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Abstract

This paper deals with Poisson processes on an arbitrary measurable space. Using a
direct approach, we derive formulae for moments and cumulants of a vector of multiple
Wiener–Itô integrals with respect to the compensated Poisson process. Also, we present
a multivariate central limit theorem for a vector whose components admit a finite chaos
expansion of the type of a Poisson U -statistic. The approach is based on recent results
of Peccati et al. (2010), combining Malliavin calculus and Stein’s method; it also yields
Berry–Esseen-type bounds. As applications, we discuss moment formulae and central
limit theorems for general geometric functionals of intersection processes associated with
a stationary Poisson process of k-dimensional flats in Rd .
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1. Introduction

Throughout this paper we denote by (X,X) a measurable space, equipped with a σ -finite
measure λ �= 0. The classical Wiener–Itô chaos expansion says that if F ≡ F(η) is a
square integrable function of a Poisson process η on (X,X) with intensity measure λ (see
[7, Chapter 12]), then F can be represented as an orthogonal L2-series

F = EF +
∞∑
n=1

In(fn), (1)

where In(fn) is the multiple (n-fold) Wiener–Itô integral of a certain symmetric function
fn : Xn → R that is square integrable with respect to λn. For a proof of this result without any
further assumptions on the measure space (X,X, λ), we refer the reader to [10]. It turns out that
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the chaos expansion (1) is useful for many purposes. For instance, it serves as a mathematical
basis for Malliavin calculus of variations on the Poisson space and can be used to formulate
and to prove central limit theorems; see [13] and [14].

The present paper deals with multivariate Poisson functionals (F (1)t , . . . , F
(�)
t ), � ∈ N,

where each component is of the form F
(i)
t = F (i)(ηt ) and ηt is a Poisson point process with an

intensity measure of the form λt = tλ. Here, we are interested in the asymptotic regime that
arises when the intensity parameter t tends to infinity. Under the additional assumption that
each F (i)t is a U-statistic of the Poisson process ηt , we prove formulae for the joint moments
and cumulants and a multivariate central limit theorem.

The assumption that the functionals F (i)t are Poisson U -statistics implies that their chaos
expansions (1) terminate after a finite numbers of terms, which is convenient for the application
of Malliavin calculus. Univariate central limit theorems with bounds on theWasserstein distance
for Poisson functionals with finite Wiener–Itô chaos expansions and, in particular, Poisson U -
statistics are derived in [8], [9], and [16] using a general result from [14]. Our multivariate
counterpart rests on a multivariate analogue in [13]. By using a new truncation argument and the
special form of the Poisson functionals, our approach avoids technical computations involving
the product formula for multiple Wiener–Itô integrals that is used in the works mentioned
previously.

As an application, we study in detail geometric functionals of the intersection process of
order m ∈ {1, . . . , d} of a stationary Poisson k-flat process in Rd . We thereby considerably
extend the results available in the literature (see [4] and [5]) for the number of intersections and
the intersection volume. In our theory we can allow for very general geometric functionals;
for example, we do not require them to be additive, translation-invariant, or homogeneous.
Furthermore, our central limit theorems are quantitative in the sense that they provide rates of
convergence (with respect to a suitable distance).

For the asymptotic analysis of problems in stochastic geometry, two natural limiting regimes
(among others) may be considered. On the one hand, we can fix the intensity of the underlying
(Poisson) point process and increase the observation window in which everything takes place.
On the other hand, we can fix this window and increase the intensity. We emphasize that
these two regimes lead to limit theorems of different natures. Only in exceptional cases (such
as for homogeneous functionals of Poisson k-flat processes considered in Section 6, below),
is it possible to derive one limit theorem from the other. Our results deal with the situation
of increasing intensity in the case where the functional of interest has the form of a Poisson
U -statistic. As well as in the context described above, our theory can thus be applied directly
to numbers of k-simplices of random simplical complexes (see [3]) and to subgraph counting
in random geometric graphs (see [8] and [15]) with a fixed distance threshold. For problems
that were previously considered in the literature for fixed intensity and increasing observation
windows, such as the numbers of k-clusters [1], statistics of rather general random geometric
graphs [9], or proximity functionals of nonintersecting k-flat processes [18], our results provide
complementary central limit theorems for fixed windows and increasing intensity.

Another direction this paper deals with is formulae for mixed moments and cumulants,
which in turn are based on identities for mixed moments and cumulants of multiple Wiener–Itô
integrals. We develop a quick approach to prove these formulae that have previously appeared
under different assumptions in [12] and [19]. The novelty of our proof is that it only makes use
of elementary properties of the Poisson process (mainly the multivariate Mecke formula) and
some combinatorial arguments, and deals directly with the expectation. In this way it avoids
requiring the involved chaos expansion of such products.
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This paper is structured as follows. In Section 2 we collect some basic definitions and
background material. The moment formulae are presented in Section 3 while Section 4 deals
with their asymptotic behaviour. Our multivariate central limit theorems for U -statistics of the
underlying Poisson process are described in Section 5, while in Section 6 our results are applied
to Poisson k-flat processes in Rd .

2. Preliminaries

In this paper all random objects are defined on a probability space (�,F ,P). We interpret
the Poisson process η as a random element in the space N := N(X) of integer-valued (including
+∞) σ -finite measures μ on X equipped with the smallest σ -field N making the mappings
μ �→ μ(B) measurable for all B ∈ X. For m ∈ N and μ ∈ N , we define a measure μ(m) on
Xm by

μ(m)(B) :=
∫

· · ·
∫

1B(x1, . . . , xm)

(
μ−

m−1∑
j=1

δxj

)
(dxm)

(
μ−

m−2∑
j=1

δxj

)
(dxm−1)× · · ·

× (μ− δx1)(dx2)μ(dx1),

where δx is the Dirac measure located at a point x ∈ X. If μ is given as μ = ∑
I δxi for some

countable index set I and xi ∈ X, i ∈ I , then∫
f dμ(m) =

∑ �=

i1,...,im∈I
f (xi1 , . . . , xim),

where f is any nonnegative measurable function on Xm and where the superscript ‘ �=’ indicates
that we sum over m-tuples of disjoint indices.

