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Abstract. In the previous works of the ¢rst author, two completely different constructions of
single valued Grassmannian trilogarithms were given. One of the constructions, in Math. Res.
Lett. 2 (1995), 99^114, is very simple and provides Grassmannian n-logarithms for all n. However
its motivic nature is hidden. The other construction in Adv. in Math. 114 (1995), 197^318, is very
explicit and motivic, but the generalization for n > 4 is not known. In this paper wewill compute
explicitly the Grassmannian trilogarithm constructed in Math. Res. Lett. 2 (1995), 99^114 and
prove that it differs from the motivic Grassmannian trilogarithm by an explicitly given product
of logarithms.We also derive some general results about the Grassmannian polylogarithms.
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1. Introduction

1.1. THE GRASSMANNIAN n-LOGARITHM

Let Vm be an m-dimensional vector space over an arbitrary ¢eld F with a given basis
e0; . . . ; emÿ1. Let fzig be the coordinate system in Vm dual to the basis feig and bGq

p the
Grassmannian of p-dimensional subspaces in generic position with respect to the
coordinate hyperplanes inVp�q. The intersection of a hyperplane with the coordinate
plane zi � 0 provides a map ai: bGq

pÿ!bGq
pÿ1. The collection of the maps faig provides

a truncated semisimplicial variety over Z

Ĝn
n

..

.ÿ!
ÿ! Ĝn

nÿ1
..
.ÿ!
ÿ! Ĝn

1
..
.ÿ!
ÿ! � � �

..

.ÿ!
ÿ! Ĝn

1 �1�

where bGn
nÿk sits in degree 2nÿ k. Notice that bGn

1 � �Gm�n. Indeed, it consists of the
one-dimensional subspaces in Vn�1 which do not lie in the hyperplanes
z0 � 0; . . . ; zn � 0. So z1=z0; . . . ; zn=z0 are natural coordinates on bGn

1.
In [G4] we constructed a collection of R�nÿ 1� � �2pi�nÿ1R-valued differential

k-forms LG
k;n on the complex Grassmannians bGn

nÿk�C� satisfying the cocycle
condition

dLG
k;n �

X2nÿkÿ1
i�0
�ÿ1�ia�i LG

k�1;n; ÿ1W kW nÿ 2 �2�
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and such that

dLG
nÿ1;n�h0; . . . ; hn� � ÿpn

ÿ
d log�z1=z0� ^ � � � ^ d log�zn=z0�

�
; �3�

where hi � fzi � 0g and for any real numbers a and b

pn�a� bi� � a; n odd,
bi; n even.

�
A collection of forms as above is called (a single valued) Grassmannian n-logarithm.
Its existence was conjectured in [BMS] (compare with [GGL]). The function LG

0;n is
called the Grassmannian n-logarithm function and usually denoted by LG

n .

Remark. The condition (2) for k � ÿ1 is the �2n� 1�-term functional equation for
the Grassmannian n-logarithm function:

X2n
i�0
�ÿ1�ia�i LG

0;n � 0: �4�

There are two other versions of the Grassmannian polylogarithms: the real
Grassmannian polylogarithm function in [GM], on bG2n

2n�R�, and the multivalued
complex analytic Grassmannian polylogarithms on bGn

��C� in [HM1, HM2]. In
general the real Grassmannian polylogarithm is expected to live on bG2n

� �R�; it should
be responsible for the combinatorial Pontryagin classes, see [GGL] and [Y]. We will
not discuss them in our paper. The motivic construction of Grassmannian
polylogarithms should in particular provide a coherent construction of all the three
types of Grassmannian polylogs, as well as their ëtale, p-adic, etc., analogs.

The coinvariants of the natural action of the group GL�Vm� on the set of all
n-tuples of vectors in Vn are called the con¢gurations of n vectors in Vm. The
con¢guration spaces of m vectors in two vector spaces of the same dimension
are canonically isomorphic. So we only need to specify the dimension of the vector
space when talking about con¢guration of vectors. We denote by Cm�Vn�, or simply
Cm�n�, the space of con¢gurations of m� 1 vectors in generic position in Vn. Then
there are the following canonical isomorphisms

bGq
p � Cp�qÿ1�Vp�; bGq

p � Cp�qÿ1�Vq�: �5�
Namely, restricting the coordinate functions zi to a subspace W 2 bGq

p we get a
con¢guration of vectors z0; . . . ; zp�qÿ1 2W �. Projecting the vectors ei onto
Vp�q=W we get the second isomorphism.

1.2. CONSTRUCTION OF THE GRASSMANNIAN POLYLOGARITHMS LG
k;n [G4]

First we need the following construction. Let X be a variety over C and f0; . . . ; fnÿ1
be n complex-valued functions on X �C�. We attach to the above data the following
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singular R�nÿ 1�-valued differential �nÿ 1�-form:

rn� f1; . . . ; fn�:� ÿAltn
X
kX 0

ck;n log j f1j
2̂k�1

j�2
d log j fjj

n̂

j�2k�2
di arg fj

8<:
9=;; �6�

where ck;n:� n
2k�1
� �

=n! and

AltnF �x1; . . . ; xn�:�
X
s2Sn

sgn�s�F �xs�1�; . . . ; xs�n��:

The choice of the coef¢cients is dictated by the following property:

drn� f1; . . . ; fn� � ÿpn d log f1 ^ � � � ^ d log fn� � �7�

Let l0; . . . ; l2nÿkÿ1 be vectors in generic position in a complex vector space V�nÿk.
For 1W iW 2nÿ kÿ 1 set fi:� li=l0. They are 2nÿ kÿ 1 rational functions on
CPnÿkÿ1.

DEFINITION 1.1. The Grassmannian k-form of weight n on bGn
nÿk�C� is de¢ned by

LG
k;n�l0; . . . ; l2nÿkÿ1� � �2pi�k�1ÿn

Z
CPnÿkÿ1

r2nÿkÿ1� f1; . . . ; f2nÿkÿ1�:

For the precise meaning of the right-hand side, see [G4] or Section 3.1 below. It
was proved in [G4] that this integral is convergent, so the de¢nition makes sense.

The Grassmannian n-logarithm function LG
n can be descended onto the space of

con¢gurations of 2n points in P�V�n � � CPnÿ1 (see [G4]) or, what is the same,
the space of con¢gurations of 2n hyperplanes in P�Vn�. Let h0,. . .,h2nÿ1 be 2n
hyperplanes in CPnÿ1. Choose rational functions fi such that div� fi� � hi ÿ h0
for 1W iW 2nÿ 1. Then the Grassmannian n-logarithm function LG

n is de¢ned by

LG
n �h0; . . . ; h2nÿ1� � �2pi�1ÿn

Z
CPnÿ1

r2nÿ1� f1; . . . ; f2nÿ1�:

1.3. THE LIE-MOTIVIC CONSTRUCTION OF THE GRASSMANNIAN n-LOGARITHMS

A different construction of the the Grassmannian n-logarithms LG
�;n for n � 2; 3 was

given in [G2, G3] and for n � 4 in [G1], see also [G6].
We will call these constructions Lie-motivic since they are obtained as a

composition of a homomorphism from the Grassmannian complex (see Section
4 below) to a motivic complex, understood as the weight n part of the cochain
complex of the motivic Lie algebra, followed by the canonical regulator map to
the real Deligne complex.

