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Abstract
We prove a double commutant theorem for separable subalgebras of a wide class of corona C∗-algebras, largely
resolving a problem posed by Pedersen in 1988. Double commutant theorems originated with von Neumann, whose
seminal result evolved into an entire field now called von Neumann algebra theory. Voiculescu later proved a C∗-
algebraic double commutant theorem for subalgebras of the Calkin algebra. We prove a similar result for subalgebras
of a much more general class of so-called corona C∗-algebras.

1. Introduction

Let S be a subset of an algebra D. Its relative commutant S′ in D is defined by

S′ = {y ∈ D | xy = yx for all x ∈ S};
that is, the centraliser of S in D. Clearly, S′ is always a subalgebra of D, being unital if D is. The double
relative commutant, S′ ′, is S′ ′ = (S′)′. In the case when D = B(H) for a Hilbert space H, the adjective
‘relative’ is customarily dropped. In a similar vein, the unitisation of a subalgebra A of a unital algebra
D is the algebra generated by A and the identity of D.

The most fundamental result in all of von Neumann algebra theory is arguably von Neumann’s double
commutant theorem, published in 1929 (see [44]). We phrase the theorem as follows:

Theorem 1. Given a ∗-subalgebra of B(H), the double commutant of the subalgebra is equal to the
weak∗ closure of its unitisation.

Approximately half a century later, Voiculescu [42, 43] proved a C∗-algebraic version of the above
theorem:

Theorem 2. Let C(H) := B(H)/K(H) be the Calkin algebra of a separable infinite-dimensional Hilbert
space H. The double relative commutant of a separable sub-C∗-algebra is the unitisation of that
subalgebra.

Recall that the multiplier algebra M(B) of a given C∗-algebra B is the idealizer of B in its enveloping
von Neumann algebra B∗∗. Since the multiplier algebra of the compact operators K := K(H) is B(H),
we may reasonably regard the corona algebras M(B)/B as a generalization of the Calkin algebra consid-
ered by Voiculescu. At a conference in 1988, Pedersen posed the problem of generalizing Voiculescu’s
theorem to the setting of general corona algebras [38], and this note provides a partial answer to his
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problem. We use some ideas from Kadison–Singer [25], a theorem from KK-theory [13], and previous
double commutant theorems [14, 17] in our proof. In [14] is the following double relative commutant
theorem for hereditary subalgebras in C∗-algebras of the form M(B)/B with B simple and separable:

Theorem 3. Let B be a separable simple C∗-algebra. Let C be a hereditary σ -unital sub-C∗-algebra of
the corona algebra M(B)/B. Then the double relative commutant of C in the given corona algebra is
equal to the unitisation of C.

Giordano and Ng [17, Corollary 3.5] proved:

Theorem 4. Let B be a stable separable C∗-algebra and suppose that either B is the compact operators
or B is simple and purely infinite. Then separable unital sub-C∗-algebras of the corona are equal to their
own double relative commutant.

Corollary 4.12 in [19] shows that Voiculescu’s original double commutant theorem does not
generalize to the Calkin algebra of a nonseparable Hilbert space.

2. Extensions of C∗-algebras and absorption properties

Let A and B be C∗-algebras, with A unital, B separable and simple. An extension

0 −→ B −→ C −→ A −→ 0

will be said to be unital if C is unital. Recall that an extension of B by A is determined up to strong
isomorphism by its Busby map — the naturally associated map from A to the quotient multiplier alge-
bra, or corona algebra, of B, M(B)/B. If B is stable, so that the Cuntz algebra O2 may be embedded
unitally in M(B)/B, then there is a natural notion of addition of extensions. Recall that an extension
0 → B → C → A → 0 of B by A is said to be trivial if there exists a splitting homomorphism π : A → C.
Let us further say that an extension of C∗-algebras 0 → B → C → A → 0 is trivial in the nuclear sense
if the splitting homomorphism may be chosen to be weakly nuclear as defined by Kirchberg in [28]:
the splitting homomorphism π : A → C will be said to be weakly nuclear if, for every b ∈ B ⊆ C,
the map

