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Abstract. In the previous works of the first author, two completely different constructions of
single valued Grassmannian trilogarithms were given. One of the constructions, in Math. Res.
Lett. 2 (1995), 99-114, is very simple and provides Grassmannian n-logarithms for all n. However
its motivic nature is hidden. The other construction in Adv. in Math. 114 (1995), 197-318, is very
explicit and motivic, but the generalization for n > 4 is not known. In this paper we will compute
explicitly the Grassmannian trilogarithm constructed in Math. Res. Lett. 2 (1995), 99-114 and
prove that it differs from the motivic Grassmannian trilogarithm by an explicitly given product
of logarithms. We also derive some general results about the Grassmannian polylogarithms.
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1. Introduction
1.1. THE GRASSMANNIAN 7-LOGARITHM

Let V,,, be an m-dimensional vector space over an arbitrary field F with a given basis
eo, - .., emu_1. Let {z;} be the coordinate system in V;, dual to the basis {¢;} and 6;; the
Grassmannian of p-dimensional subspaces in generic position with respect to the
coordinate hyperplanes in V,1,. The intersection of a hyperplane with the coordinate
plane z; = 0 provides a map a;: /G\g — /C;’Z_]. The collection of the maps {a;} provides
a truncated semisimplicial variety over 7

Gy Gh Gl o G (1)

where @z_k sits in degree 2n — k. Notice that 6’} = (G,,)". Indeed, it consists of the
one-dimensional subspaces in V,,; which do not lie in the hyperplanes
z0=0,..., z, =0. So z1/z, . .., zy/zo are natural coordinates on @’f.

In [G4] we constructed a collection of R(n — 1) = (2ni)" ' R-valued differential
k-forms L,gn on the complex Grassmannians @Z_k(C) satisfying the cocycle
condition

2n—k—1
ey, = Y (=DaLd,, -1<k<n-2 )
i=0
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and such that
dﬁf_lm(ho, o hy) = —nn(dlog(zl/zo) A A dlog(zn/zo)), 3)

where /; = {z; = 0} and for any real numbers a and b

. , dd,
(@ +bi) = { ii Z gven

A collection of forms as above is called (a single valued) Grassmannian n-logarithm.
Its existence was conjectured in [BMS] (compare with [GGL]). The function £0Gm is
called the Grassmannian n-logarithm function and usually denoted by E,?.

Remark. The condition (2) for k = —1 is the (2n + 1)-term functional equation for
the Grassmannian n-logarithm function:

2n
> (~DaLg, =0. @)
i=0

There are two other versions of the Grassmannian polylogarithms: the real
Grassmannian polylogarithm function in [GM], on /C;%Z(R), and the multivalued
complex analytic Grassmannian polylogarithms on 6*1(@) in [HM1, HM2]. In
general the real Grassmannian polylogarithm is expected to live on ?;3" (R); it should
be responsible for the combinatorial Pontryagin classes, see [GGL] and [Y]. We will
not discuss them in our paper. The motivic construction of Grassmannian
polylogarithms should in particular provide a coherent construction of all the three
types of Grassmannian polylogs, as well as their étale, p-adic, etc., analogs.

The coinvariants of the natural action of the group GL(V},) on the set of all
n-tuples of vectors in ¥V, are called the configurations of n vectors in V,,. The
configuration spaces of m vectors in two vector spaces of the same dimension
are canonically isomorphic. So we only need to specify the dimension of the vector
space when talking about configuration of vectors. We denote by C,,(V},), or simply
C,u(n), the space of configurations of m + 1 vectors in generic position in V. Then
there are the following canonical isomorphisms

G Cprga(Vy), G122 Cpygr (V). (5)

Namely, restricting the coordinate functions z; to a subspace W e 6;{ we get a
configuration of vectors zo,...,z,14—1 € W*. Projecting the vectors e; onto
Vytrq/ W we get the second isomorphism.

1.2. CONSTRUCTION OF THE GRASSMANNIAN POLYLOGARITHMS £f, [G4]

First we need the following construction. Let X be a variety over C and fy, ..., f,—1
be n complex-valued functions on X(C). We attach to the above data the following
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singular R(n — 1)-valued differential (n — 1)-form:

2k+1 n
a(fis S = —Ald Y aaloglfil /\ dloglfil /\ diarg f; ¢, (6)
k=0 Jj=2 J=2k+2

where ¢ ;= (2,(’11)/11! and

Alt, F(xy, ..., X)) = Z Sen(0)F(Xo(1)s - - - » Xom))-

geS,

The choice of the coefficients is dictated by the following property:

dry(f1,....Jn) = —mu(dlog fi A --- Ndlog fp) (7)

Let ly, ..., hu—r—1 be vectors in generic position in a complex vector space V), .

For 1 <i<2n—k—1 set fi:=1/l). They are 2n — k — 1 rational functions on
CPnfkfl.

DEFINITION 1.1. The Grassmannian k-form of weight n on ’GZ%(C) is defined by

LkG‘”(ZO’ RN EVES (Zni)k“—”/

CP*

k1 (1 fank1)-

For the precise meaning of the right-hand side, see [G4] or Section 3.1 below. It
was proved in [G4] that this integral is convergent, so the definition makes sense.

The Grassmannian n-logarithm function £& can be descended onto the space of
configurations of 2n points in P(V)) = CP"! (see [G4]) or, what is the same,
the space of configurations of 2n hyperplanes in P(V,). Let hy,...,hp,—1 be 2n
hyperplanes in CP"!. Choose rational functions fi such that div(f;) = h; — ho
for 1 <i< 2n— 1. Then the Grassmannian n-logarithm function Ef is defined by

£l = Cr)' ™ [ S

CP

1.3. THE LIE-MOTIVIC CONSTRUCTION OF THE GRASSMANNIAN #-LOGARITHMS

A different construction of the the Grassmannian n-logarithms Lffn forn =2, 3 was
given in [G2, G3] and for n = 4 in [G1], see also [GO].