Let us explain in more details the notion of the Lie-motivic Grassmannian
polylogarithm function. It is expected that there is a natural variation of n-framed
mixed Tate motives over the Grassmannian bGn

n responsible for the motivic
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Grassmannian n-logarithm function in the following way. Taking the Hodge
realization of this variation we get a variation of n-framed Hodge-Tate structures
over the Grassmannian. Let Hn be the group of n-framed Hodge-Tate structures.
Then H� � �nX 0Hn has a natural Hopf algebra structure (see [BGSV]). The
coproduct on H� induces a graded Lie coalgebra structure on the quotient

L�H��:�
H�

H>0 � H>0
There are two natural period maps

PH : H� ÿ!R; pL: H� ÿ!R �8�
The ¢rst one is an algebra homomorphism, while the second kills the products:
pL�H>0 � H>0� � 0. Thus we get a canonical map pL:L�H�� ÿ!R. Applying
pointwise this map we get a function on the Grassmannian which we call the
Lie-motivic Grassmannian polylogarithm LG

n .

1.4. THE COMPARISON PROBLEM

Now a natural question arises:

PROBLEM 1.2. (a) What is the relation between the Grassmannian n-logarithms
LG
�;n and LG

�;n? Do they coincide or not?
(b) Is it true that the Grassmannian n-logarithm LG

�;n admits a motivic con-
struction?

(c) Is it true that the Grassmannian n-logarithm LG
�;n is Lie-motivic?

By the very de¢nitions, one has LG
nÿ1;n � LG

nÿ1;n.
It was known from [G4], and it is already a nontrivial fact, that the Grassmannian

dilogarithms of both types coincide. We will recover this result in Section 4.5 below.
It was noticed by the ¢rst author during the preparation of [G4], and puzzled him

very much, that the Grassmannian n-logarithms LG
�;n for nX 4 should be different

from LG
�;n. The reason is that LG

�;n satisfy some additional functional equations which
should not be true for LG

�;n for nX 4. Namely, projection along the subspace
generated by ej provides a map bj:bGq�1

p ÿ!bGq
p: It was proved in [G4] that LG

p;q
satis¢es the property

X2qÿp
j�0
�ÿ1� jb�j LG

p;q � 0: �9�

This property is valid for the motivic Grassmannian trilogarithm. However it should
not be satis¢ed by LG

nÿ2;n for nX 4, and because of this to construct the regulator map
one needs to extend the LG to a bi-Grassmannian n-logarithm, see [G7].

In this paper, we compute explicitly the Grassmannian trilogarithmLG
k;3 and show

that it is different from LG
k;3 for k � 0 and 1. The difference is explicitly computed and
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has a motivic origin. Therefore, the answer to part (b) of the problem is positive for
n � 3. However it is not Lie-motivic, thus the answer to the question (c) is negative.

1.5. MAIN RESULT: COMPUTATION OF THE GRASSMANNIAN TRILOGARITHM LG
3

Recall that the classical polylogarithms are de¢ned by

Li1�z�:� ÿ log�1ÿ z�; Lin�z�:�
Z z

0
Linÿ1�t� dtt ; nX 2:

They admit the single-valued cousins (see [Z]). For the dilogarithm it is the
Bloch^Wigner function

bL2�z�:� iL2�z�:� p2 Li2�z�� � � i arg�1ÿ z� � log jzj
and for the trilogarithm it is

L3�z� � Re
�
Li3�z� ÿ log jzj � Li2�z�

	ÿ 1
3 �log jzj�2 log j1ÿ zj

which was used in the proof of Zagier's conjecture on z�3� in [G2] and [G3].
Choose a volume form o 2 detV�n and set Do�v1; . . . ; vn�:� ho; v1 ^ . . . ^ vni 2 F :

We will usually omit the subscript o.
The following result was proved in [G2, G3], see also [G5].

LG
3 �l0; . . . ; l5� � 1

90 Alt6L3 D�l0; l1; l3�D�l1; l2; l4�D�l2; l0; l5�
D�l0; l1; l4�D�l1; l2; l5�D�l2; l0; l3�
� �

: �10�

The next theorem is proved in Section 5:

THEOREM 1.3.

LG3 �l0; . . . ; l5�
� LG

3 �l0; . . . ; l5� ÿ 1
9 Alt6

�
log jD�l0; l1; l2�j log jD�l1; l2; l3�j log jD�l2; l3; l4�j

�
:

Our next goal is to show that the function LG
3 does not satisfy the most interesting

functional equation valid for the function LG
3 . Consider the following con¢guration

of 6 points on the projective plane, called the special con¢guration.
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The set of the special con¢gurations can be naturally identi¢ed with P1nf0;1g
(see [G8]). Namely z 2 F � corresponds to the con¢guration g3�z� given by the
columns of the following matrix

1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 z

0@ 1A
If a function is de¢ned at the points of a set X , we can extend it by linearity to a
homomorphism from the free Abelian group generated by the points of X . We apply
this construction to the functions LG

3 and LG
3 and appropriate sets of the

con¢gurations of 6 points in P2. Then according to (10) one has

LG
3 �l0; . . . ; l5� ÿ 1

90 Alt6g3
D�l0; l1; l3�D�l1; l2; l4�D�l2; l0; l5�
D�l0; l1; l4�D�l1; l2; l5�D�l2; l0; l3�
� �� �

� 0: �11�

However the function LG
3 does not satisfy this functional equation. Indeed, we have

the following result, which is proved in [G8], see also [G4].

THEOREM 1.4. The restriction of the Grassmannian trilogarithm functionLG
3 to the

special stratum coincides with the classical trilogarithm function L3. More precisely,
LG
3 �g3�z�� � L3�z�.

Thus if the function LG
3 satis¢es the functional equation (11) it would coincide with

LG
3 at the generic con¢guration, which is not true according to Theorem 1.3.
Notice that the functionLG

3 can be de¢ned for an arbitrary con¢guration of points
in P2 ([G4], [G8]), and one can show that it is continuous near the special stratum.

Remark. This shows that in the [G1, S 4] to de¢ne the motivic Lie coalgebra
�G��F � of a ¢eld F (cf. loc. cit.) one needs the functional equations for the
Lie-motivic Grassmannian n-logarithm LG

n , instead of its relative LG
n .

PROBLEM. Find explicit expression of the Lie-motivic Grassmannian n-logarithm
via the functions LG

n .

1.6. MAIN RESULT FROM THE POINT OF VIEW OF THE DELIGNE COHOMOLOGY

Recall that the Deligne cohomology H�D�X ;R�p�� of a regular algebraic variety X
overC can be de¢ned as the hypercohomology ofX with coef¢cients in the following
complex of sheaves RD�p� on X �C�:�

D0
X ÿ!

d D1
X ÿ!

d � � � ÿ!d D p
X ÿ!

d D p�1
X ÿ!d � � �

�

R�pÿ 1�

" pp " pp

O p
X ÿ!

d
O p�1

X ÿ!d � � �
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HereDi
X is the sheaf of i-currents on X . The groupD0

X is in degree 1. To compute the
Deligne cohomology ofX let us replace FpO� by its Dolbeault resolution and denote
byRD�p��X � the complex of the global sections of the complex of sheaves overX �C�.
Then H�D�X ;R�p�� � H��RD�p��X ��. Thus to calculate the Deligne cohomology
H�D�bGn

�;R�n�� of the semisimplicial Grassmannian (1) one needs to consider the
cohomology of the total complex associated with the bicomplex of the shape

RD�n��bGn
n� ÿ � � � ÿRD�n��bGn

1�: �12�

A collection of differential forms on the simplicial Grassmannian (1) satis¢es the two
conditions (2) and (3) if and only if it represents a 2n-cocycle in the bicomplex (12).
By [G4, Lemma 2.3], LG