A � a 	→ bπ (a)b∗ ∈ B ⊆ C

is nuclear.
Kasparov [26, 27] introduced a property that he called absorbing. Letting τ1 and τ2 denote Busby maps

of extensions, and letting vi denote isometries generating a copy of O2, we will say that the extension
τ1 is absorbing in Kasparov’s sense if it is unitarily equivalent, by a multiplier unitary, to its sum a 	→
v1τ1(a)v∗

1 + v2τ2(a)v∗
2 with any trivial extension τ2. For technical reasons, Kasparov assumes at one key

point that the algebra A is nuclear (see Theorem 1 of [27, Section 7]). Moreover, an extension that
is absorbing in Kasparov’s sense is not unital, and we will need to consider unital extensions. Thus
we make the following adjustment to the definition, where following [13], we define, with τi and vi as
above:

Definition 5. A unital extension τ1 is absorbing in the nuclear sense if it is unitarily equivalent to its
sum a 	→ v1τ1(a)v∗

1 + v2τ2(a)v∗
2 with any unital extension τ2 that is trivial in the nuclear sense.

Busby maps take their values in the corona, so this sum is in the corona. Different choices of unitally
embedded copies of O2 lead to different notions of sums of extensions that turn out to be equivalent
under the equivalence relation given by unitary equivalence of extensions. The main result of [13] is
a C∗-algebraic characterization of the property of being absorbing in the nuclear sense; this algebraic
property is called the purely large property:
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Definition 6. We say that an extension is purely large if for every positive element c of the extension
algebra that is not contained in the canonical ideal B, there exists a stable subalgebra D ⊂ cBc which is
full in B. A positive element c is said to have the purely large property if it is not in B and if there exists
a stable subalgebra D ⊂ cBc which is full in B.

Our definition of absorbing in the nuclear sense specifies that the extensions absorbed are unital.
If one of the ambient C∗-algebras is nuclear, then the weak nuclearity condition is automatic, and in
this case, the term unital absorption is often used. Then we may say that the next lemma characterizes
unital absorption: see [13, Section 17] and the correction for the nonunital case in [15]. This particular
statement of the lemma is from [16, Remark 2.9].

Lemma 7 ([16, Remark 2.9]). Let A and B be separable C∗-algebras, with B stable and nuclear. Let wi

denote the generators of a unital copy of O2 in the multipliers. Consider a unital essential C∗-algebra
extension τ of B by A. The following are equivalent:

(i) the extension τ is unitally absorbing, meaning that it is unitarily equivalent to its sum
w1τ (a)w∗

1 + w2σ (a)w∗
2 with any trivial unital extension σ , and

(ii) the extension algebra, in M(B), is purely large.

Following [29], we define, for positive elements a and b in a given C∗-algebra:

Definition 8. a �̃b if there exists a sequence of elements (rn) such that rnar∗
n converges to b in the norm

topology.

Definition 9. If a positive element a is nonzero and a �̃a ⊕ a, then a is said to be properly infinite.

We recall that a sufficient condition for the purely large property in the simple case is:

Proposition 10. Let A and B be separable C∗-algebras, with B stable. Consider a unital essential exten-
sion of B by A. If the image of its Busby map τ in the corona M(B)/B has the property that its positive
nonzero elements are properly infinite and full, then the extension is purely large.

Proof. Recall that the extension algebra D is related to the given Busby map τ by a pullback
construction [33, Section 7.2], where π : M(B) →M(B)/B denotes the canonical quotient map:

Regarding the extension algebra D as a subalgebra of M(B), we see from the diagram that a positive
element of D that is not in the canonical ideal B maps to a positive nonzero element of M(B)/B. Note
that the essentiality of the extension means that the map τ is injective. Therefore, if c ∈ D is positive
and not in the canonical ideal, then the nonzero element τ (c) is by hypothesis full and purely infinite.
To show that the desired purely large property holds, we must show that the hereditary subalgebra