We will call these constructions Lie-motivic since they are obtained as a
composition of a homomorphism from the Grassmannian complex (see Section
4 below) to a motivic complex, understood as the weight n part of the cochain
complex of the motivic Lie algebra, followed by the canonical regulator map to
the real Deligne complex.

Let us explain in more details the notion of the Lie-motivic Grassmannian
polylogarithm function. It is expected that there is a natural variation of n-framed
mixed Tate motives over the Grassmannian 6’2 responsible for the motivic
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Grassmannian n-logarithm function in the following way. Taking the Hodge
realization of this variation we get a variation of n-framed Hodge-Tate structures
over the Grassmannian. Let H, be the group of n-framed Hodge-Tate structures.
Then H, = ®,>0H, has a natural Hopf algebra structure (see [BGSV]). The
coproduct on H, induces a graded Lie coalgebra structure on the quotient

H,
H>() : H>0

There are two natural period maps

LH),:=

P H, — R: b He— R )]

The first one is an algebra homomorphism, while the second kills the products:
PH(H-o-H-0) =0. Thus we get a canonical map p’:L(H), — R. Applying
pointwise this map we get a function on the Grassmannian which we call the
Lie-motivic Grassmannian polylogarithm LS.

1.4. THE COMPARISON PROBLEM

Now a natural question arises:

PROBLEM 1.2. (a) What is the relation between the Grassmannian n-logarithms
Egn and L$,? Do they coincide or not?

(b) Is it true that the Grassmannian n-logarithm £
struction?

(c) Is it true that the Grassmannian n-logarithm E?;n is Lie-motivic?

G

on

admits a motivic con-

By the very definitions, one has ES’?I;” =LY,

It was known from [G4], and it is already a nontrivial fact, that the Grassmannian
dilogarithms of both types coincide. We will recover this result in Section 4.5 below.

It was noticed by the first author during the preparation of [G4], and puzzled him
very much, that the Grassmannian n-logarithms Efn for n > 4 should be different
from L. The reason is that ES” satisfy some additional functional equations which
should not be true for ij,, for n > 4. Namely, projection along the subspace
generated by e; provides a map bj:,G\g+1 — 6; It was proved in [G4] that qu
satisfies the property

2q—p

;(—1)1'1;;,% =0. 9)
=

This property is valid for the motivic Grassmannian trilogarithm. However it should
not be satisfied by L ,., for n > 4, and because of this to construct the regulator map
one needs to extend the LY to a bi-Grassmannian n-logarithm, see [G7].

In this paper, we compute explicitly the Grassmannian trilogarithm 523 and show

that it is different from L,% for k = 0 and 1. The difference is explicitly computed and
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has a motivic origin. Therefore, the answer to part (b) of the problem is positive for
n = 3. However it is not Lie-motivic, thus the answer to the question (c¢) is negative.

1.5. MAIN RESULT: COMPUTATION OF THE GRASSMANNIAN TRILOGARITHM Eg}

Recall that the classical polylogarithms are defined by
; . : dt
Lii(z): = —log(1 — 2); Li,(z): = Ll"_l(l)T’ n=2.
0

They admit the single-valued cousins (see [Z]). For the dilogarithm it is the
Bloch—Wigner function

La(2): = iLa(2): = ma(Lir(2)) + iarg(l — z) - log |z|
and for the trilogarithm it is
L3(2) = Re{Lix(2) — log|z| - Lir(z)} — } (log|z])* log |1 — |

which was used in the proof of Zagier’s conjecture on {(3) in [G2] and [G3].
Choose a volume form w € det Vy and set A, (vi, ..., v,):= (@, Vi A...AW,) € F.
We will usually omit the subscript w.
The following result was proved in [G2, G3], see also [G5].

All, I, B)A(L, b, )AL, b, 15))
Allo, i, DA, b, I5)A(L, Iy, 1))

LSy, ..., ls) = 91—0A1t6£3( (10)

The next theorem is proved in Section 5:

THEOREM 1.3.
LSy, ..., 15)
=L§(lo, ..., 15) — $A1t6<108 |A(ly, I, b)1og |A(l1, b, 13)|log |A(L, 1, 14)|)-

Our next goal is to show that the function L3G does not satisfy the most interesting
functional equation valid for the function L§. Consider the following configuration
of 6 points on the projective plane, called the special configuration.
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The set of the special configurations can be naturally identified with P'\{0, oo}
(see [G8]). Namely z € F* corresponds to the configuration gs(z) given by the
columns of the following matrix

1 0 1
1 10
0 1

1 0
0 1
0 0 z

—_— O O

If a function is defined at the points of a set X, we can extend it by linearity to a
homomorphism from the free Abelian group generated by the points of X. We apply
this construction to the functions L3G and £3G and appropriate sets of the
configurations of 6 points in P2, Then according to (10) one has

Allo, h, B)A(L, b, 13)A(, b, ls))) _0
All, I, )AL, b, I5)A(D, b, 13) )

L3G<(10, o ls) — 910A1t6g3< (11)
However the function L‘g’ does not satisfy this functional equation. Indeed, we have
the following result, which is proved in [G8], see also [G4].

THEOREM 1.4. The restriction of the Grassmannian trilogarithm function E? to the
special stratum coincides with the classical trilogarithm function Ls. More precisely,

L5 (g3(2) = L3(2).

Thus if the function C? satisfies the functional equation (11) it would coincide with
LS at the generic configuration, which is not true according to Theorem 1.3.

Notice that the function £3G can be defined for an arbitrary configuration of points
in P? ([G4], [G8]), and one can show that it is continuous near the special stratum.

Remark. This shows that in the [G1, S 4] to define the motivic Lie coalgebra
®G,(F) of a field F (cf. loc. cit.) one needs the functional equations for the
Lie-motivic Grassmannian n-logarithm LS, instead of its relative £9.

PROBLEM. Find explicit expression of the Lie-motivic Grassmannian n-logarithm
via the functions LY.