We will use the multivariate Mecke-formula (see, e.g. [10]),

E

∫
h(η, x1, . . . , xm) η

(m)(d(x1, . . . , xm))

= E

∫
h(η + δx1 + · · · + δxm, x1, . . . , xm)λ

m(d(x1, . . . , xm)), (2)

which holds for all h : N × Xm → R for which one (and then also the other) side makes sense.
For any integer n ≥ 1 let L1

s (λ
n) denote the set of all measurable and symmetric functions

f : Xn → R that are integrable with respect to λn. For f ∈ L1
s (λ

n) define the pathwise multiple
Wiener–Itô integral by

In(f ) :=
∑
J⊂[n]

(−1)n−|J |
∫∫

f (x1, . . . , xn)η
(|J |)(dxJ )λn−|J |(dxJc ), (3)

where [n] := {1, . . . , n}, J c := [n] \ J , xJ := (xj )j∈J , and where |J | denotes the cardinality
of J (the inner integral is interpreted as f (x1, . . . , xn) in the case where J = ∅). By (2),
In(f ) is a well-defined integrable random variable with EIn(f ) = 0. If f ∈ L1

s (λ
n) ∩ L2(λn),

this pathwise definition coincides with the (classical) definition of the multiple Wiener–Itô
integral for square integrable functions. (This fact can be derived, for instance, from [10,
Equation (3.1)].) The multiple Wiener–Itô integral In(f ) for (symmetric) f ∈ L2(λn) is
defined by an extension of the pathwise definition for L1-functions to the space of all square
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integrable random variables. It also has mean zero and satisfies the orthogonality and isometry
relations

EIm(g)In(h) = 1{m=n}n! 〈g, h〉n, m, n ≥ 1, (4)

for all (symmetric) g ∈ L2(λm) and h ∈ L2(λn), where 〈 · , · 〉n denotes the scalar product in
L2(λn).

For x ∈ X the difference operator Dx is given as follows. For any measurable F : N → R

the function DxF on N is defined by DxF(μ) := F(μ+ δx)− F(μ), μ ∈ N . For n ≥ 2 and
(x1, . . . , xn) ∈ Xn we define a function Dnx1,...,xn

F : N → R by an iterated application of the
difference operator D, that is, inductively by

Dnx1,...,xn
F := D1

x1
Dn−1
x2,...,xn

F,

where D1
x := Dx and D0F := F . Under the assumption EF(η)2 < ∞, it was proved in [10]

that Dnx1,...,xn
F (η) is integrable for λn-almost every (λn-a.e.) (x1, . . . , xn) and that

TnF (x1, . . . , xn) := EDnx1,...,xn
F (η), (x1, . . . , xn) ∈ Xn,

defines a symmetric function in L2(λn). Moreover, we have the Wiener–Itô chaos expansion

F(η) = EF +
∞∑
n=1

1

n!In(TnF ), (5)

where the series converges in L2(P). Hence (1) holds with fn = (1/n!)TnF .

3. Moments and cumulants

Let n ∈ N. A subpartition of [n] is a family of disjoint and nonempty subsets of [n],
which we call blocks. A partition of [n] is a subpartition σ of [n] such that

⋃
J∈σ J = [n].

We denote by �n (respectively �∗
n) the system of all partitions (respectively subpartitions)

of [n]. The cardinality of σ ∈ �∗
n (i.e. the number of blocks of σ ) is denoted by |σ |, while

the cardinality of
⋃
J∈σ J is denoted by ‖σ‖. For any function f : Xn → R and σ ∈ �∗

n we
define fσ : X|σ |+n−‖σ‖ → R by identifying the arguments belonging to the same J ∈ σ . (The
arguments x1, . . . , x|σ |+n−‖σ‖ have to be inserted in the order of occurrence.) In the case n = 4
and σ = {{2, 3}, {4}}, for instance, we have fσ (x1, x2, x3) = f (x1, x2, x2, x3).

Consider �, n1, . . . , n� ∈ N. Define n := n1 + · · · + n� and

Ji := {j : n1 + · · · + ni−1 < j ≤ n1 + · · · + ni}, i = 1, . . . , �. (6)

Let π := {Ji : 1 ≤ i ≤ �} and let �(n1, . . . , n�) ⊂ �n (respectively �∗(n1, . . . , n�) ⊂ �∗
n)

denote the set of all σ ∈ �n (respectively σ ∈ �∗
n) with |J ∩ J ′| ≤ 1 for all J ∈ π and

all J ′ ∈ σ . Let �≥2(n1, . . . , n�) (respectively �=2(n1, . . . , n�)) denote the set of all σ ∈
�(n1, . . . , n�) with |J | ≥ 2 (respectively |J | = 2) for all J ∈ σ . It is instructive to visualize
the pair (π, σ ) as a diagram with rows J1, . . . , J�, where the elements in each J ∈ σ are
encircled by a closed curve; see [12, Chapter 4] for more details on such diagrams. Since the
blocks of a σ ∈ �(n1, . . . , n�) are not allowed to contain more than one entry from each row,
the diagram (π, σ ) is called nonflat in [12]. Any σ ∈ �≥2(n1, . . . , n�) induces a partition
σ ∗ ∈ ��: σ ∗ is the finest partition of [�] such that two numbers i, j ∈ [�] are in the same block
of σ ∗ if Ji and Jj are both intersected by the same block of σ . Let �̃≥2(n1, . . . , n�) be the set
of all σ ∈ �≥2(n1, . . . , n�) such that |σ ∗| = 1.
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The tensor product
⊗�

i=1 fi of functions fi : Xni → R, i ∈ {1, . . . , �}, is the function from
Xn to R which maps each (x1, . . . , xn) to

∏n
i=1 fi(xJi ). In case that f1 = · · · = f� = f we

write f⊗� instead of
⊗�

i=1 fi .
The joint cumulant γ (X1, . . . , X�) of � ≥ 1 random variables X1, . . . , X� is defined as

γ (X1, . . . , X�) := (−i)�
∂�

∂z1 · · · ∂z� log E[exp[i(z1X1 + · · · + z�X�)]]
∣∣∣∣
z1=···=z�=0

,

where i is the imaginary unit. This cumulant is well defined if
∏
j∈I Xj is integrable for all

I ⊂ [�]. The �th cumulant of a single random variableX is defined by γ�(X) := γ (X, . . . , X),
where X appears � times.

The following result generalizes [12, Corollary 7.4.1] and a consequence of [19] to the case
of more general Poisson processes and integrands. In contrast to [12] and [19], we allow that the
intensity measure has atoms. Moreover, we avoid the assumption in [12, Corollary 7.4.1] that
the integrands are simple functions. While the results in [12] and [19] are derived via formulae
for the Wiener–Itô chaos expansion of a product of multiple Wiener–Itô integrals, here we take
a direct approach, which relies only on (2) and some combinatorial arguments.