H := cBc

contains a stable full subalgebra. But we already noted that τ (c) = π (c) is properly infinite, and also
full, in M(B)/B. By Proposition 3.5 in [29] it follows that π (c) �̃1M(B)/B, where �̃ denotes the Cuntz
subequivalence relation of positive elements in M(B)/B, see Definition 8. Choosing a sufficiently large
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n in Definition 8, the operator rnπ (c)r∗
n is then invertible. Lifting to the multipliers, there is an r̃ ∈M(B)

such that r̃cr̃∗ = 1M(B) + b, where the element b belongs to the canonical ideal B. Since B is stable, there
is a sequence of isometries, vi, such that v∗

i bvi goes to zero in norm [22]. We conclude that for some index
i, the expression v∗

i r̃cr̃∗vi = 1 + v∗
i bvi is close enough to 1 to be invertible, and thus there is an r′ ∈M(B)

such that r′cr′∗ = 1M(B)). This implies that V := c1/2r′∗ is an infinite isometry, so that its range projection
VV∗ therefore has the purely large property. Since VV∗ ≤ c‖r′‖2, the hereditary subalgebra generated
by VV∗ is contained in the hereditary subalgebra generated by c, and this establishes the purely large
property for c.

Recall that a representation is called essential if its range as a map into B(H) does not have any
nonzero compact elements. Kasparov considered extensions of B ⊗ K by a separable C∗-algebra A, with
Busby map induced by

A ↪→ 1 ⊗ B(H) ↪→ M(B ⊗ K),

where A ↪→ B(H) is some faithful essential representation of A on the separable infinite-dimensional
Hilbert space H, and showed that it is, when not unital, absorbing in Kasparov’s sense [27, p. 560,
Lemma 1]. A very similar proof shows that, in our terminology, when unital, the extension is absorb-
ing in the nuclear sense (i.e. it absorbs trivial unital and weakly nuclear extensions). This extension
is furthermore trivial in the nuclear sense (Lemma 12 in [13]). We will call the Busby map of this
extension the Kasparov extension, in honor of Kasparov’s work, and will denote this map κ̄ : A →
M(B ⊗ K)/(B ⊗ K). The Kasparov extension is not unique, unless an equivalence relation is applied,
but such an equivalence relation is implicit in Kasparov’s theory. Hence we may as well refer to this
extension as the Kasparov extension. The main property of the Kasparov extension κ̄ that we will use is
that the range of the map κ̄ is contained in a copy of the Calkin algebra that is unitally embedded in the
corona, M(B ⊗ K)/(B ⊗ K).

Recall Cuntz and Krieger’s remark [8, Remark 2.15] that the Cuntz algebra O∞ can be defined
concretely by isometries vi with the properties that v∗

i vj = 0 when i �= j, and
∑

viv∗
i = 1, ∗-strongly.

Proposition 23 in [31] constructs a copy of O∞ in a multiplier algebra and shows that it can be cho-
sen to have this a similar property in both the multiplier algebra and the corona algebra. Kirchberg [28,
Remark 5.1] defines a unital ∗-homomorphism δ∞ : M(B) →M(B ⊗ K) given by

δ∞ : m 	→
∞∑

n=1

vnmv∗
n,

where the vn are isometries coming from this copy of the Cuntz algebra O∞ in the multipliers of
M(B ⊗ K). Kirchberg terms this map an infinite repeat. This terminology can be justified by observ-
ing that the above map is a sum of ∗-homomorphisms of the form hi : m → vimv∗

i . These injective
∗-homomorphisms hi have orthogonal ranges, because the isometries are orthogonal, and thus the
range of δ∞ contains an infinite orthogonal sum of copies of M(B), contained within M(B ⊗ K).
Each copy of M(B) is embedded as a hereditary subalgebra in M(B ⊗ K) with unit pi := hi(1).
Each hi maps the simple essential ideal B ⊆M(B) into the simple essential ideal B ⊗ K. Since each
individual ∗-homomorphism hi : M(B) →M(B ⊗ K) is an isomorphism of M(B) onto its range, we
can embed M(B)/B inside the larger algebra M(B ⊗ K)/(B ⊗ K). We will denote the component
∗-homomorphisms by

hi : M(B)/B →M(B ⊗ K)/(B ⊗ K),

and their ranges will be called corona blocks. The unit of a corona block is denoted pi. Each corona
block is an isomorphic copy of M(B)/B. Letting