�;n satis¢es (2). We will see that by de¢nition, for n � 2
and 3, LG

�;n satis¢es (2) and (3) and, moreover, LG
nÿ1;n � LG

nÿ1;n. Thus one can expect
that the difference between the 6-cocycles given by LG

�;3 and LG
�;3 is a coboundary

of a certain nice 5-chain in the bicomplex (12). We shall prove that this is indeed
the case and calculate explicitly the 5-chain. It has a nonzero component only overbG3

2, and this component is given by the function

�l0; . . . ; l4� 7ÿ! 1
9 Alt6

�
log jD�l0; l1; l2�j log jD�l1; l2; l3�j log jD�l2; l3; l4�j

�
: �13�

Denote by C3 this 5-chain in (12). It is also of motivic nature: the function (13) is a
composition of the map

bG3
2�F � ÿ!S3F �

�l0; . . . ; l4� 7ÿ! 1
9 Alt6

n
D�l0; l1; l2� � D�l1; l2; l3� � D�l2; l3; l4�

o
;

which is de¢ned for an arbitrary ¢eld F , with the logarithm homomorphism

S3C� ÿ!R;
x1 � x2 � x3 7 ÿ! log jx1j log jx2j log jx3j

de¢ned when F � C.
Denote by fLG

�;3g and fLG
�;3g the 6-cocycles in the bicomplex (12) provided by the

collection of forms LG
�;3 and LG

�;3. Let D be the differential in the total complex
associated with the bicomplex (12).

THEOREM 1.5. fLG
�;3g ÿ fLG

�;3g � D�C3�:

We expect a similar story for the Grassmannian n-logarithms in general: the forms
LG
�;n should have a motivic nature in the following precise sense:
(1) One should have an explicitly given homomorphism Ln from the weight n

Grassmannian complex to the weight n part �L�L�F �_� ;D��n� of the cochain complex
of the motivic Lie algebra L�F �� of an arbitrary ¢eld F . (In fact Ln should be a
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part of the homomorphism from the bi-Grassmannian complex to the cochain
complex of L�F ��).

Composing this map with the regulator map we get a cocycle in the bicomplex (12),
the Lie-motivic Grassmannian n-logarithm LG

�;n. For n � 2; 3; 4 this program has
been implemented in [G2], [G3] and [G1], but in general the homomorphism Ln

is unknown. The story for n � 2; 3 is recalled in section 4 below.
(2) We expect a natural �2nÿ 1�-chain Cn of motivic origin in (12) such that
fLG
�;ng ÿ fLG

�;ng � D�Cn�: Here fLG
�;ng and fLG

�;ng are 2n-cocycles in the bicomplex (12)
provided by the forms LG

�;n and LG
�;n.

Our desire to understand better the structure of Grassmannian polylogarithms
was motivated by the following reasons:

(i) The Grassmannian n-logarithm can be used for an explicit construction of the
class cn 2 H2n�BGL�C��;RD�n�� which provides Beilinson's regulator for LG (see
[G8]) and LG (see [G2, G3]).

(ii) Explicit calculation of the Grassmannian n-logarithm LG
�;n should give a clue

for construction of the homomorphism Ln as well as the chain Cn.

2. Some Properties of the Di¡erential Forms rm

Here is another expression of the differential form rm which will be very useful in
applications.

PROPOSITION 2.1. The differential �mÿ 1�-form rm�f1; . . . ; fm� can be expressed as

Altm
Xm
k�1

�ÿ1�mÿkÿ1
m!

log j f1j
k̂

j�2
d log fj

m̂

j�k�1
d log fj

( )
: �14�

Proof. By de¢nition

rn�1� f0; . . . ; fn�

� ÿ1
2n�n� 1�! Altn�1

X
jX 0

n� 1
2j � 1

� �
log j f0j�

8<: 2̂j

s�1

ÿ
d log fs � d log fs

�
�

n̂

s�2j�1

ÿ
d log fs ÿ d log fs

�)

� ÿ1
2n�n� 1�! Altn�1

X
jX 0

n� 1
2j � 1

� �X
kX 0

X
lX 0

nÿ 2j
nÿ kÿ l

� �
2j
l

� �
�ÿ1�nÿkÿl

8<: �

� log j f0j
k̂

s�1
d log fs

n̂

s�k�1
d log fs

)
:

90 A. B. GONCHAROVAND J. ZHAO

https://doi.org/10.1023/A:1017504115184 Published online by Cambridge University Press

https://doi.org/10.1023/A:1017504115184


In the above, we've used the skew-symmetry property, for example,

Altnfd log f1 ^ d log f2 � � �g � Altnfd log f1 ^ d log f2 � � �g:
The coef¢cients in the summation of index k is obtained as follows: for each
d log fs � d log fs we can either choose d log fs or log fs but not both, the same
for d log fs ÿ d log fs. For any appropriately ¢xed l, there are 2j

l

ÿ �
ways to choose

log fs from the former and nÿ2j
nÿkÿl
ÿ �

ways from the later. Once log fs are chosen,
d log fs are determined. We can now show thatX

0W 2jW nÿ1

n� 1
2j � 1

� �X
lX 0

nÿ 2j
nÿ kÿ l

� �
2j
l

� �
�ÿ1�nÿkÿl � 2n�ÿ1�nÿk

by comparing the coef¢cient of xnÿk of the following polynomials in x:

Xn
p�0

X
0W 2jW n

n� 1
2j � 1

� �X
lX 0

nÿ 2j
pÿ l

� �
2j
l

� �
�ÿ1�pÿlxp

�
X

0W 2jW n

n� 1
2j � 1

� �
�1ÿ x�nÿ2j�1� x�2j

� 1
2�1� x� �1ÿ x� 1� x�n�1 ÿ �1ÿ xÿ 1ÿ x�n�1� �
� 2n 1ÿ �ÿx�n�1� �

1� w
� x � 2n

Xn
m�0
�ÿx�m:

The proposition follows at once.

COROLLARY 2.2. The �2nÿ 1�-form r2n� f1; . . . ; f2n� can be expressed by

Alt2np2n
X2n

k�n�1

2�ÿ1�kÿ1
2n!

log j f1j
k̂

j�2
d log� fj�

2̂n

j�k�1
d log� fj�

( )

and the �2nÿ 2�-form r2nÿ1�f1; . . . ; f2nÿ1� is

Alt2nÿ1Re
�ÿ1�n
�2nÿ 1�! log j f1j

n̂

j�2
d log� fj�

2̂nÿ1

j�n�1
d log� fj�

(
�

�
X2nÿ1

k�n�1

2�ÿ1�k
�2nÿ 1�! log j f1j

k̂

j�2
d log� fj�

2̂nÿ1

j�k�1
d log� fj�

)
:

Proof. We can use symmetry to bring (14) into the form in which at least
d�mÿ 1�=2e holomorphic d log appear together with at most d�mÿ 2�=2e anti-
holomorphic d log. &

EXAMPLES 2.3. We will need the following special cases later:
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(1) From Corollary 2.2 r3� f1; f2; f3� is equal to

1
6 Re Alt3

n
log j f1jd log f2 ^ d log f3 ÿ 2 log j f1jd log f2 ^ d log f3

o� �
:

(2) We have

r4�f1; f2; f3; f4�
� 1

12p4 Alt4

n
log j f1jd log f2 ^ d log f3 ^ d log f4

�
ÿ

ÿ log j f1jd log f2 ^ d log f3 ^ d log f4
o�
:

3. Computation of the Grassmannian 1-Forms

3.1. THE SETUP

For any 0W kW nÿ 1 we let Vnÿk be an �nÿ k�-dimensional complex vector space.
Let l0; . . . ; l2nÿkÿ1 be vectors in generic position in the dual space V�nÿk. Recall that
the Grassmannian k-form of weight n is

LG
k;n�l0; � � � ; l2nÿkÿ1� � �2pi�k�1ÿn

Z
CPnÿkÿ1

r2nÿkÿ1� f1; . . . ; f2nÿkÿ1�: �15�

where fi�t� � li=l0, 1W iW 2nÿ kÿ 1, are 2nÿ kÿ 1 rational functions on
P�Vnÿk� � CPnÿkÿ1. Our ¢rst goal is to explain the meaning of this integral. In
the next subsection we give a recipe for its computation when k � 1.