Theorem 1. Let fi ∈ L1
s (λ

ni ), i = 1, . . . , �, where �, n1, . . . , n� ∈ N. Assume that

∫ ( �⊗
i=1

|fi |
)
σ

dλ|σ | < ∞, σ ∈ �(n1, . . . , n�). (7)

Then

E

�∏
i=1

Ini (fi) =
∑

σ∈�≥2(n1,...,n�)

∫ ( �⊗
i=1

fi

)
σ

dλ|σ |, (8)

γ (In1(f1), . . . , In�(f�)) =
∑

σ∈�̃≥2(n1,...,n�)

∫ ( �⊗
i=1

fi

)
σ

dλ|σ |. (9)

Proof. We abbreviate f := ⊗�
i=1 fi . The definition (3) and Fubini’s theorem imply that

�∏
i=1

Ini (fi) =
∑
I⊂[n]

(−1)n−|I |

×
∫

· · ·
∫
f (x1, . . . , xn)

× η(|I∩J1|)(dxI∩J1) · · · η(|I∩J�|)(dxI∩J�)λn−|I |(dxIc ), (10)

where I c := [n] \ I , and where we use definition (6) of Ji . For fixed I ⊂ [n] we may split the
above integration according to σ ∈ �∗(n1, . . . , n�), where

⋃
J∈σ J = I . For any such σ we

integrate (i.e. sum) over those (x1, . . . , xn) satisfying xi = xj whenever i and j belong to the
same block of σ but not otherwise. By (2) applied with h(η, y1, . . . , y|σ |) = f (x1, . . . , xm)

taking xi = yj for i in the j th block of σ , the contribution of σ to the expectation of the
right-hand side of (10) is equal to (−1)n−‖σ‖ ∫

fσ dλ|σ |+n−‖σ‖. Therefore,

E

�∏
i=1

Ini (fi) =
∑

σ∈�∗(n1,...,n�)

(−1)n−‖σ‖
∫
fσ dλ|σ |+n−‖σ‖. (11)
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By (7), all of these integrals are finite. Take a σ ∈ �∗(n1, . . . , n�) with |J | ≥ 2 for all J ∈ σ
and consider the set �1(σ ) of all σ1 ∈ �∗(n1, . . . , n�) such that σ ⊂ σ1 and |J | ≤ 1 for all
J ∈ σ1 \ σ . (Note that σ ∈ �1(σ ).) Observe that

∫
fσ1 dλ|σ1|+n−‖σ1‖ = ∫

fσ dλ|σ |+n−‖σ‖ for
all σ1 ∈ �1(σ ). Moreover, for n− ‖σ‖ ≥ 1 we have∑

σ1∈�1(σ )

(−1)n−‖σ1‖ = 0.

Since every τ ∈ �∗(n1, . . . , n�) has a unique σ ∈ �∗(n1, . . . , n�) with |J | ≥ 2 for all
J ∈ σ such that τ ∈ �1(σ ), we can partition �∗(n1, . . . , n�) into the sets �1(σ ), σ ∈
�∗(n1, . . . , n�), with |J | ≥ 2 for all J ∈ σ . As shown above, the sums over all σ1 ∈ �1(σ )

with ‖σ‖ < n vanish and only the integrals related to partitions σ ∈ �≥2(n1, . . . , n�) remain.
Therefore, (11) implies the asserted identity (1).

We now prove (9) by induction over �. Since γ (In1(f1), In2(f2)) = EIn1(f1)In2(f2) and
�≥2(n1, n2) = �̃≥2(n1, n2), (9) is true for � = 2; see (1). For � ≥ 3, we obtain, by the
inversion formula expressing the �th moment in terms of lower-order cumulants (see, e.g. [12,
Proposition 3.2.1]), (1), and the assumption of the induction,

γ (In1(f1), . . . , In�(f�))

= E

�∏
j=1

Inj (fj )−
∑

π∈��, |π |>1

∏
J∈π

γ ((Inj (fj ))j∈J )

=
∑

σ∈�≥2(n1,...,n�)

∫
fσ dλ|σ | −

∑
π∈��, |π |>1

∏
J∈π

∑
σJ∈�̃≥2(J )

∫ (⊗
j∈J

fj

)
σJ

dλ|σJ |. (12)

Here, �̃≥2(J ) is defined in a similar way to �̃≥2(n1, . . . , n�). Now we use the fact that
every partition σ ∈ �≥2(n1, . . . , n�) uniquely determines (in the obvious way) a partition
π = σ ∗ ∈ �� and a collection of partitions σJ ∈ �̃≥2(J ), J ∈ π , and vice versa. Combining
this with Fubini’s theorem, we have

∑
π∈��, |π |>1

∏
J∈π

∑
σJ∈�̃≥2(J )

∫ (⊗
j∈J

fj

)
σJ

dλ|σJ | =
∑

σ∈�≥2(n1,...,n�), |σ ∗|>1

∫ ( ∏
J∈σ ∗

⊗
j∈J

fj

)
σ

dλ|σ |

=
∑

σ∈�≥2(n1,...,n�), |σ ∗|>1

∫
fσ dλ|σ |.

Hence, in (12) only the partitions σ ∈ �≥2(n1, . . . , n�) with |σ ∗| = 1 remain. In our notation,
these are exactly the partitions in �̃≥2(n1, . . . , n�).

Remark 1. The assumption (7) is obviously satisfied if fi is bounded and λni ({fi �= 0}) < ∞
for i = 1, . . . , �, which is the case for our examples in Section 6, below. But the assumption
also holds under the following conditions. Consider, as in Theorem 1, measurable functions
fi : Xni → R, for i = 1, . . . , �. Assume for any i that {fi �= 0} ⊂ Bni , where B ∈ X satisfies
λ(B) < ∞. For any i, if fi ∈ L�(λni ) then fi ∈ L1(λni ) and (7) holds. The second assertion
follows from the multivariate version of Hölder’s inequality. In fact, if σ ∈ �(n1, . . . , n�) then

(∫ ( �⊗
i=1

|fi |
)
σ

dλ|σ |
)�

≤ λ(B)|σ |−n1

∫
|f1|� dλn1 · · · λ(B)|σ |−n�

∫
|f�|� dλn� .
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Another sufficient condition for the assumptions of Theorem 1 is the existence of a function
g ∈ L1(λ)∩L�(λ) such that |fi | ≤ g⊗ni for any i. In this case, we have for σ ∈ �(n1, . . . , n�)

that ∫ ( �⊗
i=1

|fi |
)
σ

dλ|σ | ≤
∫
g⊗i1 dλ · · ·

∫
g⊗i|σ | dλ,

where i1, . . . , i|σ | ≤ � are the cardinalities of the blocks of σ .

Example 1. Let f ∈ L1
s (λ

2) and consider Theorem 1 in the case � = 2, n1 = n2 = 2, and
f1 = f2 = f . Then it is easy to see that assumption (7) requires f ∈ L2(λ2) and∫ [∫

|f (x1, x2)| λ(dx2)

]2

λ(dx1) < ∞.

Formula (1) boils down to the isometry relation EI2(f )
2 = 2〈f, f 〉2. This shows that

assumption (7) is not necessary for (1).