qB⊗K : M(B ⊗ K) →M(B ⊗ K)/(B ⊗ K)

denote the canonical quotient map, the composition

δ̄∞ := qB⊗K ◦ δ∞ : M(B) →M(B ⊗ K)/(B ⊗ K)
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is the Busby map of an extension. For technical reasons, usually it is desirable to restrict the domain to
some separable, unital, and exact subalgebra of M(B). We call such a map a Kirchberg–Lin extension
because of Lin’s pioneering absorption result [32, Theorem 1.12] for maps of this type. See also [13, 28].
We summarize some known results in the following proposition. In order to simplify the language used,
and in view of the fact that we will assume nuclearity, we say unitally absorbing instead of absorbing in
the nuclear sense. It is understood that the extensions absorbed are unital.

Proposition 11. Let B be a separable simple C∗-algebra. Let A be a separable and unital
sub-C∗-algebra of M(B). Then, if either A or B is nuclear, both the Kirchberg–Lin extension δ̄∞ : A →
M(B ⊗ K)/(B ⊗ K) and the Kasparov extension κ̄ : A →M(B ⊗ K)/(B ⊗ K) are unitally absorbing,
unital, and trivial. They are therefore unitarily equivalent, so that

κ̄(a) = U∗δ̄∞(s)U (a ∈ A)

for some unitary U ∈M(B).

Proof. That the Kirchberg–Lin extension is unitally absorbing when A or B is nuclear (which
implies weak nuclearity) is shown in theorem 17.iii of [13], see also [32, Theorem 1.12]. That the
Kasparov extension is unitally absorbing is shown in [13], see also [26]. These unital extensions are
trivial, as already discussed, and unitally absorbing trivial unital extensions are necessarily unitarily
equivalent.

We state a less technical corollary. For a similar early result, with D commutative, see [30, p. 3030].

Corollary 12. Let B be a separable, nuclear, and simple C∗-algebra. Suppose that D is a norm-
closed separable unital subalgebra, self-adjoint or not, of the range of the map δ̄∞ : M(B) →
M(B ⊗ K)/(B ⊗ K). Then there exists a unitary U ∈M(B) such that U∗DU is contained in a copy
of the Calkin algebra within M(B ⊗ K)/(B ⊗ K).

Proof. If D is not self-adjoint, let C∗(D) denote the (separable) C∗-algebra it generates. Since δ̄∞
is injective, let A := (δ̄∞)−1(C∗(D)). This is clearly a unital separable sub-C∗-algebra of M(B). The
Kirchberg–Lin extension δ̄∞ : A →M(B ⊗ K)/(B ⊗ K) is unitarily equivalent to the Kasparov extension
κ̄ : A →M(B ⊗ K)/(B ⊗ K). We recall that the range of the Kasparov extension is contained in a unitally
embedded copy of the Calkin algebra within M(B ⊗ K)/(B ⊗ K), and thus the unitary equivalence of
the extensions implements the desired equivalence of subalgebras.

Remark 1. The above result already implies, for example, that nonzero elements of the form δ̄∞(m)
cannot be contained in any proper ideal of the corona — this is because the Calkin algebra is simple
and unitally embedded, so that its nonzero elements are not contained in any proper ideal of the corona.
Thus, we have a short proof of a slight generalization of a known result [4, 32] that constant infinite
repeats are strongly full.

3. On the structure of double relative commutants

Suppose that A is some given unital separable subalgebra of a multiplier algebra M(B), with B sim-
ple and separable. The Busby map of the associated Kirchberg–Lin extension is the map δ̄∞ : A →
M(B ⊗ K)/(B ⊗ K), given by the composition of Kirchberg’s homomorphism δ∞ with the canonical
quotient by B ⊗K. Letting qB⊗K : M(B ⊗ K) →M(B ⊗ K)/(B ⊗ K) and qB : M(B) →M(B)/B denote
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the canonical quotient maps, we note that, for all a,

hi ◦ qB(a) = (qB⊗K ◦ hi)(a) = qB⊗K(piδ∞(a)pi) = piqB⊗K(δ∞(a))pi. (3.1)

This identity shows that the subalgebra δ̄∞(A) ⊆M(B ⊗ K)/(B ⊗ K) contains copies of qB(A) unitally
contained in hereditary subalgebras her(pi), where each copy comes from the map hi defined ear-
lier. We will denote the image of A in the corona block her(pi) by Di, and moreover we note that
each subalgebra Di is contained in an isomorphic copy of M(B)/B, namely, the range of the map
hi : M(B)/B →M(B ⊗ K)/(B ⊗ K). We now consider the properties of the subalgebra Di.

