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The present work investigates the linear instability of three-dimensional boundary layers
in thermodynamically non-ideal regimes. As a representative fluid, we consider carbon
dioxide at supercritical pressure (80 bar). The flow set-up is matched to the redesigned
DLR (German Aerospace Center) experiment on cross-flow instability, with identical
pressure-coefficient distribution (accelerating the flow), sweep angle and Reynolds
number, at a low Mach number. The flow temperature relative to the Widom line – also
known as the pseudocritical line – thus characterises the non-ideality of the flow. We
consider supercritical (gas-like), subcritical (liquid-like) and transcritical (pseudoboiling)
regimes, where the flow temperature remains above, below or crosses the Widom line.
The stability analyses of the parabolised Navier–Stokes baseflows indicate that wall
heating destabilises the flow in the supercritical regime while wall cooling stabilises
both effects similar to the ideal-fluid situation but being stronger. On the contrary,
wall heating/cooling exhibits reversed effects in the subcritical regime, like for an ideal
liquid. In the transcritical regime, with its sharp gradients of the thermodynamic and
transport properties, wall heating stabilises the flow. Most substantially, however, wall
cooling provokes a changeover of the leading instability mechanism: the accelerated
streamwise flow attains inflectional wall-normal profiles, and the invoked inviscid
Tollmien–Schlichting instability prevails with growth rates up to one order of magnitude
larger than those of the cross-flow mode. We establish a two-fold mathematical relation
from the momentum equation that explains the consequence of non-ideality and wall
heating/cooling. The streamwise perturbation patterns of the flows in their linear instability
regime are shown by mimicking wave trains emanating from virtual point-disturbance
sources. From the viewpoint of keeping laminar flows, the transcritical thermodynamic
state with a cooling wall must be avoided.
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Figure 1. Global fossil CO2 emissions with a close-up for the years 1990–2021. Data is provided by Global
Carbon Project (2021). The three downturns highlighted with green triangles coincide with the dissolution of
the Soviet Union, the global financial crisis and the COVID-19 pandemic.

1. Introduction

Climate change and air pollution, as yet, threaten the sustainable development goals
adopted by the United Nations. By looking into the global fossil CO2 emission diagram
in figure 1, the significant growth commenced from the Industrial Revolution (the
1800s) has not slowed down in the long-term view. Some recent occasional downturns
(seen from the green triangles) are not due to science and technology development
but political/economic/unforeseen circumstances. Towards the goal of a cleaner sky,
cross-flow (CF) instability that rises on wing surfaces of aircraft has attracted persistent
research forces since the 1990s. Understanding and controlling CF instability are essential
in achieving laminar flow control and drag reduction.

Due to its early focus on aeroplanes, CF instability’s study is yet restricted to the
world of ideal gas. Physically, the instability is caused by a secondary inflectional
flow profile perpendicular to the potential-flow direction, that balances the pressure
gradient and centrifugal force inside the boundary layer. The CF instability typically
happens in, for example, a swept flow in the favourable pressure gradient region of a
wing surface. Significant progress has been made in different CF-dominated transition
stages: receptivity; linear amplification; and nonlinear breakdown. Reviews are available
by Bippes (1999), Saric, Reed & Kerschen (2002) and Saric, Reed & White (2003).
The recent interest in hypersonic flows promoted further findings on CF instability
(Craig & Saric 2016; Xu et al. 2019). For example, considering high-temperature effects,
incorporation of vibrational energy and a five-species air model (each follows the ideal
equation of state) supports a new type of dominating secondary instability mode (Chen
et al. 2022).

Based on the understanding of instability mechanisms, control of CF instability amounts
to an important branch that leads to industrial improvements. Early successful strategies
are distributed roughness elements proposed by Saric and coworkers (Saric, Carrillo &
Reibert 1998). Following the prediction of the stability diagram, steady subcritical CF
modes are excited by narrowly spaced leading-edge roughness elements compared with
the naturally most unstable CF modes. A similar concept was suggested by Wassermann
& Kloker (2002) using upstream flow deformation (UFD) that can take various forms to
generalise the control strategy. Examples are pinpoint suctions (Friederich & Kloker 2012)
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Figure 2. Pressure–temperature (P–T) diagram of carbon dioxide (CO2). 1©, 2© and 3© denote the
supercritical, subcritical and transcritical regimes, respectively.

and unsteady vortices (Guo & Kloker 2019). In the last decades, plasma-actuators-based
control has been proven efficient and successful. The body forces generated can be utilised
by designing and placing the actuators accordingly. Experimental (Serpieri, Venkata &
Kotsonis 2017; Yadala et al. 2018) and numerical (Dörr & Kloker 2017; Wang, Wang & Fu
2017; Shahriari, Kollert & Hanifi 2018) studies satisfactorily consolidated these concepts.

Non-ideal fluids are being recognised to show great potential in the sector of energy and
aerospace. For example, supercritical CO2 turbines improve energy production efficiency
compared with conventional steam turbines (Irwin & Le Moullec 2017); dual-fuel internal
combustion engines consume cleaner renewable fuels that are highly non-ideal in the
evaporation and mixing stage (Gaballa et al. 2022); the performance of liquid rocket
engines relies on the property of supercritical propellants (Nasuti & Pizzarelli 2021).
Besides swept wings, CF instability is essential in any flow that contains three-dimensional
(3-D) boundary layers, cf. turbo-machinery flows (Romei et al. 2020) and Venus missions
(Glaze et al. 2018). The present research thus aims to uncover the role of non-ideality in
CF instabilities.

Stepping into the non-ideal fluids, nevertheless, the stability of shear flows confronts the
coupling of complex thermodynamic mechanisms. Figure 2 illustrates the P–T diagram
of CO2 (as a representative fluid) in the reduced coordinate of temperature and pressure
(normalised by critical values). The colour indicates the compressibility factor z̄ = p/ρRT ,
measuring the degree to which an ideal equation of state (z̄ = 1) is satisfied. We have
used z̄ = 0.99 and 1.01 to conceptually encircle the ideal-gas regime (filled with black
colour). Here S, L and V denote the state for solid, liquid and vapour, respectively.
Phase-change occurs crossing the melting/vaporisation line. The border between liquid
and vapour vanishes when the reduced pressure exceeds unity (above the critical point).
The thermodynamic properties instead undergo a continuous transition where the most
significant non-ideal effects materialise near the Widom line, defined as max Cp(T) along
an isobar, where Cp(T) is the specific heat. The closer to the critical point, pr close
to unity, the more consequential the non-ideality acts. Without loss of generality, this
study focuses on the representative pressure of 80 bar (pr = 1.084 for CO2). We aim to
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unveil the impact of non-ideality in the supercritical (gas-like), subcritical (liquid-like)
and transcritical (pseudoboiling, Banuti (2015)) regimes where flow temperature remains
above, below or crosses the Widom line.