Example 2. Let f ∈ L1
s (λ

2) and g ∈ L1(λ) and consider Theorem 1 in the case � = 3,
n1 = n2 = 2, f1 = f2 = f , n3 = 1, and f3 = g. Assumption (7) then requires f to satisfy
the same integrability conditions as in Example 1, as well as∫

(|f (x1, x2)| + f (x1, x2)
2)|g(x1)|λ2(d(x1, x2)) < ∞,∫

|f (x1, x2)f (x2, x3)|(|g(x1)| + |g(x2)|)λ3(d(x1, x2, x3)) < ∞.

Equation (1) means that

E[I2(f )
2I1(g)] = 4

∫
f (x1, x2)

2g(x1) λ
3(d(x1, x2)).

Note that we do not need to assume that g is square-integrable with respect to λ.

Corollary 1. Let fn ∈ L1
s (λ

n), n ∈ N, and let � ∈ N and assume that∫ ( �⊗
i=1

|fni |
)
σ

dλ|σ | < ∞, σ ∈ �(n1, . . . , n�), n1, . . . , n� ∈ N. (13)

Assume further that E(
∑∞
n=1 |In(fn)|)� < ∞. Then the �th moment and the �th cumulant of

F := ∑∞
n=1 In(fn) are given by

EF� =
∑

n1,...,n�∈N

∑
σ∈�≥2(n1,...,n�)

∫ ( �⊗
i=1

fni

)
σ

dλ|σ |, (14)

γ�(F ) =
∑

n1,...,n�∈N

∑
σ∈�̃≥2(n1,...,n�)

∫ ( �⊗
i=1

fni

)
σ

dλ|σ |. (15)

Proof. Letm ∈ N and Fm := I1(f1)+ · · · + Im(fm). Expanding (Fm)� and using (1) gives

EF�m =
m∑

n1,...,n�=1

E(In1(fn1) · · · Inl (fnl ))

=
m∑

n1,...,n�=1

∑
σ∈�≥2(n1,...,n�)

∫ ( �⊗
i=1

fni

)
σ

dλ|σ |.
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The assumption that E(
∑∞
n=1 |In(fn)|)� < ∞ and dominated convergence imply (14) for the

infinite case. By the multilinearity of joint cumulants and (9),

γ�(Fm) =
m∑

n1,...,n�=1

∑
σ∈�̃≥2(n1,...,n�)

∫ ( �⊗
i=1

fni

)
σ

dλ|σ |.

Since γ�(Fm) is a polynomial in the moments EF
j
m, j ∈ {1, . . . , �}, whose coefficients are

independent ofm (or Fm), we can again use dominated convergence to conclude the result (15)
for the infinite case.

Remark 2. If in Corollary 1 the number of nonvanishing functions fn �≡ 0 is finite, then the
assumption E(

∑∞
n=1 |In(fn)|)� < ∞ is implied by (13).

Let f ∈ L2(λ2) be given by f (x1, x2) := 1{x1∈B, x2∈B}, where λ(B) < ∞. By (3),

I2(f ) = η(B)(η(B)− 1)− 2η(B)λ(B)+ λ(B)2.

A straightforward calculation shows that E exp(sI2(f )) = ∞ for all s > 0, wheneverλ(B) > 0.
Our next result shows that this is a quite general property of Poisson functionals.

Corollary 2. Let F = ∑∞
n=1 In(fn) with fn ∈ L1

s (λ
n), n ∈ N, and assume that

∫ ( �⊗
i=1

|fni |
)
σ

dλ|σ | < ∞ for all σ ∈ �(n1, . . . , n�) with n1, . . . , n� ∈ N

and that E(
∑∞
n=1 |In(fn)|)� < ∞ for all � ∈ N. In addition, suppose that fn ≥ 0 for all n ∈ N

and that there is an n0 ≥ 2 with ‖fn0‖n0 > 0. Then E exp(sF ) = ∞ for all s > 0.

Proof. The idea of the proof is to show that the number of partitions we sum over in (14)
and (15) is rapidly increasing in �. For � ∈ N with 6|� (i.e. � a multiple of 6) let �(2)� ⊂
�̃≥2(2, . . . , 2) be the set of partitions of [2�] that can be constructed in the following way.
First, the odd numbers in [2�] are partitioned into blocks of size 6. Then we form �/6 − 1
blocks of size 2 from the even numbers of [2�] such that all partitions from �≥2(2, . . . , 2)
that contain the subpartition constructed so far must belong to �̃≥2(2, . . . , 2). Finally, we
combine the remaining 2

3�+ 2 even numbers of [2�] into blocks of size 2. It follows from this
construction and a short computation that

|�(2)� | ≥ �!
(�/6)! (6!)�/6

(2�/3 + 2)!
(�/3 + 1)! 2�/3+1 ≥ �! (�/6)!

(6!)� .

Note that we do not take into account here the different possibilities of forming the first �/6−1
blocks from the even numbers of [2�]. The previous inequality implies that

|�≥2(n1, . . . , n�)| ≥ |�̃≥2(n1, . . . , n�)| ≥ |�(2)� | ≥ �! (�/6)!
(6!)� (16)

if n1 ≥ 2, . . . , n� ≥ 2 and � ∈ N is such that 6|�.
Each σ̃ ∈ �(2)� with � ∈ N and 6|� induces, for every k ≥ 2, a partition σ ∈ �̃≥2(k, . . . , k)

of [k�] in the following way. First, we partition {1+ jk : j = 0, . . . , �−1} as the odd numbers
in σ̃ and then, for each i = 2, . . . , k, the sets {i + jk : j = 0, . . . , �− 1} as the even numbers
in σ̃ . We denote the set of these partitions by �(k)� .
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Owing to the assumptions that ‖fn0‖n0 > 0 and fn0 is nonnegative, and the structure of
�
(n0)
� , there must be a constant c > 0 such that∫

(f⊗�
n0
)σ dλ|σ | ≥ c�, (17)

for all � ∈ N with 6|� and σ ∈ �(n0)
� . It follows from Corollary 1 and the estimates (16) and

(17) that

EF� ≥ �! (�/6)!
(6!)� c� and γ�(F ) ≥ �! (�/6)!

(6!)� c�

for all � ∈ N with 6|�. This implies that E exp(sF ) = ∞ for all s > 0.

4. Asymptotic behaviour of moments and cumulants

In this section we consider Poisson processes ηt with intensity measures λt := tλ, t > 0.
We are interested in functionals of ηt that can be represented as Ft = g(t)

∑
f (x1, . . . , xm)

with the sum running over all m-tuples of distinct points of ηt for some integer m ≥ 1. This
setting is taken from [16, Section 5], where a central limit theorem for Ft as t → ∞ is
derived. We generalize this to a multivariate setting and investigate the asymptotic behaviour
of such functionals as t → ∞. More formally, fix � ≥ 1 and, for i = 1, . . . , �, let mi ∈ N,
f (i) ∈ L1

s (λ
mi ), and gi : (0,∞) → R such that gi(t) �= 0 for all (or at least for all sufficiently

large) t > 0. Now, define

F
(i)
t := gi(t)

∫
f (i)(x1, . . . , xmi ) η

(mi)
t (d(x1, . . . , xmi )), t > 0. (18)

By (2), we have

EF
(i)
t = gi(t)t

mi

∫
f (i)(x1, . . . , xmi )λ

mi (d(x1, . . . , xmi )).

