point of comparison and understand relative performance of outputs. Procedures in phase 1 can help to 

generate new design solutions, enrich current information on available solutions or help navigate the 

entire design process. Uncertainty recognition in phase 2 is crucial and can be a defining factor in the 

design of a project subject to stochasticity, as estimates from this phase may skew results towards largely 

unrealistic conditions or ill-prepared designs for realized scenarios. Procedures in this phase are largely 

based on probabilistic or statistical approaches to help designers identify, quantify, and characterize the 

major uncertainty drivers (de Weck et al., 2007). Practical approaches to model them include stochastic 

simulation-based diffusion models, binomial lattice, decision trees and scenario planning. The selection 

of input parameters, assumptions and mathematical approaches have a significant effect on predictive 

accuracy, with different techniques better suited for different types of uncertainties or design problems - 

although all presenting some limitations. The most relevant phases for this paper are Concept Generation 

and Design Space Exploration, since they benefit largely from data-driven techniques.  

2.1.1 Concept Generation 

The tools available for concept generation, with a particular focus on enhancing system flexibility, can 

be quite varied, ranging from qualitative to computational approaches, and can be further split into 

strategy generation and enabler identification (Cardin, 2014) - or real options "on" and "in" systems, 

respectively. These two parts are complementary as they both must be present to allow exercising 

system flexibility under uncertainty, during operations. During the strategy generation phase, generic 

real options strategies can be used to guide creativity systematically e.g., (1) defer capital investment 

until favourable market conditions arise, (2) stage or phase asset deployment strategically over time 

instead of deploying all capacity at once, (3) alter operating scale by expanding or contracting output 

production capacity, (4) abandon a project doomed to fail and resell assets at salvage value, (5) switch 

production inputs and/or outputs to accommodate different markets or missions, (6) invest in R&D to 

capitalize on future technology and cash flows if the initial investment is successful, and/or (7) 

combine the above (Trigeorgis, 1996). Creativity then stems from the need to understand how to 

integrate these approaches into the specific system at hand. The Integrated Real Options Framework 

formalized this latter step by mapping potential strategies to physical enablers in the design. The 

logical multiple domain matrix is an extension of this work to generate concepts for flexibility via a 

more holistic analysis of interactions among the system domains (Mikaelian et al., 2011).  

In terms of enabler identification, a variety of approaches are also present. An initial starting point may 

be product or system safeguards, connecting modularity to degree of uncertainty as shown by Gil (2007). 

Another commonly used tool in this phase is the Design Structure Matrix (DSM). The DSM lists system 

https://doi.org/10.1017/pds.2021.573 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.573


3124  ICED21 

components and domains in the rows and columns of a square matrix in order to map out dependencies 

and relationships among them. It is often used in combination with Change Propagation Analysis (CPA) 

to understand the response of different design variables to changes in design or functional requirements 

and identify candidate areas for value enhancing flexibility (Giffin et al., 2009). The method has been 

previously successfully extended to include non-technical domains (e.g., Engineering Systems Matrix 

from Bartolomei et al. (2012)) as well as Bayesian network analysis (Hu and Cardin, 2015), however the 

effort and level of detail required to build this representation can be limiting. A similar analytical 

approach is followed when using the Theory of Inventive Problem Solving (TRIZ) in the context of 

designing for change to identify candidate areas for modularization (Chechurin and Collan, 2019). The 

Filtered outdegree method assigns a value to the perceived degree of changeability of a system, with 

possible end states filtered based on a transition cost function and CPA (Shah et al. 2008). While this 

method is most useful for measuring flexibility in a system, it can also help identify enablers through 

embedding of real options when combined with CPA or other techniques, essentially serving to decrease 

the cost of transition in the outdegree (Shah et al. 2008). Explicit design variable evaluation is another 

approach, consisting of identifying the main design variables and quantitatively evaluating their impact 

on lifetime performance, and thus identifying most impactful changes within the design (Cardin, 2014). 