1.6. MAIN RESULT FROM THE POINT OF VIEW OF THE DELIGNE COHOMOLOGY

Recall that the Deligne cohomology Hj (X, R(p)) of a regular algebraic variety X
over C can be defined as the hypercohomology of X with coefficients in the following
complex of sheaves Rp(p) on X(C):

d

(DOX—d>D£(—> d

oSt L ) eRe-1)
T”ﬂ T”p

d d
p p+l1
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Here DYy is the sheaf of i-currents on X. The group D(;( isin degree 1. To compute the
Deligne cohomology of X let us replace FPQ* by its Dolbeault resolution and denote
by Ry (p)(X) the complex of the global sections of the complex of sheaves over X (C).
Then H}(X, R(p)) = H*(Rp(p)(X)). Thus to calculate the Deligne cohomology
H{,(@’}, R(n)) of the semisimplicial Grassmannian (1) one needs to consider the
cohomology of the total complex associated with the bicomplex of the shape

Rp(n)(G)«— - - - «—Rp(m)(G}). (12)

A collection of differential forms on the simplicial Grassmannian (1) satisfies the two
conditions (2) and (3) if and only if it represents a 2n-cocycle in the bicomplex (12).
By [G4, Lemma 2.3], LSH satisfies (2). We will see that by definition, for n =2
and 3, Lg, satisfies (2) and (3) and, moreover, /3;?71;;1 = L7 .. Thus one can expect
that the difference between the 6-cocycles given by LS3 and £S3 is a coboundary
of a certain nice 5-chain in the bicomplex (12). We shall prove that this is indeed
the case and calculate explicitly the 5-chain. It has a nonzero component only over

63, and this component is given by the function
(los .-\ la)— %Alte(log |A(lo, I, )| 1og |A(L, b, B)I1og |A(L, 5, 14)|)- (13)

Denote by Cj this 5-chain in (12). It is also of motivic nature: the function (13) is a
composition of the map
G(F)— S°F*
Uo. .. 19)1— S ALt A, 11, ) - Al 1y 1) - A, B, 1),

which is defined for an arbitrary field F, with the logarithm homomorphism

S*C* — R,

X1 - X2 - x31—> log |x1[log [x2|log |x3]

defined when F = C.

Denote by {L',.Cj}} and {LS3} the 6-cocycles in the bicomplex (12) provided by the
collection of forms £f3 and L. Let D be the differential in the total complex
associated with the bicomplex (12).

THEOREM 1.5. (LS} — (LS,) = D(C3).

We expect a similar story for the Grassmannian n-logarithms in general: the forms
Egn should have a motivic nature in the following precise sense:

(1) One should have an explicitly given homomorphism L, from the weight n
Grassmannian complex to the weight n part (A*L(F), A), of the cochain complex
of the motivic Lie algebra L(F), of an arbitrary field F. (In fact I, should be a
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part of the homomorphism from the bi-Grassmannian complex to the cochain
complex of L(F),).

Composing this map with the regulator map we get a cocycle in the bicomplex (12),
the Lie-motivic Grassmannian n-logarithm Lf}n For n =2, 3,4 this program has
been implemented in [G2], [G3] and [G1], but in general the homomorphism I,
is unknown. The story for n = 2, 3 is recalled in section 4 below.

(2) We expect a natural (2n — 1)-chain C, of motivic origin in (12) such that
{Esn} — {ijn} = D(C,). Here {£G } and {Lgn} are 2n-cocycles in the bicomplex (12)
provided by the forms EG and L_G”

Our desire to understand better the structure of Grassmannian polylogarithms
was motivated by the following reasons:

(1) The Grassmannian n-logarithm can be used for an explicit construction of the
class ¢, € H"(BGL(C),, Rp(n)) which provides Beilinson’s regulator for £S (see
[G8]) and LC (see [G2, G3]).

(i1) Explicit calculation of the Grassmannian n-logarithm L‘fn should give a clue
for construction of the homomorphism I, as well as the chain C,,.

2. Some Properties of the Differential Forms r,,

Here is another expression of the differential form r,, which will be very useful in
applications.

PROPOSITION 2.1. The differential (m — 1)-form r,,(f1, . .., fm) can be expressed as

)mk]

Alt,, Z( log | /] /\dlogf /\ dlogfj}. (14)

Jj=k+1
Proof. By definition
rn+1(f()v s JFH)

-1 3 S
= Al 1 - N (dlog f, + dTog f;
i i e ]20<2 +1) og /ol S/:\l( og fs +dlog f;)

X /n\ (a’logﬁ—d@)}

s=2j+1

—1 n+1 2j 2j nkl
TS M ;>o<2j+1>zz<n— = )( >( b

k=01=0

x loglfol/\dlogﬁ /\ d@}.

s=h+1
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In the above, we’ve used the skew-symmetry property, for example,

Alt,{dlog fi Adlog f,---} = Alt,{dlog fi Adlog f> -}

The coefficients in the summation of index k is obtained as follows: for each
dlog f; + dlog f; we can either choose dlog f; or log f; but not both, the same
for dlog f; — dlog f;. For any appropriately fixed /, there are (2’) ways to choose
log f; from the former and (” 2’) ways from the later. Once log f; are chosen,

dlog f, are determined. We can now show that
n+1 ) ( n—2j ) (2]) n—k—I n—k
. (=1 =2'(=1)
by comparing the coefficient of x"~* of the following polynomials in x:

£ GRG0

p=00<2i<n >0

_ (n + 1>(1 — (1 4 )Y
0<2/<n

2j+1
1
— 1 — 1 n+l l—x—1— n+1
2(l+x)[( x+14x) (1—x x)"]
2”[1 — (_x)n+1] n & m

m=0

The proposition follows at once.

COROLLARY 2.2. The (2n — 1)-form ra(f1, . .., fan) can be expressed by

2n 2( l)kl 2n
Altyymoy) D = 2—loglfil /\dlog(f) /\ dlog(f)

k=n+1 j=k+1

and the 2n — 2)-form ry,_1(f1, . . ., fon—1) Is

2n—1
Altzane{(z( 2k lo Iﬁl/\dlog(f) N dlog(+
=n-+1
2n—1 2( 1) . 2n—1
+ > = loglfil /\dlog(m /\ dlog(f)
k=n+1 (2 1)' Jj=k+1

Proof. We can use symmetry to bring (14) into the form in which at least
[(m —1)/2] holomorphic dlog appear together with at most [(m — 2)/2] anti-

holomorphic dlog.