Lemma 13. Let B be a simple separable C∗-algebra. Let p be a projection in the corona W := M(B)/B
of this algebra. Let D be a unital subalgebra of pWp, self-adjoint or not. Then the double relative
commutant of D is the same, up to a unitisation, whether it is relative to pWp or to W.

Proof. Let L := pWp. First we will show that an element x of D′ ′
W , the double relative commutant of

D in W , can be decomposed relative to p as
(

λ(1 − p) 0

0 pxp

)
where λ is a scalar. Then we will show that

pD′ ′
Wp = D′ ′

L, and this will prove the result.
Since D is contained in L, the double relative commutant D′ ′

W of D relative to W is contained in L′ ′
W .

Theorem 3 shows that the double relative commutant of the sub-C∗-algebra L in W is L unitised by the
unit of the corona, and thus D′ ′

W is contained in the unitisation of L := pWp. In other words, the elements
of D′ ′

W can be decomposed as shown above.
Next, we show that pD′ ′

Wp = D′ ′
L, by proving two inclusions. We begin by showing that D′ ′

L is contained
in D′ ′

W . Consider an element s of the relative commutant D′
W . Since the given projection p is the unit of L,

and D is a unital subalgebra of L, it follows that p is in D. Therefore, s commutes with p. Thus s is diagonal
with respect to p, meaning that s = psp + (1 − p)s(1 − p). The first term psp is in D′

L, and the second
term (1 − p)s(1 − p) is in the annihilator of L, namely her(1 − p). Consequently D′

W ⊆ D′
L + her(1 − p).

On the other hand, it is clear that D′
L and her(1 − p) are both in D′

W , so we have the reverse inclusion as
well. Therefore,

D′
W = D′

L + her(1 − p).

Notice that an element of D′ ′
L will commute with elements of D′

L and will annihilate elements of
her(1 − p). Thus, such an element will commute with elements of the above right hand side, and therefore
commutes with D′

W . This proves that D′ ′
L is contained in D′ ′

W .
Finally, we show that pD′ ′

Wp ⊆ D′ ′
L. Since the left hand side is clearly contained in L, we need to only

check that the elements on the left hand side commute with D′
L. However, D′

L is a subset of D′
W and D′ ′

W

commutes elementwise with D′
W — implying that D′ ′

W commutes elementwise with D′
L. The element p

acts on D′
L as the unit, thus also commutes with D′

L. Therefore, we have the required inclusion.

We now define some convenient elements that will be used within Lemma 14 and Theorem 17. Let
{pn}∞

n=1 be a sequence of pairwise orthogonal projections in the multipliers M(B) of a stable C∗-algebra
B such that

pn ∼ 1 for all n

and
∞∑

n=1

pn = 1

with strict convergence (see [22], [31, Prop. 23]). The pn are elements of 1 ⊗ B(H) ⊂M(B). For all
n ≥ 1, let vn,1 ∈ 1 ⊗ B(H) ⊂M(B) be a partial isometry such that

v∗
n,1vn,1 = p1 and vn,1v∗

n,1 = pn

https://doi.org/10.1017/S0017089522000374 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089522000374


Glasgow Mathematical Journal 351

For all m, n, we define

vn,m := vn,1v∗
m,1.

Finally, let F be the collection of unitaries in M(B) containing all unitaries interchanging the pn

pairwise. We suppose thatF contains all unitaries of the form um,n = vm,n + vn,m + (1 − pm − pn), and fur-
thermore is closed under adjoints, multiplication, and the strict topology. The strict topology restricted
to 1 ⊗ B(H) coincides with a strong topology.