Let p: Zÿ!Y be a smooth map of manifolds with compact ¢bers and o be a
distribution on Z. Then one can de¢ne p�o so that hp�o;ji � ho; p�ji for any
smooth test form j on Y .

There is a canonical function on V�nÿk � Vnÿk whose value at the point �l; t� is l�t�.
The expression r2nÿkÿ1�f1�t�; . . . ; f2nÿkÿ1�t�� is a differential form with logarithmic
singularities on CPnÿkÿ1 � Y where

Y � V�nÿk � � � � � V�nÿk|���������������{z���������������}
2nÿkÿ1times

:

It is proved in [G4] that it has integrable singularities, and thus provides a
distribution on this manifold. The right-hand side of (15) is de¢ned as
�2pi�k�1ÿn � p�

ÿ
r2nÿkÿ1�f1�t�; . . . ; f2nÿkÿ1�t��

�
, where p is the canonical projection along

CPnÿkÿ1. Write d � dt � da for the differential on P�Vnÿk� � Y , where dt is the
P�Vnÿk�- and da is the Y -components of d.

Let X and Y be complex manifolds and X is compact of complex dimension d. Let
o be a distribution on X � Y . There is canonical projection p:X � Y ÿ!Y . Denote
by D�p1;q1��X � the space of distributions of the Dolbeault type �p1; q1�. The space
D�X � Y � of distributions on X � Y admits a decomposition D�X � Y � �
�D�p1;q1;p2;q2��X � Y �; where �p1; q1� (resp. �p2; q2�) is the type of the distribution
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with respect to X (resp. Y ). If o is of type �p1; q1; p2; q2� then p�o is of type
�p1 ÿ d; q1 ÿ d; p2; q2�. In particular p�o � 0 if p1 < d or q1 < d.

Let us present r2nÿkÿ1�f1�t�; . . . ; f2nÿkÿ1�t�� as a sum of its Dolbeault components
o�p;2nÿkÿ2ÿp�. Then

o�p;2nÿkÿ2ÿp� �
X
a

log jga0�t�j
p̂

j�1
d log gaj �t�

^2nÿkÿ2

j�p�1
d log gaj �t�;

where gai �t� are some rational functions on CPnÿkÿ1. Therefore the integral of
o�p;2nÿkÿ2ÿp� over CPnÿkÿ1 is zero unless nÿ kÿ 1W pW nÿ 1. If p � nÿ 1 the
integral is calculated as

nÿ1
k

ÿ �
�2nÿ kÿ 1�! Alt2nÿkÿ1

X
a

Z
CPnÿkÿ1

log jga0�t�j�

�
k̂

j�1
da log ga1�t�

n̂ÿ1

j�k�1
d log gaj �t�

^2nÿkÿ2d

j�n
log gaj �t�:

In this paper we are mostly interested in the case k � 1.

3.2. THE KEY FORMULA

Our main task in this subsection is to calculate the Grassmannian 1-form
LG
1;n�1�l0; . . . ; l2n� of weight n� 1. (We increase the weight for ease of notation.)
Set X :� V�n � � � � � V�n and Y :� Vn. Let �l0; . . . ; ln; t� be a point of the variety

X � Y . One has

on�X � Y � � �a�b�noa�X � 
 oa�Y �; o �
X

o�a;b�:

We will now write d � da � dt where dt is the Vn-components of d. Let us compute
the �1; nÿ 1� component of the following differential form:

Xn
i�0
�ÿ1�id log l0�t� ^ . . . ^ d dlog li�t� ^ . . . ^ d log ln�t�:

One can de¢ne the SL�Vn�-invariant Leray form

anÿ1�l1�t�; . . . ; ln�t��:�
Xn
i�1
�ÿ1�iÿ1li�t�dtl1�t� ^ . . . ^ ddtli�t� ^ . . . ^ dtln�t�:

Let p:Vn n fli�t� � 0g ÿ!P�Vn� be the natural projection. Then one can check that
the form

anÿ1�l1�t�; . . . ; ln�t��
l1�t� � . . . � ln�t�

is lifted from P�Vn�, i.e. it is equal to p�o for some form o on P�Vn�.
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PROPOSITION 3.1.

1
n!

Alt�l0;...;ln�
�
d log l0�t� ^ � � � ^ d log lnÿ1�t�

��1;nÿ1�

� 1
�nÿ 1�! Alt�l0;...;ln�

�
d logD�l0; . . . ; lnÿ1� ^ dt log l1�t� ^ � � � ^ dt log lnÿ1�t�

�
�
Xn
i�0
�ÿ1�id logD�l1; . . . ;bli; . . . ; ln� ^ anÿ1�l0�t�; . . . ;dli�t�; . . . ; ln�t��

l0�t� � . . .dli�t� . . . � ln�t�
:

Remark 3.2. Because D�l1; . . . ; ln� is a function on V�n � � � � � V�n , one sees that
da logD�l1; . . . ; ln� � d logD�l1; . . . ; ln�:

EXAMPLE 3.3. In the simplest nontrivial case n � 2 we get

d log l0�t� ^ d log l1�t� ÿ d log l0�t� ^ d log l2�t� � d log l1�t� ^ d log l2�t�
� d logD�l0; l1� ^

�
dt log l1�t� ÿ dt log l0�t�

�
ÿ

ÿ d logD�l0; l2� ^
�
dt log l2�t� ÿ dt log l0�t�

�
�

� d logD�l1; l2� ^
�
dt log l2�t� ÿ dt log l1�t�

�
:

In coordinates it looks as follows:

d log
a1t1 � a2t2
c1t1 � c2t2

^ d log
b1t1 � b2t2
c1t1 � c2t2

� d log�a1b2 ÿ a2b1� ^ dt log
b1t1 � b2t2
a1t1 � a2t2

ÿ

ÿ d log�a1c2 ÿ a2c1� ^ dt log
c1t1 � c2t2
a1t1 � a2t2

�

� d log�b1c2 ÿ b2c1� ^ dt log
c1t1 � c2t2
b1t1 � b2t2

:

Proof.Choose a volume formo 2 detV�n . Denote byoÿ1 2 detVn the dual volume
form in V�n . Then for any vectors l1; . . . ; ln 2 V�n we have Doÿ1 �l1; . . . ; ln� 2 F . It is
easy to check that

anÿ1�l1�t�; . . . ; ln�t�� � Doÿ1 �l1; . . . ; ln� � iEo; �16�
where E:�P ti@ti is the Euler vector ¢eld in Vn. It follows from this that