2.1.2 Design Space Exploration 

Following the generation of flexible design concepts in phase 3, potential strategies must be evaluated on 

a comparative basis to understand what the best performing system solutions may be.  Real options 

theory stems from the financial literature theory, and thus gives an array of quantitative methods to 

quantify the value of flexibility under different scenarios, allowing better comparison of alternative 

design concepts (de Neufville and Scholtes, 2011). Dynamic (DP) and stochastic programming (SP) can 

be used for flexibility analysis, seeking to compute an optimal policy in form of maximization of the 

recursive Bellman reward equation, normally by dividing a complex problem into a sequence of simpler 

subproblems, starting at the final stage (Sutton and Barto, 2018). This folding back process continues to 

project start, at which point expected lifetime performance can be computed and compared to inflexible 

baselines. DP is better suited to handle infinite horizon problems or problems with large number of 

stages compared to SP. Both approaches are however limited by data inefficiency, memory storage 

requirements and dimensionality (Martínez-Costa et al., 2014).  Binomial lattice analysis is similar 

conceptually to DP, other than the fact that uncertainty either goes up or down following each stage. The 

value of flexibility in these methods is normally estimated as the difference in expected performance 

between the baseline and flexible design solutions. These tools, however, present a number of 

assumptions on path independence, knowledge of precise probability distributions and market conditions 

such as arbitrage enforced pricing which make it usually unsuitable for implementation in an engineering 

setting, as decisions made during early design phases may influence the techno-economic feasibility of 

various lifetime measures (Cardin, 2014). Furthermore, results are of limited relevance if realised 

uncertainties deviate from predicted scenarios (Martínez-Costa et al., 2014). 

A number of approaches have been proposed in recent years to help address these limitations such as 

screening methods (Bartolomei et al., 2006) or design catalogues (Cardin and Geltner, 2016). 

Drawbacks of these techniques, however, may include model resolution loss, limited guarantee of 

solution global optimality, and difficulties with estimating aggregate preferences to calculate expected 

utility in a design context (Cardin, 2014). Decision rules (DR) is another method, defined as a 

triggering mechanism or signal to exercise a particular flexibility on the system (Caunhye and Cardin, 

2017). Conditional-go, linear and constant DR are some of the generic options for problem 

formulation. The DR approach has been previously shown to estimate very similar value for flexibility 

measures compared to standard ROA or DP, with better computational efficiency while providing 

readily usable guidelines (Cardin et al., 2017). The benefit of this approach is that it can model 

flexibility in a more intuitive manner for decision makers by allowing straightforward combination of 

physical design variables with managerial aspects affecting operation, giving insights on optimal 

exercise time. This allows for both to be simultaneously optimized stochastically with a more 

transparent approach than standard DP. The DR method is, however, fairly static in nature in the sense 

that the stochasticallly optimal DR are normally determined at project start and not adjusted thereafter. 

Thus, while it allows some degree of flexibility as it permits system response to realized scenarios and 

trends, it is incomplete in that it does not allow more adaptive decision making and optimization of 

performance over time, only making limited use of available information.  
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2.2 Machine Learning 

ML is the general term describing the field of study of using algorithms and computational power to 

extract usable models and patterns out of empirical data. Generally, it can be categorized into supervised 

and unsupervised learning and there is an abundance of potential algorithms available. Supervised 

learning provides labelled datasets to predict their relationship and is primarily used in classification and 

regression. Unsupervised learning instead seeks to find patterns and distributions from unlabelled data 

and can be used in clustering or feature extraction applications, among others. Recent advances can be 

largely attributed to the integration of "Deep Learning". This layer-by-layer learning structure within a 

neural network allows for much more complex feature extraction than was possible before. The input to 

each layer after the first is normally composed of a weighted sum from the previous one, transformed via 

a generally nonlinear activation function to link the information between different layers and perform the 

calculations. Throughout training, these weights between layers are updated to optimize the loss function 

defined initially, using gradient information across the layers (Schmidhuber, 2015). Depending on how 

the different layers are connected, they may be referred to as multilayer perceptron (MLP), convolutional 

neural network (CNN), recurrent neural network (RNN) or long short-term memory network (LSTM), 

among others, with each architecture appropriate for specific tasks.  