For n = 1, . . . , mi , define

f (i)n (x1, . . . , xn) :=
(
mi

n

)∫
f (i)(x1, . . . , xn, y1, . . . , ymi−n)λmi−n(d(y1, . . . , ymi−n)) (19)

and denote by In,t the n-fold Wiener–Itô integral with respect to ηt . We claim that, P-almost
surely, F (i)t can be written as

F
(i)
t = EF

(i)
t + gi(t)

mi∑
n=1

tmi−nIn,t (f (i)n ). (20)

Indeed, if f (i)n ∈ L2(λn) for all n ≤ mi then F (i)t is square-integrable and (20) is just a special
case of the chaos expansion (5), cf. [16, Lemma 3.5]. The L1-version can be derived by
approximation or by a direct calculation (just substitute (19) into (3) and observe that all
resulting terms cancel out, except the integral representation (18) of F (i)t ).

Write ‖ · ‖n for the norm and 〈 · , · 〉n for the inner product in L2(λn), and assume again that
f
(i)
n ∈ L2(λn) for n ≤ mi . Equations (4) and (20) imply that

var[F (i)t ] = gi(t)
2
mi∑
n=1

t2mi−2nn!
∫
(f (i)n )2 dλnt = gi(t)

2
mi∑
n=1

t2mi−nn! ‖f (i)n ‖2
n
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and

cov[F (i)t , F
(j)
t ] = gi(t)gj (t)

min{mi,mj }∑
n=1

tmi+mj−nn! 〈f (i)n , f
(j)
n 〉n. (21)

The variances, covariances, mixed moments, and cumulants of higher order show the following
asymptotic behaviour as t → ∞.

Theorem 2. Assume that
∫
(
⊗�

i=1 |f (i)|)σ dλ|σ | < ∞ for all σ ∈ �(m1, . . . , m�). Then

lim
t→∞ E

�∏
i=1

F
(i)
t − EF

(i)
t

gi(t)tmi−1/2 =
∑

σ∈�=2(1,...,1)

∫ ( �⊗
i=1

f
(i)
1

)
σ

dλ|σ | (22)

and

lim
t→∞

γ (F
(1)
t − EF

(1)
t , . . . , F

(�)
t − EF

(�)
t )∏�

i=1 gi(t)t
mi−1/2

= 0, � ≥ 3. (23)

Remark 3. Note that the right-hand side of (22) vanishes for odd �. Moreover, γ (F (1)t −
EF

(1)
t ) = 0 and, for � = 2, the left-hand side of (23) coincides with that of (22) and is equal to

〈f (1)1 , f
(2)
1 〉1.

Proof of Theorem 2. We can assume without loss of generality that gi(t) ≡ 1. Due to the
special structure of F (i)t and the kernels of its chaos expansion, the integrability assumptions
on

⊗�
i=1 f

(i) imply that
∫
(
⊗�

i=1 |f (i)ni |)σ dλ|σ | < ∞ for all σ ∈ �(n1, . . . , n�) and 1 ≤ ni ≤
mi, i = 1, . . . , �. The latter is condition (13) for the functions f (i)ni in (20) and allows us to
apply Theorem 1, which yields

E

�∏
i=1

(F
(i)
t − EF

(i)
t ) =

∑
1≤n1≤m1,...,1≤n�≤m�

E

�∏
i=1

tmi−ni Ini ,t (f (i)ni )

=
∑

1≤n1≤m1,...,1≤n�≤m�

∑
σ∈�≥2(n1,...,n�)

∫ ( �⊗
i=1

tmi−ni f (i)ni

)
σ

dλ|σ |
t . (24)

On the right-hand side, each summand has order t
∑
(mi−ni)+|σ |. Because of |σ | ≤ �(∑ ni)/2�

and
∑
ni ≥ �, we have

∑
(mi − ni)+ |σ | ≤ ∑

mi − �(∑ ni)/2� ≤ ∑
mi − ��/2�, so that

the maximal order is at most t
∑
mi−��/2�. For even � this is obtained if and only if n1 = · · · =

n� = 1, and the partition σ satisfies |J | = 2 for all J ∈ σ . Exactly these summands remain
as t → ∞ since they have the same order as the denominator in (22); other summands vanish
as t → ∞. If � is odd, the numerator has at most order t

∑
mi−(�+1)/2 (in fact, the order is

attained) and the denominator has order t
∑
mi−�/2 so that the expression vanishes in the limit.

For the cumulant γ (F (1)t − EF
(1)
t , . . . , F

(�)
t − EF

(�)
t ), � ≥ 3, we obtain by Theorem 1 the

expression in the second line of (24), where this time the inner sum only runs over all partitions
σ ∈ �̃≥2(n1, . . . , n�). Since �̃≥2(1, . . . , 1) ∩�=2(1, . . . , 1) = ∅ for � ≥ 3, all summands
have a lower order than the denominator in (23) and vanish as t → ∞.

In the next result we take F (1)t = · · · = F
(�)
t = Ft with

Ft := g(t)

∫
f (x1, . . . , xm) η

(m)
t (d(x1, . . . , xm)), t > 0,
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as in (18), where g1 = · · · = g� = g, f (1) = · · · = f (�) = f , andm1 = · · · = m� = m. Since
�=2(1, . . . , 1) has cardinality

(�− 1)!! := (�− 1)(�− 3) · · · 3 · 1

for even � ≥ 2, Theorem 2 implies the following result.

Corollary 3. Assume that
∫
(|f |⊗�)σ dλ|σ | < ∞ for all σ ∈ �(m, . . . , m) and that ‖f1‖1 > 0.

Then

lim
t→∞

E(Ft − EFt)
�

(var[Ft ])�/2 =
{
(�− 1)!! if � is even,

0 if � is odd,

and

lim
t→∞ γ�

(
Ft − EFt√

var[Ft ]
)

=
{

1 if � = 2,

0 if � �= 2.

5. Central limit theorems

In what follows, we assume the same setting as in Section 4. More precisely, fix � ∈ N, let
F
(1)
t , . . . , F

(�)
t be defined as in (18), and assume for each i ≤ � that f (i)n ∈ L2(λn) for n ≤ mi .