Xn
i�0
�ÿ1�i

^
0W jW n;j 6�i

d log lj�t�
0@ 1A�1;nÿ1�

�
Pn

i�0�ÿ1�iDoÿ1 �l0; . . . ;bli; . . . ; ln� � dali�t�
l0�t� � � � ln�t� ^ iEo:
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Now let us calculate (16). Using (17), we get

d logDoÿ1�l0; . . . ; lnÿ1� anÿ1�l0�t�; . . . ; lnÿ1�t��
l0�t� . . . lnÿ1�t�

� dDoÿ1�l0; . . . ; lnÿ1� ^ iEo
l0�t� . . . lnÿ1�t� :

So it remains to show that

Xn
i�0
�ÿ1�ili�t�dDoÿ1 �l0; . . . ;bli; . . . ; ln�

�
Xn
i�0
�ÿ1�iDoÿ1�l0; . . . ;bli; . . . ; ln�dali�t�

which follows by applying the differential da to the identity

Xn
i�0
�ÿ1�iDoÿ1 �l0; . . . ;bli; . . . ; ln� � li�t� � 0:

We now can ¢nish the proof by observing that

anÿ1�l0; . . . ; lnÿ1� � 1
�nÿ 1�! Altn

n
l0�t�dtl1�t� ^ � � � ^ dtlnÿ1�t�

o
: &

COROLLARY 3.4. The Grassmannian 1-form of weight n� 1 is

LG
1;n�1�l0; . . . ; l2n�

� ÿ �ÿ2pi�
1ÿn

�2nÿ 1�! �Alt2n�1�

� p2n d logD�l1; . . . ; ln� ^
Z
CPnÿ1

log jl0�t�j
n̂

j�2
dt log lj�t� ^

2̂nÿ1

j�n�1
dtlog lj�t�

 !
:

Proof. Let fi � li=l0 and

bn � 2�ÿ1�n
�2n�! :

From

r2n�f1; . . . ; f2n� �
X2n
i�0
�ÿ1�ir2n�l0; . . . ;bli; . . . ; l2n�

one has

LG
1;n�1�l0; . . . ; l2n� � �2pi�1ÿn

Z
CPnÿ1

1
�2n�! Alt2n�1r2n�l0; . . . ; l2nÿ1�:

Using Corollary 2.2 and observing that �1=�2n�!�Alt2n�1Alt2n � Alt2n�1 we can
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rewrite the integrand as

bn �Alt2n�1p2n log jl0�t�j
n̂

j�1
d log lj�t�

2̂nÿ1

j�n�1
d log lj�t�

 !
� n � bn �Alt2n�1�

� p2n log jl0�t�jd logD�l1; . . . ; ln�
n̂

j�2
dt log lj�t�

2̂nÿ1

j�n�1
dtlog lj�t�

 !
: &

4. The Grassmannian and Polylogarithmic Complexes: A Review

4.1. THE GRASSMANNIAN COMPLEX

Let Cm�n� be the con¢gurations of m� 1 vectors in generic position in n-dimensional
vector space Vn over F . Then there is a map

d 0:Cm�1�n� 1� ÿ!Cm�n�; �v0; . . . ; vm� 7ÿ!
Xm
i�0
�ÿ1�i�vijv0; . . . ;bvi; . . . ; vm�:

Here �vijv0; . . . ;bvi; . . . ; vm�means the con¢guration of �v00; . . . ;bv0i; . . . ; v0m� in the space
Vn=hvii where v0j is the image of vj in Vn=hvii. It is straightforward to see that
�C��nÿ1���; d 0� form a complex, called the (n-th) Grassmannian complex. It is
isomorphic to the complex �C��nÿ1�n�; d� where

d 0:Cm�1�n� ÿ!Cm�n�; �v0; . . . ; vm� 7ÿ!
Xm
i�0
�ÿ1�i�v0; . . . ;bvi; . . . ; vm�

by the duality �:Cm�nÿ1�m� ! Cm�nÿ1�n� obtained by comparing the two
isomorphisms in (5).

4.2. THE POLYLOGARITHMIC COMPLEXES

The polylogarithmic complex �B�F ; n��; d� is a candidate to the weight n motivic
complex of the ¢eld F . It was de¢ned in [G2, G3] for nW 3 as follows. The groups
Bn�F � are quotients Bn�F �:� Z�P1

F �=Rn�F �, where the subgroups Rn�F � re£ect the
known functional equations for the n-logarithms for n � 1; 2; 3. For example,
B1�F � � F � � Z�P1

F �=R1�F � where R1�F �:�

fxg � fyg ÿ fxyg: x; y 2 F �; f0g; f1g�.

Consider the homomorphisms

dn: Z�P1
F � ÿ!

F � ^ F �; if n = 2,
B2�F � 
 F �; if n = 3,

�
fxg 7ÿ! �1ÿ x� ^ x; if n = 2,

fxg2 
 x; if n = 3,

�
f0g; f1g; f1g 7ÿ! 0;
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where fxgn is the image of fxg in Bn�F �. Then dn�Rn�F �� � 0, so we get well de¢ned
homomorphisms d:B2�F � ÿ!L2F � and d:B3�F � ÿ!B2�F � 
 F �. We get the
polylogarithmic complexes

B2�F � ÿ!d L2F �; B3�F � ÿ!d B2�F � 
 F � ÿ!d L3F �;

where d�fxg2 
 y� ÿ!�1ÿ x� ^ x ^ y. These complexes can be thought of as the
weight 2 and 3 parts of the standard cochain complex of the motivic Lie algebra
L�F ��, see [G3].

4.3. HOMOMORPHISMS FROMGRASSMANNIANCOMPLEXES TO THE POLYLOGARITHMIC

ONES

There are two commutative diagrams:

C3�2� ÿÿ!d
0

C2�1�??yj3�2�
??yj3�1�

B2�F � ÿÿ!d V2 F �

and

C5�3� ÿÿ!d
0

C4�2� ÿÿ!d
0

C3�1�??yj3�2�
??yj4�2�

??yj3�2�

B3�F � ÿÿ!d B2�F � 
 F � ÿÿ!d V3 F �

;

where j2�1��v0; v1; v2� � 1
2 Alt3fD�v0� ^ D�v1�g and j3�2��v0; v1; v2; v3� is given by

fr�v0; v1; v2; v3�g2 which is the image of the cross-ratio

r�v0; . . . ; v3� � D�v0; v2�D�v1; v3�
D�v0; v3�D�v1; v2� �18�

in B2�F �. For the second commutative diagram, the map j5�3� is the generalized
cross-ratio

j5�3��v0; . . . ; v5� � 1
90 Alt6

nD�v0; v1; v3�D�v1; v2; v4�D�v2; v0; v5�
D�v0; v1; v4�D�v1; v2; v5�D�v2; v0; v3�

o
3
2 B3�F �

and

j4�2��v0; . . . ; v4� � 1
12 Alt5

n
r�v0; v2; v3; v4�2 
 D�v3; v4�

o
;

j3�1��v0; . . . ; v3� � ÿ 1
6 Alt4

n
D�v0� ^ D�v1� ^ D�v2�

o
:

�19�

Remark 4.1. The correct proof of the second commutative diagram was given in
[G5]. Notice that our j5�3�, j4�2� and j3�1� are 1=6 of the corresponding maps
in [G5]. We made these changes in order to have LG

nÿ1;n � LG
nÿ1;n.