Lemma 14. Let A be a unital sub-C∗-algebra of M(B), and let B be stable. Then in the relative com-
mutant δ̄∞(A)′ there is a unitally embedded copy of On, for n = 2, 3, · · · , ∞. The relative commutant
δ̄∞(A)′ contains the unitaries F .

Proof. The algebra δ∞(A) consists of elements that are diagonal with respect to the projections pn.
Since the generators um,n ofF satisfy δ∞(A) = u∗

m,nδ∞(A)um,n it follows thatF is in the relative commutant
δ̄∞(A)′, as claimed. These unitaries um,n generate a unitally embedded copy of B(H) in the multiplier
algebra, see for example Lemma 5.2.ii in [28]. Alternatively, one can proceed as in the proof of lemma 1
in [37]. We can find in this copy of B(H) a unitally embedded copy of the Cuntz algebra O2. We thus
have a unitally embedded copy of O2 in the relative commutant of δ̄∞(A)′ in the corona. The case of On

is similar.

Lemma 15. Let A be a unital separable sub-C∗-algebra of M(B), and let B be simple, stable, nuclear,
and separable. If S is a unital, exact, and separable subalgebra of δ̄∞(A)′ ′, then S is contained in the
range of a trivial absorbing extension. The positive elements of S are full and properly infinite.

Proof. The given subalgebra S commutes with δ̄∞(A)′, and by Lemma 14 it follows that S commutes
with a unital copy of On, n = 2, · · · , ∞ that comes from the multiplier algebra. Denoting the gener-
ators of the copy of O2 by wi, the unital inclusion map τ : S →M(B)/B then has the property that
τ (s) = w1τ (s)w∗

1 + w2τ (s)w∗
2 for all s ∈ S. This implies that positive elements of the form τ (s) are purely

infinite and fullness is similar, as in Remark 1. Since the copy of O2 comes from the multiplier algebra,
we have here exactly the definition of Brown-Douglas-Fillmore addition, i.e., addition of extensions.
But this implies that as an extension, τ = τ + τ in the enveloping abelian group of extensions. In a
group, the only element satisfying τ + τ = τ is the trivial element. Thus, the extension τ is trivial in
the enveloping abelian group of extensions. Since τ is a unitally absorbing extension, by Proposition 10
and Lemma 7, triviality in the group implies being unitarily equivalent by a multiplier unitary to, for
example, Kasparov’s unitally absorbing trivial (i.e., split) extension. But then the extension τ splits as
well, so is trivial as claimed.

Since any positive element x generates an abelian unital nuclear separable subalgebra C∗(x, 1) =: S,
we can deduce from the above that every positive element of δ̄∞(A)′ ′ is purely infinite and full:

Corollary 16. Let B be simple, stable, nuclear, and separable. Let A be some unital and separable
subalgebra of M(B). The positive elements of δ̄∞(A)′ ′ are full and properly infinite.

The above result is the key step needed in the next section.
We also mention that, as can be shown by a direct method, the elements of δ̄∞(A)′ ′ are contained in

the range of δ̄∞, and this again implies that the nonzero positive elements of δ̄∞(A)′ ′ are full and properly
infinite:

Theorem 17. Let A be a unital separable subalgebra of M(B), and let B be simple, stable, nuclear, and
separable. The elements of δ̄∞(A)′ ′ are contained in the range of δ̄∞.
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Proof. Choose some element a of δ̄(A)′ ′ in M(B)/B. Lift this element to a0 in M(B), and let a′
0 :=

a0 −∑
pna0pn, where the sum converges strictly. We show that a′

0 is actually an element of B. We are
free to make the usual small adjustments to a lifting, in particular, we are free to conjugate by elements
of F because they commute with the given element in the corona. The strategy will be to make such
adjustments and then to show that pm,na′

0pm,n, which is compact in the Hilbert module sense, where pm,n

denotes pm + pm+1 + · · · pn, has the Cauchy property with respect to m and n, and this will show that the
limit, namely a′

0, is compact in the Hilbert module sense, or in other words, is in B.
Recall that vn,1 denotes a multiplier partial isometry such that v∗

n,1vn,1 = p1, vn,1v∗
n,1 = pn, and vn,m =

vn,1v∗
m,1. Since F commutes with δ̄(A), we observe:

