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The Variety of Two-dimensional Algebras
Over an Algebraically Closed Field

Ivan Kaygorodov and Yury Volkov

Abstract. he work is devoted to the variety of two-dimensional algebras over algebraically closed
ûelds. First we classify such algebras modulo isomorphism. hen we describe the degenerations and
the closures of certain algebra series in the variety of two-dimensional algebras. Finally, we apply our
results to obtain analogous descriptions for the subvarieties of �exible and bicommutative algebras. In
particular, we describe rigid algebras and irreducible components for these subvarieties.

1 Introduction

In this paper, an algebra is simply a vector space over a ûeld with a bilinear binary
operation that does not need to be associative. Algebras of a ûxed dimension form
a variety with a natural action of a general linear group. Orbits under this action
correspond to isomorphism classes of algebras. here are many classiûcations up to
isomorphism for varieties of algebras of some ûxed dimension satisfying some poly-
nomial identities. For example, there exist such classiûcations of three-dimensional
Novikov algebras [2], four-dimensional Leibniz algebras [9], six-dimensional Lie al-
gebras [30] andmany others.

In this paper we classify all two-dimensional algebras over an algebraically closed
ûeld up to isomorphism. It is not the ûrst work devoted to this problem [1, 14, 28],
but all of them are not convenient for our main goal: the geometric description of the
algebraic variety of two-dimensional algebras. One of the advantages of our paper is
that our approach deals uniformly with all possible characteristics while the authors
of [1] do not consider characteristics 2 and 3 and the authors of [14] consider only the
two-elements ûeld in characteristic 2. he authors of [1], in fact, do not give an ex-
plicit classiûcation of two-dimensional algebras up to isomorphism because they have
other purposes. hey describe themoduli space by proving that two-dimensional al-
gebras can be divided into parts that can be naturally included into projective spaces
of diòerent dimensions. he authors claim that the classiûcation up to isomorphism
is easy and could be extracted from their proofs. he classiûcation is really not very
diõcult, and we believe that one can extract it a�er reading the paper, taking parts of
the classiûcation from diòerent places and carefully taking into account all the details.
For us it was easier to produce this classiûcation from scratch. Goze and Remm [14]
produced a full classiûcation. One of the problems is that this classiûcation is spread
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throughout the whole paper and is mixed with other formulas. It is tedious to collect
all the parts of the classiûcation from in one place and ûnd all the additional condi-
tions for these parts. At the same time, there are some inaccuracies. For example, the
series µ10 parametrized by two scalars must be divided into two series parametrized
by one scalar, the series µ11 admits nontrivial isomorphisms, and in the case of a com-
mutative two-dimensional algebra with one idempotent e, it may be impossible to
ûnd f linearly independent with e such that f 2 and e are linearly dependent. While
Petersson [28] gave the full classiûcation of two-dimensional algebras over any ûeld,
unfortunately, the answer is not given in terms of multiplication tables. he transla-
tion of this answer to the language ofmultiplication tables aswell as its direct usage for
the description of orbit closures is very diõcult, and it seems to be easier to produce a
new appropriate classiûcation. Also the consideration of arbitrary ûelds complicates
the result and the extraction of the answer for an algebraically closed ûeld becomes
tedious. For these reasons, we give a classiûcation that is valid over an algebraically
closed ûeld of arbitrary characteristic in Section 3. In the same section we also de-
scribe the automorphism groups for all algebras under consideration.

In the main part of our paper we develop the geometry of the variety of two-
dimensional algebras. Namely, we describe the closures of orbits of some sets with
respect to the Zariski topology. First, we describe all possible degenerations, i.e., clo-
sures of orbits of one point sets. Degenerations are an interesting subject that was
studied in various papers [3–7, 11–13, 15–18, 20, 21, 25–27, 29]. One of the problems
in this direction is to describe all degenerations in a variety of algebras of some ûxed
dimension satisfying some set of identities. For example, this problem was solved for
two-dimensional pre-Lie algebras in [3], for three-dimensional Novikov algebras in
[4], for four-dimensional Lie algebras in [7], for four-dimensional Zinbiel and nilpo-
tent Leibniz algebras in [21], for nilpotent ûve- and six-dimensional Lie algebras in
[15, 29], and for nilpotent ûve- and six-dimensional Malcev algebras in [20]. As an
application of our results, one can easily recover the results of [3].
Another interesting notion concerning degenerations is the so-called level of an

algebra deûned in the end of Section 5. he algebras of the ûrst level and the associa-
tive Lie and Jordan algebras of the second level are classiûed in [23,24]. Gorbatsevich
[11–13] deûned the notion of an inûnite level and described all anticommutative alge-
bras that have an inûnite level not greater than three. his notion is much easier in
the sense that the inûnite level of an algebra can be easily expressed in terms of the
usual level. Algebras of low dimension play a special role in problems of such type,
because they have small levels. he complete description of degenerations obtained
by Gorbatsevich allows computing the level for all two-dimensional algebras.