EXAMPLES 2.3. We will need the following special cases later:
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(1) From Corollary 2.2 r3(f1, f2, f3) is equal to

%Re(Alt_;Ilog \fildlog f> A dTog f5 — 2log | fild log fo A a’logfg}).
(2) We have

ra(f1./2,. /3 f4)
= (Al flog|fild log 3 A d1og 5 A dTog fi—

“log|fildlog f> A dlog f3 /\dlogf4}>.

3. Computation of the Grassmannian 1-Forms
3.1. THE SETUP

Forany 0 <k <n-—1welet V,_; be an (n — k)-dimensional complex vector space.
Let ly, ..., hs—x—1 be vectors in generic position in the dual space V7 ,. Recall that
the Grassmannian k-form of weight # is

L8 ) = @ [ (i o), (15)
where fi(t) =1/ly, 1<i<2n—k—1, are 2n—k—1 rational functions on
P(V,_i) = CP" ', Our first goal is to explain the meaning of this integral. In
the next subsection we give a recipe for its computation when k = 1.

Let n: Z—> Y be a smooth map of manifolds with compact fibers and w be a
distribution on Z. Then one can define n,w so that (m,w, @) = (v, n*¢p) for any
smooth test form ¢ on Y.

There is a canonical function on V", x V,,_; whose value at the point (/, ) is /(¢).
The expression ry,_;_1(f1(?), - - ., fon_i—1(?)) is a differential form with logarithmic
singularities on CP"*~! x ¥ where

Y=V, x--xVi,.

2n—k—1times

It is proved in [G4] that it has integrable singularities, and thus provides a
distribution on this manifold. The right-hand side of (15) is defined as
Qi .z, (ran—i=1(f1(0), . .., fon—k—1(1))), where 7 is the canonical projection along
CP" "1, Write d = d; + d, for the differential on P(V,_;) x Y, where d, is the
P(V,_i)- and d, is the Y-components of d.

Let X and Y be complex manifolds and X is compact of complex dimension d. Let
w be a distribution on X x Y. There is canonical projection 7: X x ¥ —> Y. Denote
by DP1)(X) the space of distributions of the Dolbeault type (p1, ¢1). The space
D(X x Y) of distributions on X x Y admits a decomposition D(X x Y) =
@DPraP2)(X % Y), where (p1, q1) (resp. (p2, ¢2)) is the type of the distribution
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with respect to X (resp. Y). If w is of type (p1,q1; p2, ¢2) then m,w is of type
(p1 — d, q1 — d; p2, q2). In particular n,0 =0 if p; <d or ¢q; < d.

Let us present 7y, x_1(f1(?), . . ., fon_r—1(£)) as a sum of its Dolbeault components
@P-21=k=2=P) Then

2n—k—2

P2—k=2-p) _ Zlog |g0(z)|/\dlogg](t) /\ dlogg().

Jj=p+l1

where g#(¢) are some rational functions on CP" %! Therefore the integral of
wP2=k=2-p) oyer CP" 1 is zero unless n—k—1<p<n—1.1f p=n—1 the
integral is calculated as

n—1
(2n£ )_ Alth k- 12[ log lgo (1)) %

2n—k—2d

x /\daloggl(t) /\ dlogg! (1) /\ log g7(1).

Jj=k+1

In this paper we are mostly interested in the case k = 1.

3.2. THE KEY FORMULA

Our main task in this subsection is to calculate the Grassmannian 1-form
L'f’;n 41(lo, ..., by) of weight n+ 1. (We increase the weight for ease of notation.)

Set X:=V}x---x V¥and Y:=V,. Let (l, ..., [,; ) be a point of the variety
X x Y. One has

0"(X X Y) = Burp=n’(X) @ 0*(Y); o= Z @),

We will now write d = d, + d; where d, is the V,-components of d. Let us compute
the (1; n — 1) component of the following differential form:

Z(—l)’dlog ING AN dlogll\»(t) A ... Adlogl,(?).
One can define the SL(V),)-invariant Leray form
1 (W), L(0): =Y (D LI (O A AT A A did(0).
i=1

Let p: V,, \ {{;(t) = 0} — P(V/,) be the natural projection. Then one can check that
the form

OCn_l(ll(l), D) ln(t))
L) -...- L)

is lifted from P(V},), i.e. it is equal to p*w for some form w on P(V},).
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PROPOSITION 3.1.

1 (Lin=1)
—Al..1 (d1ogho(0) A -+ A dlogl, (1)

1
= o=y Al /”)(dlog Alo, ... o) Adilogh(D) A -~ A dy logln_l(t))

Y 1Y dlogAdh. .. 1y A 210, 0, (0
i=0

lo() - .. I0) . . . - 1u(2)

Remark 3.2. Because A(ly, ..., 1,) is a function on V; x --- x V¥, one sees that
d,logA(l, ..., L) =dlogA(l, ..., 1L).

EXAMPLE 3.3. In the simplest nontrivial case n = 2 we get
dlogly(t) A dlogli(t) — dlogly(t) A dlogh(t) + dlogli(t) A dlogly(t)
=dlogAlly, L) A <d, logli(t) — d;log lo(t))—
— dlog Ay, b) A (d, log h(1) — d, log lo(t))+
+dlog A(ly, ) A (d, log hy(t) — d; log (z)).
In coordinates it looks as follows:

aty + artr b1t + bty
— " ANdlog————==

dlo
c1t 4+ oot it + ety
b]ll+b2t2
=dlog(aib, — axby) Ad;log————=—
gla1by — axb) N d, g T
t t
—leg(Cllc'z—ClzC])/\dthgM
a1ty + artr
city + et

+dlog(bycy — bycy) Adylo .
g(bica — bacr) A dy & bots
Proof. Choose a volume form o € det V*. Denote by o~! € det V,, the dual volume

form in V};. Then for any vectors /1,...,/, € V; we have A ,~1(li,...,[,) € F. It is
easy to check that

w1 (h@), o () = Agyi (B, oo 1) - TE O, (16)
where E:= ) 1,9, is the Euler vector field in V. It follows from this that