The potential of ML and data driven methodologies to enhance the systems design process is of great 

interest, and examples of potential applications within the engineering design space are abundant 

(Panchal et al., 2019). There has been great success working with and extracting patterns out of time 

series data to increase prediction and simulation accuracy (Rolnick et al., 2019). These models can 

handle much larger data sets than would be feasible with conventional approaches to reproduce the 

behaviour of complex non-linear systems, often with much better computational efficiency than 

analytical solutions. In the design of renewable energy systems, for example, neural networks and 

support vector regression are being increasingly used to predict operating conditions and better 

characterize the technical requirements to meet project objectives throughout its lifetime (Voyant et al. 

2017). In the design space exploration and optimization phase, classification algorithms can be used to 

identify appropriate regions of feasible design space among a number of candidate solutions. Mapping 

the boundaries of the feasible design space can help guide engineers on more efficient exploration of the 

space while limiting the need for computationally expensive simulations at every stage. Support Vector 

Machines, Random forests, Gaussian Naive Bayes and ANNs are some of the prevalent techniques for 

this purpose that were comparatively evaluated by (Sharpe et al. 2019) on several different design 

problems.  The findings from their study suggest that while no approach is universally dominant, these 

techniques hold significant potential in helping to facilitate and speed up design space exploration across 

various disciplines. The success stories of these applications have, however, been heavily dependent on 

the quality and quantity of data fed to the network, which tends to require significant time-intensive data 

pre-processing to avoid issues such as bias or overfitting, among others. The majority of applications so 

far have focused on increased accuracy of prediction, scenarios, surrogate modelling, and classification 

as inputs into design but have yet to be integrated into an end-to-end design process to stimulate 

creativity about alternative flexibilities or strategies.  

In the review by Toivonen and Gross (2015) on the intersection between ML and computational 

creativity, the authors argue that while the most obvious use of ML would be as a means of increasing 

exploratory creativity, there are a number of other potential applications. For instance, classification or 

regression could be used to learn the evaluative or objective function to be used in the design 

optimization procedure, thus developing a new way to analyse the system at hand. Another application 

could be using predictive models to generate new designs or solutions based on incomplete ones 

(combinational creativity), which could be extended to learning the generative model directly 

(exploratory creativity). Data mining is also argued to be useful for discovering nonobvious links 

among system components and the resulting implications for design.  

2.3 Reinforcement Learning 

Reinforcement learning (RL) does not fall within either of the traditional ML paradigms of supervised 

or unsupervised learning. It involves an agent interacting with an environment over time as part of a 

sequential decision-making problem with the objective to maximize a reward signal. The past few 

years have witnessed a strong resurgence of RL as a result of its combination with deep neural 

networks as well as advances in computational capacity and algorithmic techniques, leading to great 

achievements via Deep RL (DRL). DRL is much better suited to handle time-dependent, control tasks 
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and uncertainty planning under conflicting signals than traditional ML (Sutton and Barto, 2018). This 

is essential as it is at the core of the motivations for flexibility in design, although with less limiting 

assumptions than in standard methods. Generally, each time step (t) the agent finds itself at a state (st) 

and selects an action (at) following a policy π (st | at). As a result of taking the action, the agent 

transitions to the successive state (st+1), receiving a corresponding scalar reward (Rt), according to the 

environment’s dynamics or model for reward function, and state transition probability (Sutton and 

Barto, 2018). This repeated interaction is captured in Figure 1, including an illustration of the role of 

neural networks to approximate the value function within the overall process.  