4.4. THE REGULATOR MAP ON THE POLYLOGARITHMIC COMPLEXES

Let X be a variety over C and F :� C�X �. Let A�Z�X � is the de Rham complex of
smooth forms at the generic point of X over C. Set a�f � � log j f jd log j1ÿ f jÿ
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log j1ÿ f jd log j f j. Then there are the following commutative diagrams

B2�F � ÿÿ!d
0 V2 F �??yr2�1� ??yr2�2�

A0
Z�X � ÿÿ! A1

Z�X �

and

B3�F � ÿÿ!d B2�F � 
 F � ÿÿ!d V3 F �??yr3�1� ??yr3�2� ??yr3�1�
A0

Z�X � ÿÿ!d A1
Z�X � ÿÿ!d A2

Z�X �

;

�20�

where

r2�1�: f f g2 7 ÿ!bL2� f � � iL2� f �; r2�2�: g0 ^ g1 7 ÿ! r2�g0; g1�;
r3�1�: f f g3 7 ÿ!L3� f �;
r3�2�: f f g2 
 g 7 ÿ!bL2� f �di arg gÿ log jgja� f �

3
;

r3�3�: g0 ^ g1 ^ g2 7 ÿ! r3�g0; g1; g2�:

Composing the maps j and r we get the Lie-motivic Grassmannian polylogarithms
LG
�;n for n � 2; 3.

4.5. THE GRASSMANNIAN DILOGARITHM

We deal with the left commutative diagram in (20). It is easy to see that

LG
1;2�l0; l1; l2�: � r2�2� � j2�1��l0; l1; l2�

� 1
2 Alt3

n
r2�l0; l1�

o
� r2�f1; f2� � LG

1;2�l0; l1; l2�:

Therefore, the difference between LG
2 �l0; . . . ; l3� and

LG
0;2�l0; . . . ; l3�:� r2�1� � j3�2��l0; . . . ; l3� � bL2�r�l0; . . . ; l3��

is a constant. But it is zero because it is skewsymmetric with respect to the
permutations of the vectors li. Thus LG

0;2 � LG
2 and

LG
2 �l0; . . . ; l3� � bL2�r�l0; . . . ; l3��: �21�

5. Proof of Theorems 1.3 and 1.5

By the very de¢nition

LG
2;3�l0; l1; l2; l3�
� r3�3� � j3�1��l0; l1; l2; l3�
� ÿ 1

6 Alt4

n
r3�l0; l1; l2�

o
� r3�f1; f2; f3� � LG

2;3�l0; l1; l2; l3�:
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We now want to compare

LG
1;3�l0; . . . ; l4�:� r3�2� � j4�2��l0; . . . ; l4�

and

LG
1;3�l0; . . . ; l4� � �2pi�ÿ1

Z
CP1

r4�f1; f2; f3; f4�

� �2pi�
ÿ1

4!
Alt�l0;...;l4�

Z
CP1

r4�l0; l1; l2; l3�

Notice that the �1; 2�-component of r4�l0; l1; l2; l3� is a �1; 2�-form on X � V2, not on
X � P�V2�. However, after the alternation we get a �1; 2�-form on X � P�V2�.

We will write D�a; b�:� D�la; lb� for the rest of the paper.

PROPOSITION 5.1.

LG
1;3�l0; . . . ; l4� � Alt5

�
1
12
bL2�r�l0; l1; l2; l4��di argD�1; 4�

n
ÿ

ÿ 1
3 log jD�0; 1�j log jD�1; 4�jd log jD�2; 4�j

�o
:

Proof. By Corollary 3.4

6 � 2piLG
1;3�l0; l1; l2; l3; l4�

� Alt5p4 d logD�1; 2�
Z
CP1

log jl0jd log�l2� ^ dlog�l3�
� �

� ÿAlt5p4 d logD�1; 4�
Z
CP1

log jl0jd log�l1� ^ dlog�l2�
� �

� 2Alt5 d log jD�1; 4�j
Z
CP1

log jl0jd log jl1j ^ di arg l2

� �
ÿ �22�

ÿ 2Alt5 di argD�1; 4�
Z
CP1

log jl0jd log jl1j ^ d log jl2j
� �

�23�

To get (22) and (23) we use the following observations. Let f and g be holomorphic
functions on a complex curve X and j is a real valued function. Then sinceR
X jd log f ^ d log g � 0 we have, taking the real and imaginary parts respectively,Z

X
jd log j f j ^ d log jgj �

Z
X
jd arg f ^ d arg g;Z

X
jd log j f j ^ d arg g �

Z
X
jd log jgj ^ d arg f :
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One can easily show that (by using Examples 2.3(1))

2piLG
2 �l0; l1; l2; l3�
�
Z
CP1

r3�f1; f2; f3� � 2
Z
CP1

log j f1jd log j f2j ^ d log j f3j

� ÿ 2
3!

Alt4

Z
CP1

log jl0jd log jl1j ^ d log jl2j:
�24�

This is a special case of Equation (38) in the Appendix.
Writing (23) as

ÿAlt5 di argD�1; 4�
Z
CP1

�
Altl1;l4

n
log jl0jd log jl1j ^ d log jl2j

o�� �
and subtracting from this

Alt5 di argD�1; 4�
Z
CP1

�
Altl1;l2

n
log jl0jd log jl1j ^ d log jl4j

o�� �
which is zero (to check this use the skewsymmetry with respect the alternations f2; 3g
and f0; 3g), we see, using (24), that (23) is equal to

Alt5

n
piLG

2 �l0; l1; l2; l4�di argD�1; 4�
o

� piAlt5

nbL2�r�l0; l1; l2; l4��di argD�1; 4�
o

by (21). To calculate (22) we compute, in two different ways, the expression

Alt5 d log jD�1; 4�j
Z
CP1

d log jl1j ^ dL2
�D�2; 4�l0
D�0; 2�l4

�� �
: �25�

(1) The integral over CP1, and hence the whole expression, is zero because

d log jl1j ^ dL2
�D�2; 4�l0
D�0; 2�l4

�
� d log jl1j ^ dL2

�D�2; 4�l0
D�0; 2�l4

�� �
where both parts are understood as currents. Notice that log jzj and L1�z� have inte-
grable singularities and thus provide currents on CP1.

(2) Using formulas D�2; 4�l0�t� ÿ D�0; 4�l2�t� � D�0; 2�l4�t� and
dL2�f � � log j f jd arg�1ÿ f � ÿ log j1ÿ f jd arg f

we see that dL2 D�2; 4�l0=D�0; 2�l4� � is equal to

log
D�2; 4�l0
D�0; 2�l4

���� ����d arg
�D�0; 4�l2
D�0; 2�l4

�
ÿ log

D�0; 4�l2
D�0; 2�l4

���� ����d arg
�D�2; 4�l0
D�0; 2�l4

�
� log

D�2; 4�l0
D�0; 2�l4

���� ����d arg
l2
l4
ÿ log

D�0; 4�l2
D�0; 2�l4

���� ����d arg
l0
l4
:

Since this expression is skewsymmetric with respect to the transposition f2; 0g
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exchanging the indices 2 and 0 we can write (25) as

0 � 2Alt5 d log jD�1; 4�j
Z
CP1

d log jl1j ^ log
D�2; 4�l0
D�0; 2�l4

���� ����di arg
l2
l4

� �
� 2Alt5 d log jD�1; 4�j

Z
CP1

log
l0
l4

���� ����d log jl1j ^ di arg
l2
l4

� �
ÿ �26�

ÿ 2Alt5 log jD�0; 2�jd log jD�1; 4�j
Z
CP1

d log jl1j ^ di arg
l2
l4

� �
: �27�

We got last line by using transposition f0; 3g. Now (26) is exactly (22) since the other
three possible terms vanish due to alternation f0; 3g (or f2; 3g). Therefore (22) is equal
to