(1;n-1)
(Z(— D" A dlog l_,m)
i=0 0<j<nj#i

o~

S o (=D Ay 1o, ..y oo b)) - duli() iy
bo(2) -+~ L,(0)

.
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Now let us calculate (16). Using (17), we get

o1 (lo(0), - - -, ln=1 (1))
lo(1) . ... L1 (2)

_ dAw—l([(), Cee, [,,,1) ANIE®

B b@) ... lp-1(0)

So it remains to show that

dlog Aw—l(l(), SN ln—l)

S DHOdA o T )

i=0
=3 (Al T L)dali(2)
i=0

which follows by applying the differential ¢, to the identity

S DAl T ) 1) = 0.

i=0
We now can finish the proof by observing that

1
1o s liet) = s Al O (@) A+ A didyr (0] 0

(n—1)
COROLLARY 3.4. The Grassmannian 1-form of weight n + 1 is

LS, o, ... bn)

o (=2m)'”
= — m . A1t2n+1 X
n 2n—1
X Toan (dlogA(ll, A /\/ log|lo(n)] /\ dilog i) A /\ d,loglj(t)>.
cp! =2 j=n+l
Proof. Let f; = [;/ly and
2=
bn = @2n)! -
From

2n
r2n(f1’ A 5f\2l’l) = Z(_l)l’?n(lo, LR ] l[’ LR ] 12}'1)
i=0
one has

e 1
LS00, ..., by) = Qmi)' ™" /@ Plﬂ(z—n)!Altznﬂrzn(lo,...,12,1_1).

Using Corollary 2.2 and observing that (1/(2n)!)Alty,1Alty, = Alty,1; we can
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rewrite the integrand as

n 2n—1
by -A1t2n+1nzn(1og|zo(t>| Ndloghi(n /\ dlogl,»(r))

j=1 j=n+1
— 1 by - Altays)

n 2n—1
X T <10g lo(0)ldlog Alhy. ..., 1) [\ dilogli(t) J\ dilog lj(z)) . O
j=2 J=n+1

4. The Grassmannian and Polylogarithmic Complexes: A Review

4.1. THE GRASSMANNIAN COMPLEX

Let C,,(n) be the configurations of m + 1 vectors in generic position in n-dimensional
vector space V, over F. Then there is a map

m

d: Cpuri(n+1)— C,(n), oy - ey V) I—> Z(—l)i(vi|vo, R R R
i=0

Here (vi|vo, ..., ¥, ..., vy,) means the configuration of (/T

', ..., v,)inthe space
V,./{vi) where v]/- is the image of v; in V,/(v;). It is straightforward to see that
(Cyyn_1(x),d") form a complex, called the (n-th) Grassmannian complex. It is

isomorphic to the complex (C,y,_1(n), d) where
m .
d: Cpy1 () —> Cu(m),  (Vor oo V) i—> Y (=10, o, T )
i=0

by the duality *:C,y,_1(m) = Cuyn_1(n) obtained by comparing the two
isomorphisms in (5).

4.2. THE POLYLOGARITHMIC COMPLEXES

The polylogarithmic complex (B(F;n),,0) is a candidate to the weight n motivic
complex of the field F. It was defined in [G2, G3] for n < 3 as follows. The groups
B,(F) are quotients B,(F):= Z[Plp]/R,,(F ), where the subgroups R,(F) reflect the
known functional equations for the n-logarithms for n =1, 2,3. For example,
B\(F) = F* = Z[P]/Ry(F) where Ry(F):= ({x}+ {y} — {xp}: x.y € F*; {0}; {o0}).
Consider the homomorphisms

F* A F*, if n=2,

By(F)® F*, if n=3,

1=x)Ax, if n=2,

{x}, ® x, if n=23,

On:  Z[PL]— {

{x}—> {
{0}, {1}, {o0}—> 0,
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where {x}, is the image of {x} in B,(F). Then 6,(R,(F)) = 0, so we get well defined
homomorphisms d: Bo(F) —> A’F* and 6: By(F) — B»(F) ® F*. We get the
polylogarithmic complexes

By(F) = A2F*,  By(F) —> By(F)® F* —> A*F*,

where 0({x}, ® y) —> (1 — x) A x A y. These complexes can be thought of as the
weight 2 and 3 parts of the standard cochain complex of the motivic Lie algebra
L(F),, see [G3].

4.3. HOMOMORPHISMS FROM GRASSMANNIAN COMPLEXES TO THE POLYLOGARITHMIC
ONES

There are two commutative diagrams:

d d d
G2 — GO G(3) — Ca(2) —  G(D)
lrpﬂ) l%m and lw;(z) rmz) lm(z) ,
B(F) — A2F B(F) — B(F®F —» NF

where @,(1)(vo, vi, 2) = %A1t3{A(vo) A A} and @5(2)(vo, Vi, v2, v3) is given by
{r(vo, v1, v2, v3)}, which is the image of the cross-ratio

_ A(vo, v2)A(v1, v3)

= Ao, A, 1) (18)

r(V(), e V3)
in By(F). For the second commutative diagram, the map ¢s(3) is the generalized
cross-ratio

A(vo, vi, v3)A(v1, va, va)A(v2, vo, v5)
A(vo, v1, v4)A(v1, v2, vs)A(v2, vo, v3)

95300, -, v5) = gy Alte] | e Ba(P)

and

©4(2)(vo, ..., va) = 5A1t5{’”("0, V2, V3, V4); @ A3, V4)],

(19)
P3(D)(vo, ..., v3) = —%Al‘u{A(vo) A A A A(vz)].