For fluids at supercritical pressures, earlier investigations endeavoured to understand and
correlate heat transfer deteriorations in turbulent flows (Yoo 2013). Longmire & Banuti
(2022) found recently that laminar flows are sufficient to reveal similar deterioration
physics. At a transitional Reynolds number, the laminar–turbulent transition caused by
flow instabilities plays a central role, but they are less understood in the non-ideal
framework. New mechanisms discovered in recent studies have been renovating previous
understandings obtained with the ideal-gas assumption (Robinet & Gloerfelt 2019).
For example, dense gases (cf. fluorocarbon PP11, refrigerant R134a) are subject to a
decoupling of thermal and dynamical effects, leading to radiating supersonic instabilities
that possess a significant growth rate and travel supersonically relative to the free stream
velocity (Gloerfelt et al. 2020). Near the Widom line, plane Poiseuille flow reaches inviscid
instability when temperature distributions cross the pseudocritical point (Ren, Fu & Pecnik
2019a). Likewise, in the transcritical regime, two-dimensional (2-D) boundary layer flows
are subject to dual-mode instability, of which the new mode (Mode II) is a result of inviscid
instability (due to inflectional baseflows) whose growth rate reaches an order of magnitude
more prominent than the conventional mode (Mode I) (Ren, Marxen & Pecnik 2019b).
The coupling of Widom-line transition and binary mixing-layer instabilities (e.g. in fuel
injection systems) leads to a destabilised novel thermodynamical instability (Ly & Ihme
2022) that bears analogies with the dual-mode instability behaviour in boundary-layer
flows (Ren et al. 2019b).

The main part of the paper will start with the description of the problem and numerical
methods in § 2. Stability results are presented and explained mathematically in §§ 3
and 4 for different regimes. We present disturbance-pattern scenarios in § 5 and reach
conclusions in § 6.

2. Problem and methods

2.1. Problem and coordinate definition
The problem is defined in figure 3. We consider a swept flow over a spanwise-infinite
plate. Two sets of coordinates, based on the chordwise geometry (x, y, z) and (local)
potential streamline direction(xs, y, zs) will be used for the subsequent analysis. Velocity
components (u, v, w) and (us, v, ws) are thus defined accordingly. The ambient pressure is
p∗∞ = 80 bar (we use superscript ∗ to denote dimensional quantities and subscript ∞ for
ambient values). The effective swept angle is φ∗∞ = 45◦. The distribution of the pressure
coefficient cp(x) is matched to the experimental measurements (Lohse, Barth & Nitsche
2016; Barth, Hein & Rosemann 2018). The flow is subject to the following dimensionless
numbers:

Re = ρ∗∞u∗∞l∗0
μ∗∞

, Ma = u∗∞
a∗∞

, Pr = μ∗∞C∗
p∞

κ∗∞
, Ec = u∗2∞

C∗
p∞T∗∞

. (2.1a–d)

The Prandtl and Eckert number (Pr and Ec) are not independent and can be calculated from
the Mach and Reynolds numbers (Ma and Re). To allow for a comparable discussion, Ma =
0.2 and Re = 1.4687 × 105 are prescribed as in the reference case (Dörr & Kloker 2017).
We consider the following cases listed in table 1, traversing different thermodynamic
regimes by specifying the free stream and wall temperatures (T∗∞ and T∗

w). In each regime,
the following wall-to-free stream ratios are studied: Tw/T∞ = 1.0667, 1.0333, 0.9688 and
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Figure 3. Problem and coordinate definition.

Thermodynamic regime T∗∞ T∞/Tpc Tw/T∞

ideal 700.0 K 2.275
⎫⎬
⎭ 1.0667, 1.0333, 0.9688, 0.9375supercritical 400.0 K 1.300

subcritical 280.0 K 0.910

transcritical 300.0 K 0.975 1.0667, 1.0333
320.0 K 1.040 0.9688, 0.9375

Table 1. Case definition and parameters. All three cases have the same dimensionless numbers Ma = 0.2,
Re = 1.4687 × 105, pressure coefficient Cp(x) and sweep angles φ(x).

0.9375, accounting for both heating and cooling walls. An overview of the thermodynamic
regimes is displayed in the density-temperature diagram in figure 4. The pink areas
correspond to thermodynamic states covered by the flows in table 1. The parameters
remain close to the isobar of 80, indicating that the pressure gradient is not large enough
to change the thermodynamic properties significantly. On the other hand, we employ the
NIST Refprop database (Lemmon, Huber & Mclinden 2013) to generate look-up tables
χ(ρ, T), accounting for the highly non-ideal equation of states and transport properties.
Here, χ collectively symbolises the required quantities (e.g. pressure, internal energy,
viscosity, thermal conductivity). The dashed squares in figure 4 that enclose different
regimes stand for the range of look-up tables employed for each regime. It has been verified
that the tables are good enough, whose size does not influence the results.

2.2. The laminar baseflow
In the redesigned DLR (German Aerospace Center)-experimental configuration, the
baseflow is not self-similar. We solve the ‘parabolised’ Navier–Stokes equations (PNS) for
the laminar baseflow. In steady boundary-layer flows without separation, the streamwise
viscous gradient is much smaller than the other component in wall-normal direction.
The PNS are thus derived from the complete Navier–Stokes equations by dropping the
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Figure 4. An overview of the thermodynamic regimes in density–temperature (ρ–T) diagram.

streamwise gradient in the viscous terms, reading (in 2-D form)

A
∂q
∂x

+ B
∂q
∂y

= RHS; (2.2)

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u ρ 0 0 0

0 ρu − 1
Re

∂μ

∂y
0 0

0 − 1
Re

∂λ

∂y
ρu 0 0

0 0 0 ρu 0

ρu
∂e
∂ρ

p 0 0 ρu
∂e
∂T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.3)

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v 0 ρ 0 0
0 b2,2 0 0 0
∂p
∂ρ

0 b3,3 0
∂p
∂T

0 0 0 b4,4 0

ρv
∂e
∂ρ

− μ

Re
∂u
∂y

p − 2μ + λ
Re

∂v

∂y
− μ

Re
∂w
∂y

b5,5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.4)

b2,2 = ρv − 1
Re

∂μ

∂y
− μ

Re
Dy

b3,3 = ρv − 1
Re

∂ (2μ + λ)
∂y

− 2μ + λ
Re

Dy

b4,4 = ρv − 1
Re

∂μ

∂y
− μ

Re
Dy

b5,5 = ρv
∂e
∂T

− 1
RePrEc

∂κ

∂y
− κ

RePrEc
Dy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2.5)
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The equations are linearised by ‘lagging’ coefficients A and B relative to the solution
vector q = (ρ, u, v, w, T)T in an iteration procedure, i.e. subiterations are performed to
update A and B from q at each station of the streamwise marching to get the correct,
fully nonlinear values. Note that the term ‘parabolised’ is bearably a misnomer, while the
equations are a hybridised set of hyperbolic–parabolic equations (Tannehill, Anderson &
Pletcher 1997). To ensure a strictly parabolic manner, the streamwise pressure gradient
is formulated as a forcing term on the right-hand side of the PNS: right-hand side =
(0, −dp/dx, 0, 0, 0)T. The boundary conditions are

y = ∞ :
∂u
∂y

= ∂w
∂y

= 0, v = v (continuity eq.) , ρ = ρe (x) , T = Te (x) ;
(2.6a)

y = 0 : u = v = w = 0, ρ = ρ

(
∂p
∂y

= 0
)

, T = Tw. (2.6b)

We employ subscript e for boundary layer edge values. Here ρe(x) and Te(x) are
potential-flow values given by the isentropic relations

S (ρe (x) , p (x)) = S (ρ∞, p∞) , S (Te (x) , p (x)) = S (T∞, p∞) , (2.7a,b)

where S stands for entropy, and p(x) is the measured pressure with dp/dx < 0. The PNS
are integrated downstream using an implicit Euler scheme, starting from an initial profile at
x = x0. In this study, we prescribe the streamwise and spanwise velocities u(x0, y), w(x0, y)
using the Falkner–Skan–Cooke (FSC) solution and v(x0, y) = 0. The thermodynamic
variables (ρ, T) are given either as the potential-flow values (applying isentropic relations)
or extrapolated from existing downstream data. The validation of the PNS results with
different initial profiles is provided in Appendix A, ensuring that the influence of the initial
profiles is insignificant.