We shall at first show how the results of Section 4 lead to a multivariate central limit theorem
via the method of moments. Let us define

F̂
(i)
t := gi(t)

−1t−(mi−1/2)(F
(i)
t − EF

(i)
t ) (25)

and note from (20) that

F̂
(i)
t = t1/2

mi∑
n=1

t−nIn,t (f (i)n ). (26)

Furthermore, by (21), we have the asymptotic covariances

Cij := lim
t→∞ cov[F̂ (i)t , F̂

(j)
t ] = 〈f (i)1 , f

(j)
1 〉1 =

∫
f
(i)
1 (x)f

(j)
1 (x) λ(dx), i, j ∈ {1, . . . , �}.

Proposition 1. Let N be an �-dimensional centred Gaussian random vector with covariance
matrix (Cij )i,j=1,...,�. Assume that

∫
(
⊗k

j=1 |f (ij )|)σ dλ|σ | < ∞ for all k ∈ N , i1, . . . , ik ∈
{1, . . . , �}, and σ ∈ �(mi1 , . . . , mik ). Then (F̂ (1)t , . . . , F̂

(�)
t ) converges in distribution to N .

Proof. Observe first that γ (F̂ (i)t ) = EF̂
(i)
t = 0 for 1 ≤ i ≤ � and

γ (F̂
(i)
t , F̂

(j)
t ) = cov[F̂ (i)t , F̂

(j)
t ] → Cij as t → ∞,

for any 1 ≤ i and j ≤ �. Now fix integers k ≥ 3 and 1 ≤ i1 ≤ · · · ≤ ik ≤ �, and consider the
joint cumulant γ (F̂ (i1)t , . . . , F̂

(ik)
t ). By homogeneity and (25) it follows that

γ (F̂
(i1)
t , . . . , F̂

(ik)
t ) = γ (F

(i1)
t − EF

(i1)
t , . . . , F

(ik)
t − EF

(ik)
t )∏k

j=1 gij (t)t
mij−1/2 ;

whence, Theorem 2 implies that γ (F̂ (i1)t , . . . , F̂
(ik)
t ) → 0 as t → ∞. The method of moments

(or cumulants) now yields the multivariate limit theorem; see [2, p. 352]. In the univariate case
the conclusion can also be directly drawn from Corollary 3.
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We now turn to a quantitative version of the multivariate central limit theorem. We measure
the distance between two �-dimensional random vectors X and Y by

d3(X, Y ) := sup
g∈H

|Eg(X)− Eg(Y )|,

where H is the set of all functions h ∈ C3(R�) that satisfy

max
1≤i1≤i2≤�

sup
x∈R�

∣∣∣∣ ∂2h(x)

∂xi1∂xi2

∣∣∣∣ ≤ 1, max
1≤i1≤i2≤i3≤�

sup
x∈R�

∣∣∣∣ ∂3h(x)

∂xi1∂xi2∂xi3

∣∣∣∣ ≤ 1.

Note that convergence under the (pseudo-) metric d3 implies convergence in distribution.
In [13], bounds are derived for the d3-distance to the multivariate normal, along with similar
bounds using a similarly defined d2-distance. We work with the result for the d3-distance
since the covariance matrix of the Gaussian random vector is allowed to be only positive semi-
definite (this means that some linear combinations of the components of the limiting random
vector may be constant). A nontrivial example for such a degenerate situation can be found
in [4]. The multivariate normal approximation of Poisson U -statistics in the d2-distance has
been considered in [11].

In contrast to the univariate results for the Wasserstein distance discussed in Section 1, we
can derive a multivariate result only for the d3-metric since the underlying result in [13] is based
on that distance. This is caused by the fact that the approaches used in [13] for the multivariate
normal approximation, namely an interpolation technique and the multivariate Stein’s method,
require a higher degree of smoothness for the test functions.

We are now ready to state the Berry–Esseen-type inequality.

Theorem 3. Let N be an �-dimensional centered Gaussian random vector with covariance
matrix (Cij)i,j=1,...,�. Assume that

∫ |f (i)1 |3 dλ < ∞ for every i ∈ {1, . . . , �}. Then there is a
constant c̃ > 0 such that

d3((F̂
(1)
t , . . . , F̂

(�)
t ), N) ≤ c̃t−1/2, t ≥ 1.

Remark 4. For � = 1 it is possible to replace d3 in Theorem 3 by the classical Wasserstein
distance dW and obtain dW(F̂t , N) ≤ ct−1/2, where N is a standard Gaussian random variable
with variance ‖f1‖2

1 and c is a constant (see [9, Theorem 7.3] or [16, Theorem 5.2] for a
different rescaling). If ‖f1‖1 = 0, this implies convergence in distribution to the constant
random variableN ≡ 0. In this situation [9, Theorem 7.3] yields convergence in distribution to
a higher-order Wiener–Itô integral with respect to a Gaussian random measure after a suitable
(different) scaling.

Remark 5. Theorem 3 also holds if F (1)t , . . . , F
(�)
t are finite sums of random variables of the

type in (18). In fact, under some additional conditions, any Poisson functional with finite
Wiener–Itô chaos expansion can be represented in such a way; see [16].

We prepare for the proof of Theorem 3 by stating and proving the following lemma.

Lemma 1. Let X and Y be �-dimensional random vectors with EX = EY and Euclidean
norms ‖X‖ and ‖Y‖ such that E‖X‖2 < ∞ and E‖Y‖2 < ∞. Then we have

d3(X, Y ) ≤ �
√

E‖X‖2 + E‖Y‖2
√

E‖X − Y‖2.

Proof. For h ∈ H , X = (X1, . . . , X�), and Y = (Y1, . . . , Y�), by the mean value theorem
we obtain

|Eh(X)− Eh(Y )| = |E[h′(Z)(X − Y )] − E[h′(0)(X − Y )]|,
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where Z = Y + U(X − Y ) for some random variable U in [0, 1] and where we have used the
fact that the components of X − Y all have expectation 0. Applying the mean value theorem
again as well as the Cauchy–Schwarz inequality yields

|Eh(X)− Eh(Y )| =
∣∣∣∣E

�∑
i=1

(
∂h(Z)

∂ui
− ∂h(0)

∂ui

)
(Xi − Yi)

∣∣∣∣
=

∣∣∣∣E
�∑
i=1

�∑
j=1

∂2h(Z̃(i))

∂uj ∂ui
Zj (Xi − Yi)

∣∣∣∣
≤

√√√√E

�∑
i=1

( �∑
j=1

∂2h(Z̃(i))

∂uj ∂ui
Zj

)2√
E‖X − Y‖2,

with random vectors Z̃(i) = UiZ and random variables Ui ∈ [0, 1], i = 1, . . . , �. By the fact
that h ∈ H and the Cauchy–Schwarz inequality, it follows that

E

�∑
i=1

( �∑
j=1

∂2h

∂uj ∂ui
(Z̃(i))Zj

)2

≤ �2 E‖Z‖2 ≤ �2(E‖X‖2 + E‖Y‖2),

which completes the argument.