Remark 4.1. The correct proof of the second commutative diagram was given in
[GS5]. Notice that our ¢s(3), ¢,(2) and ¢5(1) are 1/6 of the corresponding maps
in [G5]. We made these changes in order to have £% , = LS

n—1;n n—1;n*

4.4. THE REGULATOR MAP ON THE POLYLOGARITHMIC COMPLEXES

Let X be a variety over C and F:= C(X). Let A}(X) is the de Rham complex of
smooth forms at the generic point of X over C. Set a(f) =log|f|dlog|l —f|—
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log |1 — f|dlog|f]. Then there are the following commutative diagrams

B(F) > AP B(F) — BFoFr - AP
lrgu) lrz(z) and lrsm lm(z) lrsm ,
Ax) — Al A A S AW
(20)
where

(1) {f b 1—> La(f) = iLa(f), r2(2): 8o A g1 1—> r2(go, &1);
r3(D): {f}3— L3(f),

r3Q2): (/) ® gi—> La(f)diargg —

r3(3): 80 A g1 A g2+—>13(g0, &1, 82)-

log |gla( f)
—

Composing the maps ¢ and r we get the Lie-motivic Grassmannian polylogarithms
L¢, forn=2,3.

4.5. THE GRASSMANNIAN DILOGARITHM

We deal with the left commutative diagram in (20). It is easy to see that

LSy, b, b): = r2(2) 0 @y (DU, Iy, o)
= 1Ala{ (o, )} = ra(fi. 12) = L5300, 1. ).

Therefore, the difference between 59(10, ..., 3) and
LE(lo. ... )= ra(1) 0 03, - ... 13) = La(r(lo. ..., I5))

is a constant. But it is zero because it is skewsymmetric with respect to the
permutations of the vectors /;. Thus L, = £ and

£S5y, ... 1) = Lo(r(lo . ... 3)). 1)

5. Proof of Theorems 1.3 and 1.5
By the very definition
LS50, 1y, b, I3)
=r3(3) o p3()(lo, Iy, o, I3)
= —LAl{rllo, b )} = 1 fo. 15) = L5300, b b, ).
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We now want to compare
LS(lo. - - 1a): = r3(2) 0 042y, - . ., Ia)
and

£l ot = Cr ! [l fofify
CP!

Qmi)~!
-

Notice that the (1, 2)-component of r4(ly, /1, 12, I3) is a (1, 2)-form on X x V5, not on
X x P(V3). However, after the alternation we get a (1, 2)-form on X x P(V>).
We will write A(a, b): = A(l,, Ip) for the rest of the paper.
PROPOSITION 5.1.
LGl ..., Is) = Alts { (;—zzz(r(zo, L, b, L)diarg A(1, 4)—
~L1og|A®, Dllog [AI, 4)ld log [AC. 4)]) }.

Proof. By Corollary 3.4

6-2miLl5(lo. I, b, 3. 1y)

= A1t5n4{dlog A(l, 2)/ log|lldlog(l) A dlog(l3)}
CcP!

= —Altsm{dlogA(l, 4)/ 1 log|ly|d log(l}) A dlog(lg)}
cP
= 2A1t5{dlog|A(l, 4)|/ log|lhldlog|l| A diarg lz} - (22)
cp!

- 2Alt5{diargA(1, 4)/ 1 log|lhldlog|l| A dlog |12|} (23)
cP

To get (22) and (23) we use the following observations. Let /' and g be holomorphic
functions on a complex curve X and ¢ is a real valued function. Then since
[y ¢dlog f Adlogg = 0 we have, taking the real and imaginary parts respectively,

/ gdlog|f] Adloglg] = / pdargf Adargg,
X X

/(pd10g|f|/\dargg:/(pdlog|g|/\dargf.
X X
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One can easily show that (by using Examples 2.3(1))
2ni£§;(l(), h, b, L)

= /cp‘ 1. /2. /3) = 2/@?] log|fildlog|f2l A dlog|f3l 04

__2

3'A1t4./ log|lyldlog|li| A dlog|b].
: CP'

This is a special case of Equation (38) in the Appendix.
Writing (23) as

_Alt5{di arg A(1, 4)/ (Alt,m [1og lold log |I| A dlog |12|})}
CP'

and subtracting from this

Alts{di arg A(1, 4)/ (Alt,l,,z{log lold log |11 A dlog |14|})}
CP!

which is zero (to check this use the skewsymmetry with respect the alternations {2, 3}
and {0, 3}), we see, using (24), that (23) is equal to

Alts |m'£§(10, I, b, L)diarg A(1, 4)}
— miAlts [Zz(r(lo, I, b, l)diarg A1, 4)}

by (21). To calculate (22) we compute, in two different ways, the expression

A2, 4)10)
A0, 2)1, }

Alts{dlog|A(l,4)|/ dlog|h| /\d£2< (25)
CP!

(1) The integral over CP', and hence the whole expression, is zero because

AR, )l
A0, 2)14> }

A2, )y
A0, 2)ls

dlog|ll|/\d£2( ):d{loglll|Ad£2<

where both parts are understood as currents. Notice that log |z| and £,(z) have inte-
grable singularities and thus provide currents on CP".
(2) Using formulas A(2, 4)ly(f) — A0, 4)1x(1) = A(0, 2)l4(¢) and

dLs(f) =log|fldarg(l — f) —log|l — fld argf
we see that dL,(A(2, 4)l/A(0, 2)14) is equal to

LA (A(O, 4)12) oaAO ) <A(z, 4)10)
°BIA0, 20l "B\A©, 201 T CB1A0, 2| T B\A, 2014
L AQML|, b AO,4b| Iy
= lOg‘A(O, oy dargl4 IOg'A(O, s dargl4.