2.3. Linear stability theory
We consider linear modal instability of the laminar baseflow obtained in § 2.2. Since
both steady and unsteady CF modes are subject to modal instabilities, they shall serve
as fundamental mechanisms leading to transition. The algebraic instability (Levin &
Henningson 2003) under these conditions is thus not considered. On the other hand, the
non-ideal effects of entirely bypass mechanisms (e.g. with massive free stream turbulence)
remain of interest for further investigations. The non-ideal framework was derived based
on the state postulate that a simple compressible system is defined by two independent
thermodynamics properties. The perturbation vector is defined as q = (ρ′, u′, v′, w′, T ′)T.
Therefore, perturbations in the other transport and thermodynamic properties (e.g. e′,
κ ′) are formulated as a function of (ρ′, T ′) through 2-D Taylor expansion, see Ren
et al. (2019b). The stability equations are obtained from the Navier–Stokes equations by
subtracting the governing equations of the unperturbed baseflow, formulated as

Lt
∂q
∂t

+ Lx
∂q
∂x

+ Ly
∂q
∂y

+ Lz
∂q
∂z

+ Lqq

+ V xx
∂2q
∂x2 + V xy

∂2q
∂x∂y

+ V xz
∂2q
∂x∂z

+ V yy
∂2q
∂y2 + V yz

∂2q
∂y∂z

+ V zz
∂2q
∂z2 = 0. (2.8)

The definition of the matrices in (2.8) is provided in Appendix B. Under normal-mode
form, q(x, y, z, t) = q̂( y) exp(iαx + iβz − iωt) + c.c. In this work, we seek the solution in
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the spatial mode, where the spanwise wavenumber β and angular frequency ω are given
as real input and α is the complex eigenvalue to be determined by the following resulting
nonlinear eigenvalue problem:

(−iωLt + Ly D + iβLz + Lq + V yy D2 + iβV yzD − β2V zz)q̂

= α
(
βV xz − iV xy D − iLx

)
q̂ + α2V xx q̂. (2.9)

Here D stands for the differential matrix (using the Chebyshev spectral method) with Dq̂ =
dq̂/dy. The perturbations are subject to Dirichlet boundary conditions (u′ = v′ = w′ =
T ′ = 0) at the wall and in the free stream. Note that, compared with the conventional linear
stability theory (LST) framework, the current method has been verified to reproduce the
classic results in the ideal-gas regime, see Appendix C.

2.4. Disturbance pattern evolution according to controlled disturbance sources
Previous research has revealed the receptivity of disturbance modes in dependence of
spanwise wavenumber, see, e.g. Stemmer, Kloker & Wagner (2000). It is found that the
receptivity coefficients are of the same order of magnitude. Compared with the exponential
growth that follows, this paves the way for constructing the disturbance pattern evolution
assuming a constant, or incorporating known results of receptivity coefficients. As an
example, we consider a harmonic point disturbance

fv (x, z, t) = A(14r5 − 45r4 + 50r3 − 20r2 + 1) sin(ωt + ϕ0), (2.10)

with

r2 = (x − xc)
2 + (z − zc)

2

R2 , 0 � r � 1. (2.11)

The function (2.10) satisfies that
∫∫

fv(x, z, t) dx dz = 0. Therefore, at any time step, no
net flow flux is introduced and the generation of sound is minimised. By choosing the
frequency ω, point source centre (xc, zc) and the radius R, we will be able to mimic various
excitations. Figure 5 provides such an example that we locate the source at the domain
centre. Accordingly, the Fourier amplitudes are symmetric with respect to wavenumber
β = 0. To connect to the LST results, we collect the Fourier amplitudes

f̂v,c (β) = f̂v (xc, β, t0) or f̂v,a (β) =
∫

f̂v (x, β, t0) dx. (2.12a,b)

The use of either the centre line of integration along x in (2.12a,b) does not cause a
qualitative difference. The physical results are obtained as

q (x, y, z, t) = q̂ ( y)
∑
β

[f̂v (β) exp (iαr (β) x + iβz − iωt + N (β, x))] + c.c. (2.13)

in which the N-factor is collected by integrating the growth rate from xc of the point source

N (β, x) = −
∫ x

xc

αi (β) dx. (2.14)

To remove the influence of persistent damped modes (throughout the considered
domain), their N factors are specified as −∞. Equation (2.13) gives a fast route revealing
the flow scenario in the linear regime once the linear stability results are obtained.
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Figure 5. An illustration of the point-source type wall perturbation. (a) A 3-D overview of a snapshot (t = t0);
(b) A 2-D view at the centre line (x = xc, t = t0); (c) Fourier amplitudes f̂v,c(β) and f̂v,a(β) of the point source,
both are normalised with β = 0.

3. Supercritical and subcritical regimes: the non-ideal CF modes

Serving as a reference for the investigation of non-ideality, we start our analysis from the
ideal regime. Figure 6 shows stability diagrams in the x–β and ω–β frames, accounting
for both steady and unsteady/travelling CF modes. Given the modal growth rate, unsteady
modes (with positive β) usually dominate, while steady modes have been deemed more
important at low free stream turbulence levels due to surface roughness. Here we place
our focus on the influence of the temperature ratio. The isothermal case (Tw/T∞ = 1)
corresponds to the experimental set-up, whose stability has been validated against
published results in Appendix C. As is indicated in the stability diagram, wall-heating
destabilises the CF mode and vice versa. We explain the influence of the temperature
ratio through the baseflows presented in figure 7. The definition of the boundary layer
parameters are

δ1,s =
∫ ∞

y=0

(
1 − ρus

ρeus,e

)
dy, δ2,s =

∫ ∞

y=0

ρus

ρeus,e

(
1 − ρus

ρeus,e

)
dy. (3.1a,b)

φe = arctan
(

we

ue

)
, H12,s = δ1,s

δ2,s
. (3.2a,b)

Note that the compressible definition of the displacement thickness δ1,s and momentum
thickness δ2,s has been used to take into account the variation of flow density. The shape
factor H12,s(x) would also not be constant for self-similar flow (with H12,x(x) = const.).
The underlying influence of temperature is two-fold. First, an increase in the displacement
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Figure 6. Stability diagram in the ideal regime (T∗∞ = 700 K) with different temperature ratios (Tw/T∞).
(a) Steady CF modes with N-factor lines of 1, 3, 5, 7, 9; (b) steady and unsteady modes at x = 1.

thickness (δ1,s) is caused by wall heating (and vice versa). Profiles of u, w, and accordingly
us, become less full, as seen in the baseflow profiles at x = 1 in figure 7(b). Second, a
notable increase of maxy(−ws) is observed, leading to the larger magnitude of ws. Both
aspects point to the destabilisation of CF modes. The shape of us( y) stands for the bulk
of the baseflow, upon which ws( y) determines the degree of its inflection-point influence.
Both profiles characterise the CF instability. We revisit the mathematical connection which
is established by returning to the governing equations. Near the wall the momentum
equations in x and z reduce to the boundary-layer equations,