 

Figure 1: Graphical overview of DRL (Mao et al. 2016) 

t
t t

t 0
G R  (1) 

The reward signals the agent seeks to maximize may also be referred to as the return (Gt), or the 

discounted accumulated reward per episode (Rt), as described by equation 1, where γ refers to the 

discount rate used in financial modelling to account for the time value of money. This is comparable to 

the objective function in a traditional systems engineering optimization problem and is used by the agent 

to formulate a decision-making policy to navigate the environment. The majority of RL implementations 

in engineering have centred on more classical control problems, which can more easily fit into its 

formalization and stimulate agent learning, such as in optimal microgrid operations (Perera et al. 2020). 

As far as the authors know, there is still no use of DRL in the context of flexibility in systems design. 

3 ML AUGMENTED FLEXIBLE DESIGN FRAMEWORK 

The proposed ways in which ML could be integrated into a flexibility design framework are summarized 

in Figure 2, with further details in section 4. The motivation and potential will be illustrated through a 

simple case study of the design of a multi-story parking garage subject to demand and price uncertainty, 

inspired from the example by Cardin et al. (2015). The inflexible baseline would be to construct 

everything at project start and benefit from economies of scale, while the flexible alternative starts with a 

smaller capacity but with the ability to expand later on. There are a number of possible design 

alternatives that deliver the same flexible expansion capability, such as inclusion of larger foundations, 

stronger material, or fully modular implementation (i.e., stacking prefabricated levels on top of each 

other). No specific ML integration is included for Phase 1 (Baseline Design), however any ML method 

applicable to general engineering design could be used during this stage to define the optimal inflexible 

baseline. During phase 2, ML could be used to build more accurate models to understand how price and 

demand uncertainty will evolve over time and help make better informed design decisions on how 

flexibility could be most impactful. This could lead designers to try to focus on either generic capacity 

expansion, or for example target expansion for pricing past a certain threshold only. Surrogate modelling 

may be implemented at this stage to determine expansion cost function from a dataset of previous 

expansion decisions in other projects more accurately and easily than via analytical means. ML 

classification or clustering algorithms could then be used to identify the most flexible regions of the 

design space, rather than simply the feasible ones, and understand the relevant trade-offs during concept 

generation. The clustering criteria could be varied for a more holistic evaluation, in order to assess for 

example regions of the system design space that are well suited to respond to price but not demand 

uncertainty, and vice versa and the resulting design implications.  Based on the results from phase 2, 

decision makers could choose to focus on designs allowing adaptability to demand uncertainty, for 

example, and look at their common value adding features. 
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Figure 2: Proposed integration of ML into design framework from (Cardin, 2014) 

In terms of RL applications, there is immediate potential for supporting the decision rule method to 

flexibility analysis, particularly during phase 4, as shown in Figure 2. A decision rule approach for the 

multi-story garage design could be formulated as (IF demand for the last 2 years exceeds current 

capacity THEN expand capacity by 1 floor, up to max allowable capacity, ELSE do nothing). Once 

flexible design concepts and strategies are generated in phase 3 and all relevant actions recognized 

within the RL environment, the training of the agent would be launched. In the garage case, the step 0 

decision space would include the decision on starting levels of floors and flexibility enabler (i.e., 

stronger columns or prefabricated containers). This would help integrate the early design decision with 

operational insights for responding to uncertainties. It could also be better suited to produce 

combinations of decision rules by more systematically exploring the design space for value enhancing 

measures. For example, this RL based exploration may suggest building 1 floor only once capacity 

reaches a certain level to avoid investment risk, while building 2 or 3 floors up to that level in order to 

ramp up demand more quickly. Another purely theoretical example in the garage case may be that the 

agent finds building an extra half floor on some expansion years as part of its optimal policy, which 

would likely not have been considered in a domain expert defined flexibility analysis. This could 

allow for the garage to ramp up capacity more quickly if demand greatly exceeds expectations on 

some years, reducing lost revenue during the building period and reducing liquidity risks. Advanced 

statistical analysis of optimal action-state combinations could yield a more "explainable" process. 