Since this expression is skewsymmetric with respect to the transposition {2, 0}
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exchanging the indices 2 and 0 we can write (25) as

— AR, 8| ,. b
0= 2A1t5{d10g |A(1, 4)] /(;:]pl dlog|li| Alog AQ. 2l dzargh}
= 2A1t5{d10g |A(1, 4)|/ log l—o‘dlog L] A diargl—z} — (26)
CP! Iy la
/
— 2A1t5{log |A(0, 2)|d log |A(1, 4)| / 1 dlog|l| A a’iarglz}. 27
CP 4

We got last line by using transposition {0, 3}. Now (26) is exactly (22) since the other
three possible terms vanish due to alternation {0, 3} (or {2, 3}). Therefore (22) is equal
to

2A1t5{10g A0, 2)|d log |A(1, 4)| / dlog|li| A di argi—z}—
CP! 4

/
= —2A1t5{log |A(0, 2)|d log |A(1, 4)|/ 1 log|h| A d(diarglz)} (28)
CcP 4

A1, 2)
AL, 4) }

= —4niA1t5{log A0, 2)|d log |A(1, 4)| log‘
We got this line by noting that d(diarg f) = 2nié(f). Notice that
4m’A1t5{log A0, 2)|d Tog [A(1, 4)] log |A(1, 4)|} —0

since the expression is unchanged under the transposition {0, 2}, we see that (28)
equals to

—4i - A1t5(log IA0, 1)|d log |AQ2, 4)| log |A(, 4)|)
by transposition {1, 2} followed by {2, 4}. This finishes the proof of the proposition.[]
To calculate L;(k. ..., l4) we need
PROPOSITION 5.2. Alt; (log|A(1, Dedr(lo, Iy, b, 14))) is equal to
4dAltsflog AR, 4)llog IA(1, 4)]log [A©, )] |+
+ 12A1t5{1og IA(L, 4)| Tog |A(0, D)]d log |A(2, 4)|}.

Proof. Here is the algebraic reason behind this lemma. There is the following exact
sequence of (Q-vector spaces

Ff @ N°Ff —> SFj @ Fl) —> S°F},

Ki1a®bAci—a-bQ®c—a-c®Db, Kya-b®ci—a-b-c.
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It is a special case of the Koszul complex. The map x, admits a natural splitting
Kya-b-c— %<a~b®c+a-c®b+b-c®a>.
If F = C(X) then there is a map

SPFr@ F*— A'(X);  fi - ®fs—> log|fillog|fildlog|fil.

Now the proposition is an immediate corollary of the following lemma. O
LEMMA 5.3.

- xlAltg{A(1,4) ® (1 = r(lo, I, b, 1)) A r(lo, Iy, o, 14)}
= 126 (Al A2, 4) - AL 9) - 40,2} )+ (29)

n 12A1t5{A(1, 4)-A(0, 1) ® AR, 4)}.
Proof. Let us show that that (29) equals to

4Alts {A(l, 4).A0,2) ® A, 1) — A(1, 4) - A, 1) ® A0, 2)+ o)
F AL 4) - A0, 1) ® A, 2)}

Indeed, using (18) we get

(1= rllo, b T 1) A rlly, b, o, 1) = S At 1,10 {A©, 1) £ A©, 2)]
Using this we write (29) as a sum of the following 12 terms:

Alt5< — A(1,4)- A0, 1) ® A0, 2) + A(1, 4) - A0, 2) ® A0, 1)+

+A(1,4)- A0, 1) ® A(1,2) — A(1,4) - A(1,2) ® A0, 1)—
—A(1,4)-A0,2) @ A(1,2) + A(1,4) - A(1,2) ® A0, 2)—
—A(1,4)- A0,2) ® A(0,4) + A(1,4) - A0, 4) ® A0, 2)+
+A(1,4)-A0,2) ® A2,4) — A(1,4) - A2, 4) ® A0, 2)—

—A(1,4)-A(0,49) @A2,4)+ A(1,4) - A2, 4) ® A0, 4))

Notice that a priori (29) is a sum of 24 terms corresponding to the 24 terms in (18).
However 12 of them disappear after the alternation. For instance, Alts(A(1, 4)-
A0, 1) ® A(0, 4)) = 0 since the involution {2, 3} does not change the expression.

Computing the sign of the appropriate permutation, we see that this sum is equal
to (30). Indeed, the terms 2, 5, 7 and 9 provide the first summand, the terms 1,
6, 8, 10 the second summand, and the rest the third summand.
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The third term in (30) vanishes by using the involution {0, 4}. This involution also
bring the first summand in (30) into the following form 4Alt5{A(1,4) -A0, D®
AQ2.4)}.

The second term in (30) contributes

sAlts{A(L 4)- AO, 1) ® A2, 4+
+ 126 (Al [A@, 4) - A0, 4)- 40,2))).

The lemma, and hence Proposition 5.2, are proved. O

Notice that {r(/1, b, /3, I4)}, is skewsymmetric with respect to the permutations of
I;’s. So applying involution {1, 3} to (19) one gets

02U, - 1) = 5 Alts (o, b, b, 1)) @ A 1))

Therefore using Propositions 5.1 and the formula for r3(2) at the end of the
Section 4.4, we get

L95o. .. L) — LT3, ..., 1)
= L53(Uo, .. 1) = 13(2) 0 94 2)(Uos - -, Is) 31)
- gd(Altsllog IA2, 4)| log |A(1, 4)| log |A(0, 2)| ])

Thus using this and formula (2) in the case kK = 0, n = 3 we conclude that

Lo, ... Is) — L§5(lo, ..., Is)+
+$A1t6{log IAG5, 2, 4)| log |A(S, 1, 4)| Tog |A(5, 0, 2)|}

is a constant (notice the change of the sign before 1/9). Since it is skewsymmetric with
respect to the permutations of the vectors [, ..., /s, it must be zero. Finally, notice
that

Altg10g|A(S, 2, 4)| log |A(S. 1, 4)/log A(S, 0, 2)}
- A1t6{10g IA0, 1,2)]log |A(1, 2, 3)| log |A(2, 3, 4)|]

Theorems 1.3 and 1.5 are proved.

6. Appendix: Formulas for the Grassmannian n-Logarithm Function

To simplify the Grassmannian n-logarithm we need

LEMMA 6.1. Let X be an n-dimensional complex manifold. Let fy, . . ., f2, be any 2n
rational functions on X. Then
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(1) Forevery0<j<n—1

2j+1 2n
A1t2n{/\dlog|fj| A dargfk] —0. (32)
k=1 k=2j+2

(i) Forevery0<j<n-—1

2j 2n
Al [ A\ dloglfil /\ darg fi} =bdioglfil A+ Adloglfol, (33)
k=1 k=2j+1

where b; ,, = (2n)!(’f)/<§jf).