∂2u
∂y2 = Re

μ

dp
dx

+ Re
μ

ρv
∂u
∂y

+ Re
μ

ρu
∂u
∂x

− 1
μ

∂μ

∂y
∂u
∂y

, (3.3a)

∂2w
∂y2 = Re

μ
ρu

∂w
∂x

+ Re
μ

ρv
∂w
∂y

− 1
μ

∂μ

∂y
∂w
∂y

. (3.3b)

On the wall,

∂2u
∂y2

∣∣∣∣
w

= Re
μw

dp
dx

−
(

1
μ

∂μ

∂y
∂u
∂y

)∣∣∣∣
w

, (3.4a)

∂2w
∂y2

∣∣∣∣
w

= −
(

1
μ

∂μ

∂y
∂w
∂y

)∣∣∣∣
w

. (3.4b)

For flows with fluids in the ideal regime subject to favourable gradient dp/dx < 0, the
inflection point (IP) is inside the wall, and the flow cannot separate since both velocity
gradients (∂u/∂y|w and ∂w/∂y|w) are positive on the wall. In (3.4), the wall temperature
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Figure 7. Baseflows in the ideal regime. (a) Boundary layer parameters as functions of x; (b) baseflow
profiles at x = 1.

leads to the following relation:

∂μ

∂y

∣∣∣∣
w

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0, wall cooling
(

∂T
∂y

∣∣∣∣
w

> 0
)

, IP moves towards the wall;

< 0, wall heating
(

∂T
∂y

∣∣∣∣
w

< 0
)

, IP moves away from the wall.
(3.5)

Accordingly, the velocity profiles get fuller (cooling wall) or less full (heating wall),
leading to smaller/larger growth rates of the CF modes. Note that the wall distance of the
inherent IP in the true CF profile ws( y) reduces with cooling and increases with heating.
(Cooling acts like suction on ws( y), cf. Messing & Kloker (2010), and the closer the IP to
the wall is the smaller is the inviscid instability caused by ws( y).) The relation (3.5) will
be shown later to exert a critical influence on the non-ideal regime.

On the other hand, the magnitude of ws is mathematically explained from the
momentum equation along zs. The bulk cross-pressure equation (without considering
viscous forces), a balance between centripetal and centrifugal (volume) forces on a curved
streamline, reads

dp
dzs

= −ρ

R
u2

s . (3.6)
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Figure 8. Streamlines in the ideal regime. The same colour style as in figure 7 is used to denote temperature
ratios.

Here R is the local radius of the curved streamline. Across the boundary layer the pressure
gradient keeps constant, and since us decreases towards the wall, R must follow at constant
density, deflecting the flow in the direction of the curvature centre thus giving rise to
ws. With the density varying in the layer, the density itself has a share of the balance.
For example, the density decreases from its potential value to the wall with wall heating.
Accordingly, R will be smaller towards the wall leading to a more curved streamline as
demonstrated in figure 8. This results in a larger/smaller amplitude of ws being generated
from us,e as seen in figure 7(b).

The above analysis of the ideal regimes serves as an important foundation and reference
when evaluating the non-ideal effects. We compare the stability diagrams between the
subcritical and supercritical regimes in figure 9. The coordinates are mirrored in x and
ω, respectively, to compare the two non-ideal regimes better. Here, N-factors in the ideal
regime (figure 6a) are included in the x–β diagrams (ω = 0) as white dashed lines. These
diagrams in figure 9 indicate that non-ideal CF modes, both steady and unsteady, follow
such behaviour.

(i) The subcritical regime. An inversed influence of the temperature ratio is seen, i.e.
wall cooling destabilises the CF mode.

(ii) The supercritical regime. The CF mode receives a similar but slightly enhanced
influence of the temperature ratio as in the ideal regime, leading to a smaller/larger
N-factor than the ideal regime subject to wall cooling/heating of the same ratio.

Note that non-ideal effects are not present for isothermal cases since thermodynamic
and transport properties reduce to constant functions of y. To understand the above stability
results, we present the baseflow in figure 10. In either case, the flow temperature remains
above or below the pseudocritical point. We focus on the profiles of us and ws. Contrary to
the ideal regimes, the us profiles of the subcritical cases get fuller with wall heating. In the
supercritical regime, us is not much influenced by non-ideality. In terms of ws, a similar
trend as in the ideal regime is held in both subcritical and supercritical regimes, i.e. heating
increases the CF components. The difference is that non-ideality enhances the influence of
temperature ratios on ws in supercritical regimes while weakens it in subcritical regimes.
This is in accordance with the density profiles shown in figure 10(b). The density gradient
∂ρ/∂y near the edge of the boundary layer gets smaller in the subcritical regime compared
with the ideal-gas reference. According to the momentum balance relation (3.6), the
influence of wall heating/cooling on ws therefore gets weakened.
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Figure 9. The LST of the subcritical and supercritical regimes. (a) Stability diagram for steady CF modes.
The white lines are contours of N-factors (1, 3, . . . , 9) for the non-ideal (solid lines) and ideal (dashed lines)
regimes; (b) steady and unsteady modes at x = 1.

Mathematically, the behaviour of us is explained by the momentum equation at the
wall (3.4) that holds also for non-ideal cases. In particular, the viscosity gradient at the
wall

∂μ

∂y

∣∣∣∣
w

=
(

∂μ

∂T
∂T
∂y

)
w︸ ︷︷ ︸

term T

+
(

∂μ

∂ρ

∂ρ

∂y

)
w︸ ︷︷ ︸

term ρ

, (3.7)

determines the shape of the us profiles: positive leads to fuller profiles (and vice versa).
The role of non-ideality thus sets in through the considerable modulation of the viscosity
gradient (3.7) enumerated in figure 11. A first knowledge provided in figure 11(a) indicates
that in the supercritical regimes (fluids are gas-like), the viscosity is dominated by term
T while term ρ marginally reduces the amplitude no matter whether with wall cooling
or heating. Moreover, the value of ∂μ/∂y|w remains similar to the ideal-gas regime,
which explains that the us( y) profiles are not much influenced by non-ideality in the
supercritical regime. However, in the subcritical case, term ρ becomes important and
dominates significantly. The transport property tables in figure 11(b) provide a global
view of the T and ρ gradients of viscosity (∂μ∗/∂T∗ and ∂μ∗/∂ρ∗). Both terms broadly
stay positive throughout different thermodynamics regimes. A notable difference is found
in the subcritical regime where ∂μ∗/∂T∗ turns negative. In this case, term T and term
ρ (much larger) may thus join forces. By scrutinising each term in figure 11(a), ∂ρ/∂y
and ∂T/∂y are in the same order of magnitude. The crucial factor driving the subcritical
regime far from the ideal gas lies in the term ∂μ/∂ρ, which gets much larger than ∂μ/∂T ,
leading to a significant dominance of term ρ in (3.7). Considering that ∂T/∂y and ∂ρ/∂y
have differing signs, the influence of wall heating/cooling, therefore, becomes reversed in
the subcritical regime. The above analysis is summarised in figure 11(c), explaining how
non-ideality and wall-heating/cooling regulate the us profiles.
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4. The transcritical regime: a changeover of the leading instability mechanism by wall
cooling

Now we focus on the transcritical regime with the stability diagrams shown in figure 12.
Compared with the ideal regime, wall heating serves to stabilise the CF mode just like in
the subcritical regime. Noteworthy is the cooled case: besides the CF mode, an intensely
unstable region appears for higher frequencies when the temperature ratio is sufficiently
low. We note that the maximum growth rate is one order of magnitude larger than the one
of the CF modes, and its instability band in frequency ω and spanwise wavenumber β is
considerably larger. The analysis below shows that the tremendous growth rate is due to
an inviscid Tollmien–Schlichting (TS) mode instability.
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Figure 12. Stability diagram in the transcritical regimes with different temperature ratios (Tw/T∞).
(a) Steady CF modes with N-factor lines of 1, 3, 5, 7, 9; (b) steady and unsteady modes at x = 1.