(i) pma0pn ∈ B when n and m are distinct,
(ii) ua0u∗ − a′

0 ∈ B for all u ∈F ,
(iii) ua′

0u∗ − a′
0 ∈ B for all u ∈F ,

(iv) pma0pm − vm,npna0pnvn,m ∈ B for all m, n,
(v) Given an ε > 0, if m, n ≥ N(ε), then ||pma0pm − vm,npna0pnvn,m|| < ε,
(vi) (p1 + p2 + · · · + pn)a′

0 ∈ B for all n,
(vii) [pn, a0] ∈ B for all n, and
(viii) [pn, a0] goes to zero in norm as n goes to infinity.

Thus, for all 1 ≤ m ≤ n, for all ε > 0, and for all 
 ≥ 1, there exist integers 
j with 
 < 
1 < 
2 < · · · <

n−m+1 such that

‖pm,num,
n−m+1 · · · un−1,
2 un,
1 a′
0u∗

n,
1
u∗

n−1,
2
· · · u∗

m,
n−m+1
pm,n‖ < ε

Thus a′
0 is in B ⊗ K, or

π (a0) = π

( ∞∑
n=1

pna0pn

)
,

where π denotes the canonical quotient map. It remains to show that the right hand side is in the range
of δ̄. For this, consider the norm limit d := limn→∞ v∗

npna0pnvn. Then, the element d is in p1M(B)p1 and∑∞
n=1 v1n,ddv∗

n,1 is an operator in M(B) which is a lift of a0.

4. Arveson’s distance formula

The original form of Arveson’s distance formula applies to norm-closed subalgebras of the classic
Calkin algebra, self-adjoint or not, and can be phrased as follows:

Lemma 18 ([2, p. 344]). Consider the Calkin algebra of a separable infinite Hilbert space. If D is
a separable unital norm-closed subalgebra of the Calkin algebra, and x is an element of the Calkin
algebra, then there exists a projection p such that p commutes with elements of D and

dist(x, D) = ‖(1 − p)xp‖.

The following lemma is similar to [17], Lemma 3.3. It applies to, for example, separable subalgebras
of the range of the trivial extension δ̄∞.

Lemma 19. Let B be a separable, stabilized, and nuclear C∗-algebra. Let D be a separable norm-
closed unital subalgebra, self-adjoint or not, of the range of any trivial unital extension. Suppose that
the nonzero positive elements of the range are full and properly infinite. and let x be an element in that
range. Then there exists a projection p ∈M(B)/B such that p commutes with elements of D and

dist(x, D) = ‖(1 − p)xp‖.
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Proof. Suppose that the given trivial extension is actually δ̄∞, and consider two cases. Suppose first
that B is isomorphic to the compact operators. Then, M(B)/B is isomorphic to the Calkin algebra, and
we apply Lemma 18 to the subalgebra D and the element x.

Now, suppose that B is not isomorphic to the compact operators. Then there is a unitally embedded
copy of the Calkin algebra within M(B)/B, and we use Corollary 12 to find a unitary such that UDU∗

and UxU∗ are in this copy of the Calkin algebra. We then apply the previous case to find a projection such
that dist(UDU∗, UxU∗) = ‖(1 − p)UxU∗p‖. But both the distance and the norm are unitarily invariant,
so it follows that dist(D, x) = ‖U∗(1 − p)UxU∗pU‖. The projection U∗pU therefore has the required
properties. This proves the lemma in the case where the trivial extension is δ̄∞. In the general case,
the given trivial extension τ is unitarily equivalent to δ̄∞, and we have seen that unitary equivalence is
sufficient.

5. Main results

Theorem 20. Let B be a separable simple stable nuclear C∗-algebra. Suppose that A is a separable
norm-closed unital subalgebra of M(B). Then δ̄∞(A) is equal to its double relative commutant.

Proof. We have to show that x̄ ∈ δ̄∞(A)′ ′ is contained in δ̄∞(A). Then x̄ and δ̄∞(A) are contained in a
unital separable sub-C∗-algebra E of δ̄∞(A)′ ′. This algebra E might not be nuclear, but by Corollary 16,
the nonzero positive elements of E are properly infinite and full, and by Theorem 17, the sub-C∗-algebra
E is contained in the range of a trivial extension.