These value enhancing actions could be re-formulated as a traditional DR approach, providing readily 

usable guidelines for decision makers.  

4 DISCUSSION  

The review of the relevant literature suggests there is potential for the development of novel tools to 

analyse flexibility in systems design exploiting recent advances in machine learning. Current methods 

available to designers and engineers are well suited for the enhancement of system flexibility compared 

to a traditional or baseline design process, but present a number of analytical and practical limitations. 

They tend to rely on either domain expertise or generic approaches and thus are limited in the number 

and type of solutions they are able to generate in phase 3 of the design process, based on what has 

previously been done or is known to decision makers. There is likely solutions and configurations 

embedded within the increasingly available data, from sources such as patents and publications, which 

can increase delivered expected value that may not be fully considered by engineers and decision 

makers. The argument here is not for ML to be used for the standalone design of flexible engineering 

systems or to generate mathematically more optimal solutions, but rather as an important tool that can 

help practitioners complement standard methods in order to achieve better performing solutions. 

Below is a discussion of how ML techniques can be used to assist the different phases of the design 

process for flexibility.  
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4.1 Enhanced Uncertainty Recognition via ANNs 

Increasing accuracy and understanding of relevant uncertainties is essential in any engineering design 

problem. We argue, however, that they are particularly important when designing for flexibility as the 

objective is to maximize adaptability to realised uncertainties.  In the simplest of cases, ML methods 

may be used to generate more representative input scenarios and parameters to be used in scenario 

planning, decision trees or other relevant techniques from 2.1. When accounting for highly complex 

physics-based problems, surrogate modelling may also be helpful to simulate scenarios helping to 

understand potential random shocks from external factors at a greatly reduced computational expense as 

shown by (Sarkar et al. 2019). This may also allow a much higher number of scenarios to be evaluated 

within the design process. Historical data on trends for the uncertain variable would, however, likely be 

necessary for improved accuracy, which may become a limiting factor in a lot of applications. 

4.2 Classification and Clustering for Flexible Concept Generation  

Appropriate clustering and classification implementations during phase 3 could greatly accelerate the 

design process for flexibility. They may be used to provide a list of common features for previous system 

designs well suited to deal with a particular uncertainty identified from phase 2, or to identify how a 

specific design compares to others in the field. The advantage of ML is that it may better tackle 

computational challenges as compared to existing techniques. Furthermore, it is reasonable to assume 

that flexible designs for a particular system may share common features (i.e., stronger columns for 

garage or oversized inverter for solar PV system) not found in their inflexible counterparts. These 

methods would allow for much faster identification of the features and for designers to choose to 

prioritise them if needed from very early stages. It may then be possible to build a predictive model that 

is able to generate a flexible design solution based on an inflexible baseline or a few basic inputs, for 

example only specifying max initial investment and local material costs, based on combinations 

previously found within the dataset of previous multi-story garage designs. The integration of all these 

applications, however, would necessarily require a large data set of system designs, both flexible and 

inflexible. This is not normally available for most design problems; however, it is something that could 

be developed over time if designs were made more accessible or even built artificially using techniques 

such as Generative Adversarial Networks (GANs) (Shu et al. 2019). There are also a number of 

potentially interesting applications more closely related to the field of computational creativity. For 

instance, ML may be used to develop novel metrics measuring flexibility in system design by looking at 

a large number of candidate designs. These novel metrics or evaluation function could then be used to 

estimate the flexibility of different solutions considered later for further evaluation. These ways of 

estimating flexibility may be unintuitive to practitioners but could uncover potential value enhancing 

methods or configurations that do not appear flexible at first, or vice versa. For example, using a stronger 

material may seem advantageous at first but can lead to vulnerability to future prices when expansion 

decisions are made, thus lowering the actual value of flexibility in the system compared to using a larger 

amount of a weaker material upfront.   