Based on the observation in figure 12(b), we present the eigenspectrum and eigenvectors
at x = 1 in figure 13 in a comparable manner; (β, ω) = (80, 1.75) and (111, 34),
correspond to the most unstable CF and TS mode, respectively. The eigenvalues of the
two cases are (c, αi) = (−0.019, −2.644) and (0.466, −23.656). Here c = ω/αr is the
phase velocity. The eigenvector shows that the TS mode is more cramped near the wall
while the CF mode largely takes up the space of the whole boundary layer. A noteworthy
characteristic of the TS mode is that the density perturbation dominates strongly over the
other perturbations.

To understand the occurrence of the inviscid TS mode we look into the details of the
cooling case by gradually reducing the temperature ratio. Correspondingly, the stability
diagrams are summarised in figure 14. Despite the decreasing growth rates of the CF
mode with the cooling wall, the TS mode rushes to dominate and reaches tremendous
growth rates. For a view in the streamline-based coordinate system we present the αr,s–βr,s
diagram in figure 14(b). The result shows that the inviscid TS mode reaches its maximum
growth rate around βr,s = 0, implying its essential dependency on the us profile. These
appearances are in accordance with the typical nature of TS modes. To explore the
mechanisms further, we show the pertinent baseflow parameters in figure 15. According
to the cross-pressure equation (3.6), the amplitude of the CF ws decreases with cooling
and thus the growth rate of the CF mode. More importantly, the us( y)-profile becomes
inflectional due to the cooling wall, with the generalised IP moving away from the wall.
Since the ws( y)-profiles are also inflectional, this leads to a coexistence and competition
of two inviscid mechanisms, CF and TS. Once the temperature ratio is low enough, the
inviscid TS instability overtakes the CF instability. For an ideal gas, this situation only
holds for the case of a strong adverse pressure gradient acting on the 3-D boundary layer,
cf. Wassermann & Kloker (2005).

We further explain the occurrence of the generalised IP in figure 16. As can be seen,
the viscosity gradient at the wall is immense (O(102 ∼ 103)), particularly for wall cooling
compared with the other regimes discussed earlier (see figure 11a). Following the analysis
of the wall momentum equation (3.4), the amplitude of ∂μ/∂y|w serves to move the IP
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blue dashed line gives the constant frequency ω = 20.
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Figure 15. Baseflows in the transcritical regimes with wall cooling. (a) Amplitude of the CF component
maxy(−ws) versus x; (b,c) baseflow profiles at x = 1. In each panel, line colours stand for different wall
temperatures.

into the wall (positive) or towards the edge of the boundary layer (negative). Thus the flow
profiles become strongly inflectional with wall cooling. Unlike the other regimes, a prime
reason causing large ∂μ/∂y|w lies in the fact that the density gradient ∂ρ/∂T|p becomes
considerably large (as shown in figure 16a,b) near the Widom line. Following the relation

∂ρ

∂y
= ∂ρ

∂T

∣∣∣∣
p

∂T
∂y

, (4.1)

the term ρ in (3.7) thus erupts, turning into the most important feature of the transcritical
regime.
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Figure 16. (a) The y-gradient of viscosity in the transcritical regimes with wall cooling and heating; (b) density
ρ∗ and its gradient ∂ρ∗/∂T∗|p versus temperature at p∗ = 80 bar. The yellow shaded area stands for strong
gradients of thermodynamic properties near the Widom line (pseudocritical point).

5. Scenarios of the flow instability – streamwise perturbation patterns

It has been clear that the consequence of wall heating/cooling on the flow instability has
become intensified in the supercritical regimes but reversed in the subcritical regime.
The most striking results are found in the transcritical case with wall cooling, where the
inviscid TS mode coexists with and dominates the CF mode despite the acceleration of
the flow. This changeover of the leading primary instability mechanism causes not only a
much earlier transition but also a different disturbance structure of the flow. To reveal this
feature in physical space, we study the spatiotemporal evolution of the perturbations in the
transcritical regime.

The perturbation fields are reconstructed based on the results in the stability diagrams
shown in figure 17. The diagrams provide a comprehensive comparison of the influence
of non-ideality, frequency (ω = 3, 20) and wall temperature (Tw/T∞ = 1.0667, 0.9375)
on the growth rate, wave angle and N-factors. For all cases, the growth rate for positive
spanwise wavenumbers β is larger than for negative ones. For example, for both wall
heating and cooling, the ideal-gas case reaches an N-factor of 9 (β > 0) and 5 (β < 0)
by the end of the domain considered (x = 5.6). A stabilisation by the non-ideality is seen
for the CF mode (ω = 3), which is more significant in the cooling condition. With high
frequency ω = 20, as predicted in figure 12(b), only positive β are unstable, indicating a
deterioration of the CF mode. The maximum growth rate is reduced by non-ideality in the
heating case while the instability remains for larger x leading to a slightly higher N-factor.
The inviscid TS mode shown in figure 17(b) presents a way larger parameter range of
instability. With a tremendous growth rate, an N-factor of 60 is reached around x = 4.2.
Of course, the strong growth rate will cause a much earlier transition.
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Figure 17. Stability diagram of the unsteady perturbations with ω = 3 and 20. Colours indicate the growth
rate (−αi), white solid lines show N factors and white dashed line present the wave angle (arctan β/αr).
Comparison of the transcritical regimes versus the ideal cases. (a) Wall heating (Tw/T∞ = 1.0667); (b) wall
cooling (Tw/T∞ = 0.9375).
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Figure 18. Stability scenario shown with physical perturbation ∂u′/∂y|y→0(x, z, t). Movies showing the
temporal evolution are available as supplemental materials. The dashed and dash–dotted lines correspond to the
potential and wall streamlines. We present four transcritical cases in accordance with the results in figure 17.
The colourmap displays perturbation whose amplitude is large than a threshold with black-and-white contours.
The point sources (shown with blue circles) are located at x = 1 and z = 1.05, 3.14, 5.24 and 7.33. An additional
case for wall cooling and ω = 20 are shown with a reduced growth rate of αi/20.

Using the technique introduced in § 2.4, the streamwise perturbation patterns are shown
in figure 18 (see supplementary movie available at https://doi.org/10.1017/jfm.2022.845
for temporal evolutions). A point-source-type perturbation is introduced into the domain
at x = 1. The frequency of the source is ω = 3 and 20, respectively, and we present plots
spanning four periods in the spanwise direction. The dashed line is the potential streamline,
and the dash–dotted line shows the wall streamline. The colour map has been designed
such that the structures are shown in black and white when the amplitudes have become
large. Since in the stability framework all perturbations (ρ′, u′, v′, w′, T ′ and secondary
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variables) have been considered as a whole and grow with the same growth rate, we
choose to show the wall-normal gradient of the streamwise velocity perturbation at the
wall ∂u′/∂y|y→0(x, z, t). This variable is related to the skin friction perturbation (that rises
in an averaged manner in the nonlinear stages during flow transition).