2Alt5 log jD�0; 2�jd log jD�1; 4�j
Z
CP1

d log jl1j ^ di arg
l2
l4

� �
ÿ

� ÿ2Alt5 log jD�0; 2�jd log jD�1; 4�j
Z
CP1

log jl1j ^ d di arg
l2
l4

� �� �
� ÿ4piAlt5 log jD�0; 2�jd log jD�1; 4�j log

D�1; 2�
D�1; 4�
���� ����� �

:

�28�

We got this line by noting that d�di arg f � � 2pid�f �. Notice that

4piAlt5

n
log jD�0; 2�jd log jD�1; 4�j log jD�1; 4�j

o
� 0

since the expression is unchanged under the transposition f0; 2g, we see that (28)
equals to

ÿ4pi �Alt5

�
log jD�0; 1�jd log jD�2; 4�j log jD�1; 4�j

�
by transposition f1; 2g followed by f2; 4g. This ¢nishes the proof of the proposition.&

To calculate LG
1;3�l0; . . . ; l4� we need

PROPOSITION 5.2. Alt5

�
log jD�1; 4�ja�r�l0; l1; l2; l4��

�
is equal to

4dAlt5

n
log jD�2; 4�j log jD�1; 4�j log jD�0; 2�j

o
�

� 12Alt5

n
log jD�1; 4�j log jD�0; 1�jd log jD�2; 4�j

o
:

Proof.Here is the algebraic reason behind this lemma. There is the following exact
sequence of Q-vector spaces

F �Q 
 L2F �Q ÿ!
k1 S2F �Q 
 F �Q ÿ!

k2 S3F �Q;

k1: a
 b ^ c 7 ÿ! a � b
 cÿ a � c
 b; k2: a � b
 c 7 ÿ! a � b � c:
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It is a special case of the Koszul complex. The map k2 admits a natural splitting

k02: a � b � c 7 ÿ! 1
3

�
a � b
 c� a � c
 b� b � c
 a

�
:

If F � C�X � then there is a map

S2F � 
 F � ÿ!A1�X �; f1 � f2 
 f3 7 ÿ! log j f1j log j f2jd log j f3j:
Now the proposition is an immediate corollary of the following lemma. &

LEMMA 5.3.

ÿ k1Alt5

n
D�1; 4� 
 �1ÿ r�l0; l1; l2; l4�� ^ r�l0; l1; l2; l4�

o
� 12k02 Alt5

n
D�2; 4� � D�1; 4� � D�0; 2�

o� �
�

� 12Alt5

n
D�1; 4� � D�0; 1� 
 D�2; 4�

o
:

�29�

Proof. Let us show that that (29) equals to

4Alt5

n
D�1; 4� � D�0; 2� 
 D�0; 1� ÿ D�1; 4� � D�0; 1� 
 D�0; 2��

� D�1; 4� � D�0; 1� 
 D�1; 2�
o �30�

Indeed, using (18) we get

�1ÿ r�l0; l1; l2; l4�� ^ r�l0; l1; l2; l4� � 1
2 Alt�l0;l1;l2;l4�

n
D�0; 1� ^ D�0; 2�

o
Using this we write (29) as a sum of the following 12 terms:

Alt5

�
ÿ D�1; 4� � D�0; 1� 
 D�0; 2� � D�1; 4� � D�0; 2� 
 D�0; 1��
� D�1; 4� � D�0; 1� 
 D�1; 2� ÿ D�1; 4� � D�1; 2� 
 D�0; 1�ÿ
ÿ D�1; 4� � D�0; 2� 
 D�1; 2� � D�1; 4� � D�1; 2� 
 D�0; 2�ÿ
ÿ D�1; 4� � D�0; 2� 
 D�0; 4� � D�1; 4� � D�0; 4� 
 D�0; 2��
� D�1; 4� � D�0; 2� 
 D�2; 4� ÿ D�1; 4� � D�2; 4� 
 D�0; 2�ÿ
ÿ D�1; 4� � D�0; 4� 
 D�2; 4� � D�1; 4� � D�2; 4� 
 D�0; 4�

�
Notice that a priori (29) is a sum of 24 terms corresponding to the 24 terms in (18).
However 12 of them disappear after the alternation. For instance, Alt5�D�1; 4��
D�0; 1� 
 D�0; 4�� � 0 since the involution f2; 3g does not change the expression.

Computing the sign of the appropriate permutation, we see that this sum is equal
to (30). Indeed, the terms 2, 5, 7 and 9 provide the ¢rst summand, the terms 1,
6, 8, 10 the second summand, and the rest the third summand.
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The third term in (30) vanishes by using the involution f0; 4g. This involution also
bring the ¢rst summand in (30) into the following form 4Alt5

�
D�1; 4� � D�0; 1�


D�2; 4�	:
The second term in (30) contributes

8Alt5

n
D�1; 4� � D�0; 1� 
 D�2; 4�

o
�

� 12k02 Alt5

n
D�2; 4� � D�1; 4� � D�0; 2�

o� �
:

The lemma, and hence Proposition 5.2, are proved. &

Notice that fr�l1; l2; l3; l4�g2 is skewsymmetric with respect to the permutations of
li's. So applying involution f1; 3g to (19) one gets

j4�2��l0; . . . ; l4� � 1
12 Alt5

n
fr�l0; l1; l2; l4�g2 
 D�l1; l4�

o
:

Therefore using Propositions 5.1 and the formula for r3�2� at the end of the
Section 4.4, we get

LG
1;3�l0; . . . ; l4� ÿ LG

1;3�l0; . . . ; l4�
� LG

1;3�l0; . . . ; l4� ÿ r3�2� � j4�2��l0; . . . ; l4�
� 1

9 d Alt5

n
log jD�2; 4�j log jD�1; 4�j log jD�0; 2�j

o� �
:

�31�

Thus using this and formula (2) in the case k � 0, n � 3 we conclude that

LG
0;3�l0; . . . ; l5� ÿ LG

0;3�l0; . . . ; l5��
� 1

9 Alt6

n
log jD�5; 2; 4�j log jD�5; 1; 4�j log jD�5; 0; 2�j

o
is a constant (notice the change of the sign before 1=9). Since it is skewsymmetric with
respect to the permutations of the vectors l0; :::; l5, it must be zero. Finally, notice
that

Alt6

n
log jD�5; 2; 4�j log jD�5; 1; 4�j log jD�5; 0; 2�j

o
� Alt6

n
log jD�0; 1; 2�j log jD�1; 2; 3�j log jD�2; 3; 4�j

o
Theorems 1.3 and 1.5 are proved.

6. Appendix: Formulas for the Grassmannian n-Logarithm Function

To simplify the Grassmannian n-logarithm we need

LEMMA 6.1. Let X be an n-dimensional complex manifold. Let f1; . . . ; f2n be any 2n
rational functions on X. Then
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(i) For every 0W jW nÿ 1

Alt2n

n2̂j�1
k�1

d log j fjj
2̂n

k�2j�2
d arg fk

o
� 0: �32�

(ii) For every 0W jW nÿ 1

Alt2n

n 2̂j

k�1
d log j fjj

2̂n

k�2j�1
d arg fk

o
� bj;nd log j f1j ^ � � � ^ d log j f2nj; �33�

where bj;n � �2n�! n
j

� �.
2n
2j

� �
.