Then this is sufficient to apply the distance formula of Lemma 19. Thus, we have a projection p ∈
M(B)/B such that p commutes with elements of δ̄∞(A) and dist(x̄, δ̄∞(A)) = ‖(1 − p)x̄p‖. Since x̄ must
commute with p, the element on the right is zero. Thus dist(x̄, δ̄∞(A)) is zero, which implies that x̄ was
actually in δ̄∞(A), as was to be shown.

Lemma 21. The projections pi = viv∗
i from page 9 sum strictly to 1 in the multipliers. The supremum of

the finite sums of the pi in the corona is 1.

Proof. For the strict convergence, see [22, p.155]. This implies that the supremum of the finite sums of
the pi in the multiplier algebra is 1. The quotient map into the corona is surjective, and surjective maps
preserve suprema, so the supremum in the corona is 1. (For a related discussion and supplementary
information, see [31], especially Proposition 23.)

Lemma 22. Let p = hi(1). Then

pδ̄∞(A)′p = (pδ̄∞(A)p)′, (5.1)

where the commutant on the right is relative to her(p), and the commutant on the left is relative to the
whole corona.

Proof. Since p is in δ̄∞(A)′, pδ̄∞(A)′p is a subalgebra of δ̄∞(A)′ and thus commutes with δ̄∞(A). Now
pδ̄∞(A)′p trivially commutes with p, and therefore commutes also with pδ̄∞(A)p. Thus,

pδ̄∞(A)′p ⊆ (
pδ̄∞(A)p

) ′.

For the reverse inclusion, let y be an element of (pδ̄∞(A)p)′ relative to the corona block with unit p. Since
y is contained in her(p) it commutes with (1 − p)δ(A). Therefore, y is in δ̄∞(A)′ and y is in her(p). This
means that y is in pδ̄∞(A)′p as claimed, and this establishes identity (5.1) above.

Proposition 23. Let B be stable. The double relative commutant of Di relative to its corona block, her(p),
is contained in pδ̄∞(A)′ ′p, where δ̄∞(A)′ ′ is relative to the whole corona.
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Proof. Suppose that w is an element of the double relative commutant of Di relative to its corona
block, her(p). There exists some element m ∈M(B) such that w = pδ̄∞(m)p. Then pjδ̄∞(m)pj is, for each
j, unitarily equivalent to w by one of the unitaries interchanging corona blocks provided by Lemma 14.
By unitary equivalence, pjδ̄∞(m)pj not only is in the corona block her(pj) but is in D′ ′

j. We are to show
that δ̄∞(m) commutes with δ̄∞(A)′.

Lemmas 14 and 22 show that piδ̄∞(A)′pi = D′
i and that piδ̄∞(A)′pj = piD′

iUijpj, where Uij is the unitary
that intertwines pj and pi. Then, piδ̄∞(A)′pj and δ̄∞(m) commute. This means that for each a in δ̄∞(A)′,
we have an element z = [a, δ̄∞(m)] having the property that pizpj is zero for all i and j. By Lemma 21
it follows that if pizpj is zero for all i and j then z is zero. But then δ̄∞(m) is in δ̄∞(A)′ ′, as was to be
shown.

Applying pi from left and right to the result of Theorem 3, we have a corollary.

Corollary 24. Let B be a separable simple nuclear C∗-algebra. Suppose that D is a separable norm-
closed unital subalgebra of M(B)/B. It is then equal to its double relative commutant.

Proof. If B is stable, the result follows from Theorem 20 and Proposition 23. If B is not stable, then
the given unital subalgebra D of the corona M(B)/B is a subalgebra of the p1 corner of the corona of the
stabilization, M(B ⊗ K)/(B ⊗ K). The previous case implies that the double relative commutant of D
relative to the corona of the stabilization is equal to the unitisation of D. Now Lemma 13, with p taken
to be the unit of the corner, implies that the double relative commutant of D remains the same, up to a
unitization, when computed in p(M(B ⊗ K)/(B ⊗ K))p =M(B)/B.
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