As presented in figure 18, we consider the flow field until x = 5. Note that
figure 18(a,b,c) share the same colourmap. In the low-frequency regime (ω = 3,
figure 18a,b), the CF modes dominate both wall heating and cooling. As seen in
supplementary movies, the perturbations travel along the wall streamline consistent with
the direction of the group velocity. The wave crests are about parallel to the wall streamline,
and inside each wave packet train, the crests move in a positive spanwise direction
because of the dominating CF modes travelling against the CF direction (downwards in
figure 18a,b,c) that have higher amplitudes than those travelling in the CF direction. This
travel is in a local manner since the amplitude decays at the sides of each train towards
its neighbouring train. By comparing figure 18(a,b), we see that the amplitude of the
cooling-wall case is smaller compared with the heating-wall case.

A noteworthy difference in the ω = 20 case for the heating wall (figure 18c) is that
the perturbations grow only for positive β, and, of course, the wavelengths are shorter
because of the higher frequency. The wave crests are now more oriented to the x-direction
according to the pure existence of waves travelling downwards against the CF. Under such
conditions, perturbations are not cancelled by the counterpart of negative β. Next, we focus
on the TS-dominated flow with the cooling wall ω = 20 (figure 18d,e) in the transcritical
regime. Due to the tremendous growth rates, we have indicated the N factor of 9 that is
immediately reached at x = 1.48 (grown from x = 1). The crests within the wave train are
now perpendicular to the potential streamline and travel along it. This corresponds to the
typical nature of incompressible-flow TS instability with the most amplified waves being
2-D and travelling along the streamline, as seen in figure 14(b), where the stability diagram
is quasisymmetric with respect to βr,s = 0.

We make use of figure 19 to explain the observations in the perturbation patterns.
The physical perturbations for various individual β are plotted for two cases (heating
wall with ω = 3 and cooling wall with ω = 20). The N factors at x = 5 are shown
at the bottom of each panel. Since the final perturbation is a linear superposition of
these structures, the wavenumber that reaches the largest N factor will dominate the
structures shown in figure 18. In the two cases, this corresponds to β = 63 and 54, whose
crests are parallel to the wall streamline or perpendicular to the potential streamline,
respectively.

6. Conclusion

The CF instabilities developing in accelerated swept boundary-layer flows at low Mach
number and different wall-temperature conditions have been studied for the first time with
a highly non-ideal fluid. As a representative gas, CO2 at a pressure of 80 bar is employed.
The free stream ambient temperature T∗∞ has been appropriately chosen to reveal the
flows in the subcritical (T∗∞ = 280 K), transcritical (300 and 320 K), supercritical (400 K)
and ideal-gas regimes (700 K). Four groups of wall temperatures are considered for each
ambient condition, leading to wall heating and cooling conditions with Tw/T∞ = 1.0667,
1.0333, 0.9688 and 0.9375.

The laminar baseflows are obtained by solving the PNS. For most of the cases
(supercritical, subcritical and ideal regimes), it has been found that using FSC velocity
profiles with free stream values for density and temperature serve as a relatively robust
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Figure 19. Display of physical perturbations ∂u′/∂y|y→0(x, z, t) for chosen spanwise wavenumber β. The
maximum N factors at x = 5 are written at the bottom of each subpanel. (a) Wall heating and ω = 3, x ∈ [2, 3],
z ∈ [0, 2.08]; (b) wall cooling and ω = 20, x ∈ [2, 3], z ∈ [0, 2.08]. Movies showing the temporal evolution
are available as supplemental materials.

inflow condition, and the flow field converged rather quickly. In the transcritical case,
the dependence on the inflow conditions has been removed by iteratively updating the
inflow from downstream solutions. The stability of the baseflows is analysed with LST,
where the non-ideality is taken into account. The streamwise perturbation pattern has been
reconstructed using the Fourier spectrum of local point-like sources based on the stability
results.

The results show that non-ideality intensifies the influence of wall heating/cooling in
the supercritical regime. However, in the subcritical regime, the effect gets reversed,
like in a liquid. In the transcritical regime, adequate wall heating and cooling both
stabilise the CF modes. Strikingly, a changeover of the dominating instability mechanism
from CF to inviscid TS type appears here for the wall cooling case. The maximum
growth rate of the invoked high-frequency inviscid TS instability, raised by an IP in the
streamwise-velocity profile, is one order of magnitude larger than the CF mode rate despite
the flow acceleration. The unstable frequency band is also larger. The strong instability will
lead to a rapid flow transition and must be avoided if a possibly long laminar flow is sought.
The scenario resembles somewhat the situation with an ideal fluid with a CF boundary
layer and sudden strong flow deceleration by an adverse pressure gradient, leading to
flow separation. With the non-ideal fluid considered here, just a slight wall cooling in
the transcritical regime does it.

A two-fold mathematical relation from the momentum equation explains the
consequence of non-ideality and wall heating/cooling. Firstly, the density gradient with
respect to temperature at constant pressure and the temperature and density dependence
of viscosity are responsible for the wall-normal gradient of viscosity near the wall,
which determines the IP of the primary flow; secondly, the CF amplitude is altered by
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Wall Regime Key physics Flow instability

cooling

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ideal
∂T/∂y|w > 0 ⇒ ∂μ/∂y|w > 0 ⇒ us fuller,

∂ρ/∂y|e < 0 ⇒ maxy(ws) smaller
stabilise CF mode

supercritical
us similar to ideal regime,

∂ρ/∂y|e < ∂ρ/∂y|e,ideal < 0
⇒ maxy(ws) smaller than ideal regime

more stable than ideal

subcritical

|∂μ/∂ρ|w > |∂μ/∂T|w, ∂ρ/∂y|w < 0, ∂μ/∂ρ|w > 0
⇒ ∂μ/∂y|w < 0 ⇒ us less full,
∂ρ/∂y|e,ideal < ∂ρ/∂y|e < 0

⇒ maxy(ws) slightly larger than ideal regime

destabilise CF mode

transcritical
|∂ρ/∂y|w 
 |∂T/∂y|w, ∂ρ/∂y|w < 0, ∂μ/∂ρ|w > 0

⇒ ∂μ/∂y|w � 0 ⇒ us less full & inflectional,
∂ρ/∂y|e < 0 ⇒ maxy(ws) smaller

inviscid TS mode
CF mode stabilised

heating

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ideal
∂T/∂y|w < 0 ⇒ ∂μ/∂y|w < 0 ⇒ us less full

∂ρ/∂y|e > 0 ⇒ maxy(ws) larger
destabilise CF mode

supercritical
us similar to ideal regime,

∂ρ/∂y|e > ∂ρ/∂y|e,ideal > 0
⇒ maxy(ws) larger than ideal regime

more unstable than ideal

subcritical

∂μ/∂ρ|w > ∂μ/∂T|w, ∂ρ/∂y|w > 0, ∂μ/∂ρ|w > 0
⇒ ∂μ/∂y|w > 0 ⇒ us fuller,
∂ρ/∂y|e,ideal > ∂ρ/∂y|e > 0

⇒ maxy(ws) slightly smaller than ideal regime

stabilise CF mode

transcritical
|∂ρ/∂y|w 
 |∂T/∂y|w, ∂ρ/∂y|w > 0, ∂μ/∂ρ|w > 0

⇒ ∂μ/∂y|w 
 0 ⇒ us much fuller,
∂ρ/∂y|e > 0 ⇒ maxy(ws) larger

more stable than ideal

Table 2. Summary of the key physics of flow instability in 3-D boundary layer flows with highly non-ideal
fluids.

wall heating/cooling through the density gradient, which is likewise subject to non-ideal
effects. The above key physics for different thermodynamic regimes are summarised
in table 2.