Proof of Theorem 3. For i ∈ {1, . . . , �}, define

F̄
(i)
t := t−1/2I1,t (f

(i)
1 ), t > 0,

and note that cov[F̄ (i)t , F̄
(j)
t ] = Cij . Therefore, from [13, Corollary 4.3] we obtain

d3((F̄
(1)
t , . . . , F̄

(�)
t ), N) ≤ �2

4

�∑
i=1

t−3/2
∫

|f (i)1 (x)|3λt (dx) = c2t
−1/2 (27)

for some c2 > 0. Lemma 1 implies that

d3((F̂
(1)
t , . . . , F̂

(�)
t ), (F̄

(1)
t , . . . , F̄

(�)
t )) ≤ A

1/2
t B

1/2
t , (28)

where

At := �

�∑
i=1

E(F̂
(i)
t )2 + �

�∑
i=1

E(F̄
(i)
t )2, Bt :=

�∑
i=1

E(F̂
(i)
t − F̄

(i)
t )2.

The first factor, At , is bounded in t . For the second factor we use (26) to obtain

Bt =
�∑
i=1

E

( mi∑
n=2

t−n+1/2In,t (f
(i)
n )

)2

=
�∑
i=1

mi∑
n=2

t−2n+1tn‖f (i)n ‖2
n,

so thatA1/2
t B

1/2
t ≤ c3t

−1/2, t ≥ 1, for some c3 > 0. Using this estimate in (28) and combining
with (27) and the triangle inequality for d3, we obtain the result.

Remark 6. The proofs of Theorem 3 and the univariate bound discussed in Remark 4 depend
on general Berry–Esseen-type inequalities for Poisson functionals from [13] and [14], that are
proven in a slightly more restrictive setting, namely that (X,X) is a Borel space and μ is
nonatomic. But they are still valid without these assumptions since the proofs only make use
of properties of the Malliavin operators that also hold in our more general setting as shown
in [10].
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6. Poisson flat processes

In this section we assume that ηt is a stationary Poisson process of k-flats (k-dimensional
affine subspaces) in Rd , where d ≥ 1 and k ∈ {0, . . . , d − 1}. This is a Poisson process on
the space A(d, k) of all k-flats, whose distribution is invariant under translation of the flats. Its
distribution is determined by the intensity t > 0 and the directional distribution Q, a probability
measure on the spaceG(d, k) of all k-dimensional linear subspaces of Rd . In fact, the intensity
measure λt of ηt is equal to

λt ( · ) = t

∫
G(d,k)

∫
E⊥

1{E+x∈ · }Hd−k(dx)Q(dE), (29)

where E⊥ stands for the orthogonal complement of E, Hd−k denotes the (d − k)-dimensional
Hausdorff measure, and Q is a probability measure on G(d, k). We let λ := λ1. If Q is the
uniform distribution (Haar measure), then ηt is isotropic, that is, distributionally invariant under
rotations. For further details on Poisson flat processes, we refer the reader to [17].

The intersection process of orderm ∈ N is given as the set of all intersectionsE1 ∩ · · · ∩ Em
ofm pairwise different flats in ηt . To introduce our geometric functionals of the latter process,
we let Cd denote the system of all compact subsets of Rd , equipped with the Borel σ -field
induced by the Fell topology; see, e.g. [17, Chapter 12]. We consider a measurable family
Cd0 ⊂ Cd of sets containing the empty set ∅ and with the property that rB ∩ E ∈ Cd0 for all
B ∈ Cd0 , all r > 0, and all affine subspaces E ⊂ Rd . We assume that ψ : Cd0 → R is a
measurable function with ψ(∅) = 0 satisfying∫

|ψ(B ∩ E1 ∩ · · · ∩ Em)|3λm(d(E1, . . . , Em)) ≤ CB, (30)

for allB ∈ Cd0 , whereCB ≥ 0 is a constant only depending onB. (By [17, Theorem 12.2.6] the
mapping (E1, . . . , Em) �→ B ∩ E1 ∩ · · · ∩ Em is measurable.) We note here that (29) implies
that λ is locally finite in the sense that λ({E ∈ A(d, k) : B ∩ E �= ∅}) < ∞ for all B ∈ Cd .
Since ψ(∅) = 0, assumption (30) implies the integrability of |ψ(B ∩ E1 ∩ · · · ∩ Em)|p with
respect to λm for any p ∈ (0, 3]. This is enough to settle all integrability issues in this section.
Clearly, (30) is implied by the stronger condition

|ψ(B ∩ E1 ∩ · · · ∩ Em)| ≤ cB, λm-a.e. (E1, . . . , Em), B ∈ Cd0 , (31)

for some cB ≥ 0 depending on B. In particular, (31) is satisfied in our examples below.
Define a random field ζt := {ζt (B) : B ∈ Cd0 } by

ζt (B) := 1

m!
∫
ψ(B ∩ E1 ∩ · · · ∩ Em)η(m)t (d(E1, . . . , Em)), B ∈ Cd0 .

Since ηt has only atoms of size one (by (29)) we can identify ηt with its support, and integration
with respect to η(m)t corresponds to summation over all m-tuples (E1, . . . , Em) ∈ ηmt with
pairwise different entries. For A,B ∈ Cd0 , define

C(A,B)

:= 1

((m− 1)!)2
∫ (∫

ψ(A ∩ E1 ∩ E2 ∩ · · · ∩ Em)λm−1(d(E2, . . . , Em))

)

×
(∫

ψ(B ∩ E1 ∩ E′
2 ∩ · · · ∩ E′

m) λ
m−1(d(E′

2, . . . , E
′
m))

)
λ(dE1).
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If m = 1, this has to be read as

C(A,B) =
∫
ψ(A ∩ E1)ψ(B ∩ E1)λ(dE1).

It can be checked directly that C(·, ·) is positive semidefinite. Therefore, we can consider a
centred Gaussian field ξ := {ξ(B) : B ∈ Cd0 } with this covariance function.

Define ζ̂t (B) := t−(m−1/2)(ζt (B)− Eζt (B)), t > 0, B ∈ Cd0 .

Theorem 4. Let � ≥ 1 and B1, . . . , B� ∈ Cd0 . Then

d3((ζ̂t (B1), . . . , ζ̂t (B�)), (ξ(B1), . . . , ξ(B�))) ≤ c(B1, . . . , B�)t
−1/2, t ≥ 1,

for some constant c(B1, . . . , B�). In particular,

{ζ̂t (B) : B ∈ Cd0 } d−→ {ξ(B) : B ∈ Cd0 } as t → ∞,

in the sense of convergence of finite-dimensional distributions.

Proof. This is a direct consequence of Theorem 3.