Proof. (i) Because dimX � n, for any 0W iW nÿ 1 one has

d log j f1j ^ � � � ^ d log j fij ^ d log fi�1 ^ � � � ^ d log f2n � 0: �34�

Denote by xj the left side of (32) multiplied by
�������ÿ1p 2nÿ2jÿ1

. Taking the imaginary part
of (34) and alternating f1; . . . ; f2n we get

Xnÿ1
j

2nÿ i
2j � 1ÿ i

� �
xj � 0; �35�

where the sum is over j such that 2j � 1X i. Indeed, denote the expression inside of
Alt in (32) by Tj. An alternation of (34) contributes to Tj if and only if
2j � 1X i, so that we can specify 2j � 1ÿ i terms from fi�1; . . . ; f2n and make them
contribute the log part of Tj , which, together with log j f1j; . . . ; log j fij, contribute
the log part in Tj.

Let si be the left-hand side of (35) considered for arbitrary i. Let us multiply it by
2n
i

ÿ �
ti and take a sum over 0W iW 2nÿ 1. Since si � 0 for any 0W iW nÿ 1 we haveP2nÿ1

i�0 si 2n
i

ÿ �
ti � tnA�t� for some polynomial A�t� in t whose coef¢cients are Q-linear

combinations of xi's. Using the identity

2nÿ i
pÿ i

� �
2n
i

� �
� 2n

p

� �
p
i

� �
: �36�

we have

tnA�t� �
X2nÿ1
i�0

Xnÿ1
j

2nÿ i
2j � 1ÿ i

� �
2n
i

� �
xjti

�
Xnÿ1
j�0

xj
2n

2j � 1

� �X2j�1
i�0

2j � 1
i

� �
ti �

Xnÿ1
j�0

xj
2n

2j � 1

� �
�1� t�2j�1:
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Replacing t by tÿ 1 we get

Xnÿ1
j�0

xj
2n

2j � 1

� �
t2j�1 � �tÿ 1�nA�tÿ 1�:

The left-hand side is an odd polynomial of degree 2nÿ 1; it has a zero of order n at
t � 1; therefore it must have a zero of order n at t � ÿ1, so its degree is at least
2n. Thus it is a zero polynomial.

(ii) Denote the left side of (33) by yj. Taking the real part of Equation (34) and
alternating we get

Xn
j�0

2nÿ i
2j ÿ i

� �
�ÿ1�nÿjyj � 0; 0W iW nÿ 1: �37�

By de¢nition it is clear that bn;n � �2n�!. Multiplying (37) by 2n
i

ÿ �
ti and taking sum

over 0W iW 2n we have

X2n
i�0

Xn
jX bi=2c

�ÿ1�nÿjyj 2nÿ i
2j ÿ i

� �
2n
i

� �
ti � tnB�t�

for some polynomial B�t�. Using combinatorial identity (36) we write it as

Xn
j�0
�ÿ1�nÿjyj 2n

2j

� �X2j
i�0

2j
i

� �
ti �

Xn
j�0
�ÿ1�nÿjyj 2n

2j

� �
�t� 1�2j � tnB�t�:

Changing t to tÿ 1 and noticing that the left-hand side is an even polynomial we get

Xn
j�0
�ÿ1�nÿjyj 2n

2j

� �
t2j � �tÿ 1�nB�tÿ 1� � �t2 ÿ 1�nC�t�:

Therefore C�t� � yn is a constant. Thus we ¢nally have yj=yn � bj;n=�2n�!
� n

j

� �
= 2n

2j

� �
(0W jW n). The lemma is proved. &

Recall that the Grassmannian n-logarithm is de¢ned by

LG
n �l0; . . . ; l2nÿ1� � �2pi�1ÿn

Z
CPnÿ1

r2nÿ1� f1; . . . ; f2nÿ1�

where fi � li=l0.

PROPOSITION 6.2. The Grassmannian n-logarithm LG
n �l0; . . . ; l2nÿ1� can be

expressed by

ÿ �ÿ2pi�
1ÿn

�2nÿ 1�! Alt2nÿ1
Z
CPnÿ1

Re log j f1j
n̂

j�2
d log� fj�

2̂nÿ1

j�n�1
d log� fj�

( )
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or

ÿ �ÿ4�
nÿ1��nÿ 1�!�2

�2pi�nÿ1�2nÿ 2�!

Z
CPnÿ1

log j f1j
2̂nÿ1

j�2
d log j fjj

� �ÿ4�nÿ1��nÿ 1�!�2
�2pi�nÿ1�2nÿ 2�!�2nÿ 1�! Alt2n

Z
CPnÿ1

log jl0j
2̂nÿ2

j�1
d log jljj

( )
:

�38�

Proof. The ¢rst expression follows directly from Corollary 2.2. Now we prove the
second. By de¢nition (6)

r2nÿ1�f1; . . . ; f2nÿ1� � ÿ
Xn�1
k�0
�ÿ1�nÿkÿ1ck;2nÿ1

Alt2nÿ1
n

log j f1j
2̂k�1

j�2
d log j fjj

2̂nÿ1

j�2k�2
d arg fj

o �39�

where ck;2nÿ1 � 2nÿ1
2k�1
� �

=�2nÿ 1�!. Now let us look at the terms in the expansion of (39)
which correspond to the term

log j f1jd log j f2j ^ � � � ^ d log j f2nÿ1j: �40�
By Lemma 6.1(ii), each term inside the sum of (39) with log j f1j as the ¢rst factor
contributes to (40) as many as �ÿ1�nÿkck;2nÿ1bk;nÿ1 times. So the total contribution
to (40) from (39) is

dn �
Xnÿ1
k�0
�ÿ1�nÿkck;2nÿ1bk;nÿ1 �

Xnÿ1
k�0

�ÿ1�nÿk
2k� 1

nÿ 1
k

� �
� ÿ

Z 1

0
�t2 ÿ 1�nÿ1 dt � �ÿ1�n G�n�G�12�

2 � G�n� 1
2�

� �ÿ1�n 2
2nÿ2��nÿ 1�!�2
�2nÿ 1�! :

Therefore

LG
n �l0; . . . ; l2nÿ1�
� �2pi�1ÿn

Z
CPnÿ1

r2nÿ1� f1; . . . ; f2nÿ1�

� ÿ �ÿ4�
nÿ1��nÿ 1�!�2

�2pi�nÿ1�2nÿ 1�!
X2nÿ1
i�1

s1i

Z
CPnÿ1

log j f1j
2̂nÿ1

j�2
d log j fjj

 ! �41�

where s11 � id and for i 6� 1

s1iF � f1; . . . ; f2nÿ1� � ÿF � fi; f2; . . . ; fiÿ1; f1; fi�1; . . . ; f2nÿ2�:
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Now we observe that for any 2W iW 2nÿ 1 we haveZ
CPnÿ1

log j f1j
2̂nÿ1

j�2
d log j fjj ÿ s1i

Z
CPnÿ1

log j f1j
2̂nÿ1

j�2
d log j fjj

 !

� �ÿ1�i
Z
CPnÿ1

d�log j f1j log j fij� ^ d log j f2j ^ � � � dd log j fij � � � ^ d log j f2nÿ2j � 0:

Therefore

X2nÿ1
i�1

s1i

Z
CPnÿ1

log j f1j
2̂nÿ1

j�2
d log j fjj

 !

� �2nÿ 1�
Z
CPnÿ1

log j f1j
2̂nÿ1

j�2
d log j fjj

which together with equation (41) yields the second equality. To prove the last
equality in our proposition it suf¢ces to observe that

�2nÿ 1�!
Z
CPnÿ1

log j f1j
2̂nÿ1

j�2
d log j fjj

� Alt2nÿ1
Z
CPnÿ1

log j f1j
2̂nÿ1

j�2
d log j fjj

� ÿAlt2n

Z
CPnÿ1

log jl0j
2̂nÿ2

j�1
d log jljj: &

Remark 6.3. This result improves Proposition 3.2 of [G4].
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