It is worth noting that for 2-D boundary layers a new mode (Mode II) has already been
documented, whose growth rate is also much more prominent (Ren et al. 2019b). Both new
modes are due to the appearance of a generalised IP and share a similar inviscid physics
in nature (see Appendix D). The CF, however, reduces the new mode’s maximum growth
rate by approximately 15 %. Another difference lies in that, in the 2-D case, the new mode
and the conventional viscous mode form dual solutions to the eigenvalue problem. Thus
their stability diagrams overlap. In the transcritical regime in a 3-D boundary layer with
wall cooling, a competition of two inviscid mechanisms – by both inflectional us( y) and
ws( y) – appears. Their stability diagrams hardly overlap because CF and TS modes stay
virtually orthogonal.
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Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.845.
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Appendix A. Validation of the baseflow

Instead of a self-similar baseflow (e.g. FSC), we have chosen to illustrate the non-ideal
effects based on the more practical experimental conditions. The reason is twofold. First,
FSC flows are subject to certain limitations. For example, the chordwise baseflow at the
edge of the boundary layer must obey a power law. Therefore, the streamwise pressure
gradient cannot necessarily match the distribution along a swept wing or other instruments.
This deficiency has led to the redesigned DLR experiments. Because the original one,
basically a FSC flow with constant pressure gradient and thus Hartree parameter of 2/3,
is not apt at control with the UFD method like a swept-wing flow. For UFD control,
steady disturbances with a spanwise wavelength 2/3 or smaller of the naturally and along-x
integrally most amplified mode need be amplified early and strongly, meaning that the
stability diagram (amplification rate over the x-spanwise wavenumber plane) must have a
thumb-shape; the FSC flow does not possess such a shape typical for wing flows where the
flow starts from the attachment line, with a Hartree parameter of unity (Hiemenz flow);
second, a number of experimental and numerical data is available for controlling the flow,
see, e.g. Lohse et al. (2016) and Dörr & Kloker (2017), enabling a comparison of control
measures between the ideal and non-idea fluid case.

When PNS is applied to solve the non-self-similar baseflow, it is meaningful to verify
that the influence of the initial condition is limited to the vicinity of the inlet. Here we
take the transcritical case as a representative example: p∗∞ = 80 bar; T∗∞ = 300 K; T∗

w =
320 K. In figure 20, we show four sets of initial profiles that are prescribed at x = x0. In
particular, the u∗ and w∗ profiles are obtained by the FSC boundary layer profiles for all the
four tests. For ρ∗, T∗ and v∗, ‘constant’ stands for T∗ = T∗

e (x0), ρ∗ = ρ∗
e (x0) and v = 0.

A ‘linear’ profile is created by a linear distribution of ρ∗ and T∗ in the boundary layer with
an estimated thickness (v remains zero). Here,‘extrap1’ and ‘extrap2’ profiles are given by
a linear extrapolation of the profile at x0 using the results initiated with ‘constant’ and
‘extrap1’ profiles, respectively.

As is seen in figure 21(a), the flows are not sensitive to the above initial conditions.
At x = 0.5, there is not a discernible difference among the four results. The influence
of initial condition is also well exhibited in figure 21(b) as various baseflow parameters.
Again, these curves become unified soon after the inlet.
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Figure 20. Initial conditions prescribed for validating the PNS. Here u and w profiles are given by the FSC
self-similar solution, and ρ, T and v are provided following one of the four strategies (constant, linear, extrap1,
extrap2).
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Figure 21. The PNS results obtained with different initial conditions. (a) Profiles at x = 0.15 and 0.50;.
(b) baseflow parameters as functions of x.
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Appendix B. Stability equations

Matrices of the stability equations (2.8) are given as follows:

Lt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 ρ 0 0 0

0 0 ρ 0 0

0 0 0 ρ 0

ρ
∂e
∂ρ

0 0 0 ρ
∂e
∂T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B1)

Lx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u ρ 0 0 0

− 1
Re

∂λ

∂ρ

∂v

∂y
+ ∂p

∂ρ
ρu − 1

Re
∂μ

∂y
0

∂p
∂T

− 1
Re

∂λ

∂T
∂v

∂y

− 1
Re

∂μ

∂ρ

∂u
∂y

− 1
Re

∂λ

∂y
ρu 0 − 1

Re
∂μ

∂T
∂u
∂y

0 0 0 ρu 0

ρu
∂e
∂ρ

p − 2λ
Re

∂v

∂y
−2μ

Re
∂u
∂y

0 ρu
∂e
∂T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B2)

Ly =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v 0 ρ 0 0

− 1
Re

∂μ

∂ρ

∂u
∂y

ρv − 1
Re

∂μ

∂y
0 0 − 1

Re
∂μ

∂T
∂u
∂y

Ly3,1 0 Ly3,3 0 Ly3,5

− 1
Re

∂μ

∂ρ

∂w
∂y

0 0 ρv − 1
Re

∂μ

∂y
− 1

Re
∂μ

∂T
∂w
∂y

Ly5,1 −2μ

Re
∂u
∂y

Ly5,3 −2μ

Re
∂w
∂y

Ly5,5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B3)

Ly3,1 = ∂p
∂ρ

− 1
Re

∂v

∂y
∂ (2μ + λ)

∂ρ

Ly5,1 = ρv
∂e
∂ρ

− 1
RePrEc

∂κ

∂ρ

∂T
∂y

Ly3,3 = ρv − 2
Re

∂ (2μ + λ)
∂y

Ly5,3 = p − 4μ + 2λ
Re

∂v

∂y

Ly3,5 = ∂p
∂T

− 2
Re

∂ (2μ + λ)
∂T

∂v

∂y

Ly5,5 = ρv
∂e
∂T

− 1
RePrEc

(
∂κ

∂y
+ ∂κ

∂T
∂T
∂y

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (B4)
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Lz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w 0 0 ρ 0

0 ρw 0 0 0

− 1
Re

∂μ

∂ρ

∂w
∂y

0 ρw − 1
Re

∂λ

∂y
− 1

Re
∂μ

∂T
∂w
∂y

∂p
∂ρ

− 1
Re

∂λ

∂ρ

∂v

∂y
0 − 1

Re
∂μ

∂y
ρw

∂p
∂T

− 1
Re

∂λ

∂T
∂v

∂y

ρw
∂e
∂ρ

0 − 2
Re

μ
∂w
∂y

p − 2
Re
λ
∂v

∂y
ρw

∂e
∂T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B5)

Lq =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂v

∂y
0

∂ρ

∂y
0 0

Lq2,1 0 ρ
∂u
∂y

0 Lq2,5

Lq3,1 0 ρ
∂v

∂y
0 Lq3,5

Lq4,1 0 ρ
∂w
∂y

0 Lq4,5

Lq5,1 0 ρ
∂e
∂y

0 Lq5,5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B6)

Lq2,1 = v
∂u
∂y

− 1
Re

∂μ

∂ρ

∂2u
∂y2 − 1

Re
∂u
∂y

(
∂2μ

∂ρ2
∂ρ

∂y
+ ∂2μ

∂ρ∂T
∂T
∂y

)