Alternatively, we can approach the central limit problem in another closely related setting.
Instead of increasing the intensity parameter t , we can also fix t (for simplicity we take t = 1)
and increase the size r of the observation window. If we assume additionally that the considered
function ψ is homogeneous of degree α ∈ R, that is,

ψ(rB) = rαψ(B), B ∈ Cd0 , r > 0, (32)

both approaches are equivalent. Define a random field ζ̃r := {ζ̃r (B) : B ∈ Cd0 } with ζ̃r (B) =
r−(m−1/2)(d−k)−α(ζ1(rB)− Eζ1(rB)).

Corollary 4. Assume that (32) holds; let � ≥ 1 and B1, . . . , B� ∈ Cd0 . Then

d3((ζ̃r (B1), . . . , ζ̃r (B�)), (ξ(B1), . . . , ξ(B�))) ≤ c(B1, . . . , B�)r
−(d−k)/2, r ≥ 1,

for some constant c(B1, . . . , B�). In particular, {ζ̃r (B) : B ∈ Cd0 } d−→ {ξ(B) : B ∈ Cd0 } as
r → ∞ in the sense of finite-dimensional distributions.

Proof. The special structure (29) of the intensity measure λ implies the well-known scaling
property

P(ηt ∈ ·) = P(t−1/(d−k)η1 ∈ ·), t > 0,

where aη1 := {aE : E ∈ η1} for a > 0. Since ψ is homogeneous, we obtain, for all B ∈ Cd0
and r > 0,

ζ1(rB) = 1

m! r
α

∫
ψ(B ∩ r−1E1 ∩ · · · ∩ r−1Em)η

(m)
1 (d(E1, . . . , Em))

= 1

m! r
α

∫
ψ(B ∩ E1 ∩ · · · ∩ Em)η(m)r1/(d−k) (d(E1, . . . , Em)),

where the second identity holds in distribution jointly in B. Hence, we can apply Theorem 3
with g1(t) = · · · = g�(t) := (m!)−1tα(d−k) and then replace t by r1/(d−k).

Remark 7. It follows from (21) (with gi(t) = gj (t) = 1/m!) that

cov[ζt (A), ζt (B)] =
m∑
n=1

1

n! ((m− n)!)2Vt (A,B, n), A,B ∈ Cd0 ,
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where

Vt (A,B, n)

:= t2m−n
∫ [∫

ψ(A ∩ E1 ∩ · · · ∩ En ∩ En+1 ∩ · · · ∩ Em)λm−n(d(En+1, . . . , Em))

×
∫
ψ(B ∩ E1 ∩ · · · ∩ En ∩ En+1 ∩ · · · ∩ Em)λm−n(d(En+1, . . . , Em))

]
× λn(d(E1, . . . , En)).

In accordance with Theorem 4, we therefore obtain

lim
t→∞ t

−(2m−1) cov[ζt (A), ζt (B)] = C(A,B).

We now present a few examples to which Theorem 4 as well as Corollary 4 can be applied.

Example 3. Assume that m(d − k) ≤ d . Assume further that Cd0 = Cd and that ψ is the
(d −m(d − k))-dimensional Hausdorff measure on Rd restricted to Cd . Then (32) holds with
α = d − m(d − k). Assumption (31) holds because for λm-a.e. (E1, . . . , Em) ∈ A(d, k)m

the intersection E1 ∩ · · · ∩ Em is either empty or has dimension d − m(d − k). This follows
(recursively) from the argument given in [17, p. 130].

Example 4. Assume that Cd0 = Cd and that ψ(B) = 1{B �=∅}. Then (32) holds with α = 0
while (31) holds with cB = 1.

Examples 3 and 4 have been studied in [4] and [5] for the case k = d − 1. Our results add
to [4, Theorems 3.1 and 4.1] in several ways. While the latter results are multivariate central
limit theorems for the d possible values of the number m of intersections but a fixed (convex)
test set B, we fix m but study ζt (B) (respectively ζ1(rB)) as a function of B. Furthermore, we
consider processes of flats and not only hyperplanes. Moreover, we obtain Berry–Esseen-type
bounds on the distance d3 and can allow for a considerably larger class of functionals ψ . It is
also possible to apply Theorem 3 to the vector-valued processes arising by varying m. This
would constitute a complete generalization of [4]. In order to avoid heavy notation we have
refrained from doing so.

We continue with further examples of functionals ψ satisfying (31) and (32). The convex
ring Rd is the system of all (possible empty) unions of convex and compact subsets of Rd .

Example 5. Assume thatCd0 = Rd and thatψ is the intrinsic volumeVα , whereα ∈ {0, . . . , d};
see, e.g. [17]. Then (32) holds. Assumption (31) follows from the fact thatVα(B ∩ E) ≤ Vα(B)

for any convex and compact B ⊂ Rd and any affine subspace E ⊂ Rd . By additivity of Vα
(see, e.g. [17, Section 14.2]) inequality (31) can be established for the whole convex ring.

In contrast to the previous examples, the next functionals are not additive.

Example 6. Assume that Cd0 = Rd and α ∈ {0, . . . , d − 1}. Let �α(A, ·) be the support
measure of A ∈ Rd ; see [17, Section 14.2]. This is a signed measure on the product of Rd and
the unit sphere Sd−1 such that �α(A,Rd × Sd−1) = Vα(A). Fix a measurable set U ⊂ Sd−1

and assume that

ψ(A) =
∫

1{(x,u)∈N(A), u∈U}�α(A, d(x, u)),

where N(A) is the unit normal bundle of A. This consists of all pairs (x, u) ∈ Rd × Sd−1 that
occur as a unique nearest point and the associated direction of a point in the complement of A;
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see [6]. The homogeneity (32) follows from the homogeneity of the (nonnegative) measure
1{(x,u)∈N(A)}�α(A, d(x, u)); see [6, Proposition 4.9]. Assumption (31) follows similarly as in
Example 5 from the additivity of �α(A, ·) in A ∈ Rd .

Example 7. Consider the case where Cd0 is the space of compact convex subsets of Rd , fix
α ∈ {0, . . . , d} and β ≥ 0, and let ψ be V βα , the power β of the intrinsic volume of order α.
In the case α = 1 and β = n ∈ N, ψ corresponds to the nth chord-power integral, which is
frequently studied in integral geometry; see [17, Chapter 8.6]. Clearly, (32) is satisfied with
αβ there and assumption (31) follows as in Example 5 from the fact that V βα (B ∩ E) ≤ V

β
α (B)

for any convex and compact B ⊂ Rd and any affine subspace E ⊂ Rd .

Remark 8. If ψ ≥ 0, then cov[ζt (A), ζt (B)] ≥ 0 and C(A,B) ≥ 0 for all A,B ∈ Cd0 . This is
the case in Examples 3, 4, and 7. Taking the system of convex sets as Cd0 , this is also the case
in Examples 5 and 6. If additionally m ≥ 2, Corollary 2 shows that the moment generating
functions of the functionals under consideration do not exist.
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