Proof. (1) Because dim X = n, for any 0 <i < n—1 one has
dlog|fil A---Adlogl|fil Adlog fix1 A--- Adlog fo, = 0. (34)

Denote by x; the left side of (32) multiplied by +/— TR Taking the imaginary part
of (34) and alternating f1, ..., f2, we get

n—1 .
2n —i
Zj (2j+l—i>xj:0’ (33)

where the sum is over j such that 2j + 1 > i. Indeed, denote the expression inside of
Alt in (32) by 7;. An alternation of (34) contributes to 7; if and only if
2j + 1 =i, so that we can specify 2j + 1 — i terms from f;1, ..., f2, and make them
contribute the log part of 7}, which, together with log|fil, ..., log|fi|, contribute
the log part in 7;.
Let s; be the left-hand side of (35) considered for arbitrary i. Let us multiply it by
2?2# and take a sum over 0 < i< 2n—1.Since s; = 0 for any 0 < i < n — 1 we have
Zl"ol s,( )l’ = 1"A(t) for some polynomial A(¢) in t whose coefﬁ01ents are Q-linear
combinations of x;’s. Using the identity

G=)E)=G)0) 9

2n—1 n—1 .
2n —i 2n -
n _ Al
[A(”_Zz-(zﬁl—i)(z')x”

=0 J
n—1 2j+1 n—1
_ 2n 2j+1 241
=2y ) R 7 )=y oo
Jj=0 i=0 Jj=
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Replacing ¢ by t — 1 we get

n—1 on 2+1_ .
ij<2J+1> = (1= 1)"A(t - 1).

The left-hand side is an odd polynomial of degree 2n — 1; it has a zero of order n at
t = 1; therefore it must have a zero of order n at t = —1, so its degree is at least
2n. Thus it is a zero polynomial.

(ii) Denote the left side of (33) by y;. Taking the real part of Equation (34) and
alternating we get

2
Z(” )( )7y, =0, 0<i<n—1. (37)
2j
By deﬁnition it is clear that b, , = (2n)!. Multiplying (37) by (*)# and taking sum
over 0 < i < 2n we have
2n n
S 1y ( ) (2”>z — /'B()
=0 j > 17/2) Y-

for some polynomial B(f). Using combinatorial identity (36) we write it as

Z( e ( )2(2]>1 —Z( " ‘fyj( ?)(rﬂ)zf:t"B(z).

i=0

Changing ¢ to ¢ — 1 and noticing that the left-hand side is an even polynomial we get
Z( 1y ( ) P = (1B~ 1) = (7 — 1)'CQ).

Therefore C(f) =y, is a constant. Thus we finally have y;/y, =b;,/(2n)
= (;’)/(%;’) (0 <j < n). The lemma is proved. O]

Recall that the Grassmannian n-logarithm is defined by
L9l = @' [ i fo)
cp!
where f; = [;/ly.

PROPOSITION 6.2. The Grassmannian n-logarithm EnG(lo,...,lz,,,l) can be
expressed by

(—2mi)' ™" / 2l
— o Alty,- Reilo dlo dlos(f)
Qn—D T e g|f1|/\ g(f/)]/A1 ()
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or

(= (=1’ -1 |
Qnriy~'(2n - 2)! - log| /il J/:\Z dlog|fil

(=" (- 1? 2 |
T @riy'2n—2)@2n — 1)! Altz"{/@pn-l logh ,/:\1 dlogll| ¢

Proof. The first expression follows directly from Corollary 2.2. Now we prove the
second. By definition (6)

(3%)

n=1
—k—1
Pt (o fne) = = Y (=1 e

k=0
2k+1 2n—1 (39)
Alty, - [log £ A\ ezl /\ darg f}}
Jj=2k+2

where ¢k 2,1 = GZ;})/(M — 1)!. Now let us look at the terms in the expansion of (39)

which correspond to the term

log|fildlog|fal A -+ A dlog]| fon-1l. (40)

By Lemma 6.1(ii), each term inside the sum of (39) with log|f;| as the first factor
contributes to (40) as many as (—l)”_kck,zn_lbk,n_l times. So the total contribution
to (40) from (39) is

d —nf:(—l)”‘k b nf:( D ”_1
n — ~ Ck,2n—10k n—1 = 2k+1

! _ C(mI()
- 2yl = (=1 — 2
/O(z ' ldt = (1) T Tt ]
w2 (=Y
=D n—1)
Therefore

Vil (/SO Y
= (2m’)1’”/ ran—1(fi, - fanm1)
cp'!

(_4)n—1((n _ )')2 2n— / 2n—1
— 1 dl :
iy n— 1)) 4 Z oo 08V [\ dlogl]
where o1; =1id and for i # 1

UlfF(ﬁv o afZI’l—l) = _F(fl"f2’ cee ’ﬁ—lvfl 7ﬁ+1’ cee vf2n—2)'

(41)

https://doi.org/10.1023/A:1017504115184 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017504115184

GRASSMANNIAN TRILOGARITHMS 107

Now we observe that for any 2 <i < 2n— 1 we have

2n—1 2n—1
[ togifit ]\ dioeis) —01i</‘ Toglfil A\ dlogw)
cP™ j=2 CP"™ j=2

= <—1)l‘/(P d(log|fillog|fi) Adlog| /il A-+-dIoglfil - Adlog| fu-a| = 0.
cP

Therefore

2n—1 2n—1
Zal,(f log i /\ dlog |f;|)
P cp! j=2

2n—1
=@i=1 [ togIfil /\ dlogl
cpr-! =2

which together with equation (41) yields the second equality. To prove the last
equality in our proposition it suffices to observe that

2n—1
(2n—1)!/ log|fil /\ dloglfl
cpr! =2

2n—1
= Al [ loglfil A\ dlogl;
cp! =2

2n—2

= Al [ toglhl /\ diogli. =
b =1

J

Remark 6.3. This result improves Proposition 3.2 of [G4].
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