Lq3,1 = v
∂v

∂y
+ ∂2p

∂ρ2
∂ρ

∂y
+ ∂2p

∂ρ∂T
∂T
∂y

− 1
Re

∂2v

∂y2
∂ (2μ + λ)

∂ρ
− 1

Re
∂v

∂y

(
∂2 (2μ + λ)

∂ρ2
∂ρ

∂y
+ ∂2 (2μ + λ)

∂ρ∂T
∂T
∂y

)

Lq4,1 = v
∂w
∂y

− 1
Re

∂μ

∂ρ

∂2w
∂y2 − 1

Re
∂w
∂y

(
∂2μ

∂ρ2
∂ρ

∂y
+ ∂2μ

∂ρ∂T
∂T
∂y

)

Lq5,1 = v
∂e
∂y

+ ∂e
∂ρ

(
v
∂ρ

∂y
+ ρ

∂v

∂y

)
+ ρv

(
∂2e
∂ρ2

∂ρ

∂y
+ ∂2e

∂ρ∂T
∂T
∂y

)

+∂p
∂ρ

∂v

∂y
− 1

RePrEc

(
∂κ

∂ρ

∂2T
∂y2 + ∂2κ

∂ρ2
∂ρ

∂y
∂T
∂y

+ ∂2κ

∂ρ∂T

(
∂T
∂y

)2
)

− 1
Re

∂μ

∂ρ

((
∂u
∂y

)2

+ 2
(

∂v

∂y

)2

+
(

∂w
∂y

)2
)

− 1
Re

∂λ

∂ρ

(
∂v

∂y

)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (B7)
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Lq2,5 = − 1
Re

∂μ

∂T
∂2u
∂y2 − 1

Re
∂u
∂y

(
∂2μ

∂T2
∂T
∂y

+ ∂2μ

∂T∂ρ

∂ρ

∂y

)

Lq3,5 = ∂2p
∂T2

∂T
∂y

+ ∂2p
∂ρ∂T

∂ρ

∂y

− 1
Re

∂ (2μ + λ)
∂T

∂2v

∂y2 − 1
Re

∂v

∂y

(
∂2 (2μ + λ)

∂T2
∂T
∂y

+ ∂2 (2μ + λ)
∂T∂ρ

∂ρ

∂y

)

Lq4,5 = − 1
Re

∂μ

∂T
∂2w
∂y2 − 1

Re
∂w
∂y

(
∂2μ

∂T2
∂T
∂y

+ ∂2μ

∂T∂ρ

∂ρ

∂y

)

Lq5,5 = ∂e
∂T

(
v
∂ρ

∂y
+ ρ

∂v

∂y

)
+ ρv

(
∂2e
∂T2

∂T
∂y

+ ∂2e
∂T∂ρ

∂ρ

∂y

)

+ ∂p
∂T

∂v

∂y
− 1

RePrEc

(
∂κ

∂T
∂2T
∂y2 + ∂2κ

∂T2

(
∂T
∂y

)2

+ ∂2κ

∂ρ∂T
∂T
∂y

∂ρ

∂y

)

− 1
Re

∂μ

∂T

((
∂u
∂y

)2

+ 2
(

∂v

∂y

)2

+
(

∂w
∂y

)2
)

− 1
Re

∂λ

∂T

(
∂v

∂y

)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (B8)

V xx = − 1
Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 2μ + λ 0 0 0
0 0 μ 0 0
0 0 0 μ 0

0 0 0 0
1

PrEc
κ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B9)

V yy = − 1
Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 μ 0 0 0
0 0 2μ + λ 0 0
0 0 0 μ 0

0 0 0 0
1

PrEc
κ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B10)

V zz = − 1
Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 μ 0 0 0
0 0 μ 0 0
0 0 0 2μ + λ 0

0 0 0 0
1

PrEc
κ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B11)

V xy = − 1
Re

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 μ + λ 0 0
0 μ + λ 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ , (B12)

951 A9-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

84
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.845


J. Ren and M. Kloker

Case name Ambient conditions T∗
w u∗∞ L∗∞

Non-ideal framework: CO2 p∗∞ = 80 bar, T∗∞ = 700 K 700 K 81.04 m s−1 1 mm
Non-ideal framework: air p∗∞ = 1 bar, T∗∞ = 295 K 297.2 K 68.88 m s−1 33 mm
Ideal framework: air (Dörr & Kloker 2017) p∗∞ = 1 bar, T∗∞ = 295 K 297.2 K 68.88 m s−1 33 mm

Table 3. Case name and parameters in validating the LST. All three cases have the same dimensionless
numbers Ma = 0.2, Re = 1.4687 × 105, pressure coefficient cp(x) and sweep angles φ(x).

0

50

100β

150

200 Non-ideal framework: CO2

Non-ideal framework: Air
Ideal framework: Air

0.5 1.0 1.5 2.0 2.5
x

Figure 22. Stability diagram for cases described in table 3. Isocurves with αi = 0, −0.3, −0.6, . . . , −2.7 are
shown with different styles that fall on top of each other.

V xz = − 1
Re

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 μ + λ 0
0 0 0 0 0
0 μ + λ 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ , V yz = − 1

Re

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 μ + λ 0
0 0 μ + λ 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ .

(B13a,b)

Appendix C. Validation of the stability analysis framework

The stability equations have been cross-validated by comparing results by hand
formulation and MATLAB symbolic computations. Both equations lead to identical
stability operator while the former has been exploited in investigating 2-D boundary
layer flows (Ren et al. 2019b). In this appendix, the non-ideal LST framework is further
validated by investigating flows in the ideal regime. To make a meaningful comparison,
key parameters (Ma, Re, cp(x) and φ(x)) have been kept the same among the cases. Case
description is given in table 3. As is seen, both CO2 and air are in their ideal regimes even
if the ambient conditions and reference velocity u∗∞ and length l∗0 scales are considerably
different. Figure 22 shows identical results for the three cases implying that the non-ideal
framework reduces to the correct results when ideal regimes are analysed.
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Figure 23. Panels (a,b) are like figure 13(a,b), green circles correspond to the same baseflow but setting
ws = 0. (c) Baseflow (us, ws) and perturbation (|u′|, |w′|, |ρ′|, |T ′|) profiles. Perturbations are compared for
ws /= 0 (solid lines) and ws = 0 (dashed lines).

Appendix D. Comparison with a 2-D boundary layer

Recall the discussion on the modal behaviour in figure 13. We compare the result with
an ad hoc case by setting ws = 0 such that the boundary layer returns to 2-D. As shown
in figure 23, the CF mode disappears when ws = 0 (green circles), while a new, inviscid
TS-type mode is also observed. The phase velocity of this symmetrised mode matches
the (asymmetric) one with true CF but has a larger growth rate. In other words, the
CF somewhat stabilises the inviscid TS mode. Figure 23(c) shows similarities in the
perturbation profiles, but the CF reduces the amplitudes of other perturbations (w′, ρ′, T ′)
relative to u′. Note also that there is no ‘viscous TS mode’ because the flow is accelerated;
hence, no changeover from mode type I to II is possible, as in a zero-pressure gradient
boundary layer.
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