4.3 RL Based Design Space Exploration 

RL is likely to be more impactful and effective than any other ML technique for flexibility in design. 

The sequential decision-making is well suited to examining impact of design and subsequent 

operational decisions affecting system performance. As such, the impact of exercising different types 

of flexibility over time can be assessed quantitatively over a large number of scenarios. It should be 

noted that sequential decision-making nature refers to the RL agent exploration of the environment, 

rather than the design process itself. It is thus expected that the design process will remain more 

iterative using the proposed framework, where insights gained from RL exploration over time can be 

collated to inform design decisions, rather than modelling the agent as the designer directly. 

We make the case that RL holds great potential to solve combinatorial optimization problems such as the 

ones found in flexibility decision analysis, as the reward stochasticity found in decision making and the 

reduced reliance on human intuition inputs allows it to explore more solutions than possible with 

comparable methods. For example, it could be used in combination with decision rules to create more 

dynamic and adaptable systems under uncertainty. Looking at a standard implementation, decision rule 

variables and their potential feasible ranges are normally identified at start by domain expertise and their 

optimal values determined through simulation. In an RL based approach, these would not need to be 
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identified at start but rather just all possible actions recognized within the environment. Over a much 

larger number of scenarios than possible with standard methods, the RL agent could then develop their 

own decision rules to maximize utility in an environment which are not limited to the form chosen by the 

designer at start (i.e., IF-THEN).  Using neural networks, they can build a much more complex value 

function representation and understand when and how to implement different and new types of 

flexibilities. Furthermore, an RL implementation is better able to handle conflicting objectives and 

multiple sources of uncertainty than typical decision analysis methods, thus is more representative of the 

engineering design setting (Perera et al. 2020).  This methodology could also enhance exploratory 

creativity, as the input values for design variables are much less restricted than in standard optimisation 

procedures given the advantages of parallel computation and resulting algorithms. The exploration of the 

design space could also be easily extended outside the economic realm in order to enhance system 

sustainability and resilience by integration directly into the reward function. Furthermore, the theoretical 

common ground shared with standard methods in decision analysis allows for a more straightforward 

solution procedure to be created out of it, such as the decision rule one presented above. 

5 CONCLUSIONS 

The ideas proposed here, while seeming promising, remain unproven outside of a theoretical basis. There 

are a number of potentially interesting ways in which ML could be used to complement flexibility in design 

methods, presenting several avenues for further research. The RL based approach seems particularly 

promising as a result of methodological similarities with standard methods but with assumptions that can 

be more realistic in a flexibility in design setting, as well as a better ability to handle multiple objectives. 

Potential for integrating other ML methods remains strong and more closely aligned with that found in a 

general engineering design setting. Particularly interesting could be applications in energy systems, where 

the multiple sources of flexibility, increasing uncertainty, conflicting objectives and large action spaces 

create challenging design problems that may be addressed with the ML techniques. There remains 

significant room for further research, however, starting from a mathematical implementation, case study 

and benchmarking against standard methods such as SP on a complex design task. The acceptability by 

decision makers of design configurations using this method may also remain limited due to its “black-box” 

style computational properties.  In terms of decision analysis, ROA, DP and SP are better understood and 

more likely to be implemented in practice. Reproducibility has also been found to be inconsistent in RL 

implementations, particularly when implemented in a new setting such as this. Another issue may be the 

ease of communication to decision makers when comparing to a standard decision rule approach. Looking 

at a more thorough statistical analysis of the agent’s optimal policy and actions under different conditions 

may help yield some valuable insights and be more acceptable to decision makers. Data sets necessary for 

classical ML applications may remain a limiting factor or require significant domain expertise manipulation 

for particular applications. Nonetheless, there is certainly potential for increased integration of ML into 

design for flexibility methods given some of these limitations can be addressed.  
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