Our next result is the description of orbit closures of certain series that appear in
the classiûcation up to isomorphism. Let T be some subvariety of the variety of an
n-dimensional algebra closed under the action of the general linear group. An n-
dimensional algebra from T is called rigid if its orbit is an open subset of T . Another
important characteristic of a variety is its partition into irreducible components. he
notion of a rigid algebra is closely related to this characteristic, because orbit closures
of such algebras form irreducible components. For example, irreducible components
and rigid algebraswere classiûed for lowdimensional associative algebras [26,27]) and
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for Jordan algebras [19]. Since the variety of two-dimensional algebras is simply k8, it
is clear that there is only one irreducible component and there are no rigid algebras
in it. hus, this problem is not relevant for the variety of all two-dimensional algebras
itself. Nevertheless, it is relevant for subvarieties. In the last part we apply our results
about the variety of all two-dimensional algebras to their subvarieties consisting of
�exible and bicommutative algebras. We describe all degenerations and closures of
orbits in these varieties. In reducible components and rigid algebras. Our results
allow us to get such descriptions and classiûcations for varieties of two-dimensional
algebras deûned by any identities without any problems.

Let us give a resume of ourmotivations. he problems considered in this paper are
classical and their solutions are interesting by themselves. In general the classiûcation
of all n-dimensional algebras is awild problem and it is interesting to get the solution
in particular cases where it is still possible. Our main motivation was the classiûca-
tion of all the algebras of the second level that we produced in [22] using the results
of this paper. In fact, there are reasons to guess that our classiûcation will also allow
classifying algebras of the third and the fourth levels. hus, our results are important
for the classiûcation of algebras of small levels and constitute a necessary part of it.
Another application thatwe have in mind is the geometric description of subvarieties
of the variety of two-dimensional algebras. here are some works, e.g., [3], devoted
to this problem, and our work gives a powerful tool to solve it. Our results can be
applied whenever the natural action of GL(k2) on (k2)∗ ⊗ (k2)∗ ⊗ k2 appears, and
we expect that they will have other applications, for example, in the theory of alge-
braswith polynomial identities or in the geometric representation theory. Evenwhen
one deals with n-dimensional algebras for n > 2, it may be useful to consider two-
dimensional subalgebras, and our results could be applied in this case. For example,
the classiûcation of n-dimensional algebras with an (n − 2)-dimensional annihilator
is fulûlled using our classiûcation [8].

2 Definitions and Notation

hroughout the paper we ûx an algebraically closed ûeld k, a two-dimensional
k-linear vector space V and a basis {e1 , e2} of V . All spaces in this paper are con-
sidered over k, and we write simply dim,Hom and ⊗ instead of dimk,Homk and ⊗k.
An algebra A is a set with a structure of a vector space and a binary operation that
induces a bilinear map from A× A to A.

Since this paper is devoted to two-dimensional algebras,we give all deûnitions and
notation only for this case, though everything in this section can be rewritten for any
dimension.

he set A2 ∶= Hom(V ⊗ V ,V) ≅ V∗ ⊗ V∗ ⊗ V is a vector space of dimension 8.
his space has a structure of the aõne variety k8. Indeed, any µ ∈ A2 is determined
by eight structure constants cki j ∈ k (i , j, k = 1, 2) such that µ(e i ⊗ e j) = c1i je1 + c2i je2.
A subset of A2 is Zariski-closed if it can be deûned by a set of polynomial equations
in the variables cki j .

he general linear group GL(V) acts on A2 by conjugation: for x , y ∈ V , µ ∈ A2
and g ∈ GL(V),

(g ∗ µ)(x ⊗ y) = gµ(g−1
x ⊗ g

−1
y).
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hus,A2 isdecomposed intoGL(V)-orbits that correspond to the isomorphism classes
of two-dimensional algebras. he classiûcation of two-dimensional algebras up to iso-
morphism is equivalent to the classiûcation of GL(V)-orbits.

Let O(µ) denote the orbit of µ ∈ A2 under the action of GL(V) and let O(µ)
denote the Zariski closure of O(µ). Let A and B be two two-dimensional algebras
and µ, λ ∈ A2 represent A and B, respectively. We say that A degenerates to B and
write A → B if λ ∈ O(µ). Note that in this case we have O(λ) ⊂ O(µ). Hence, the
deûnition of a degeneration does not depend on the choice of µ and λ. If A /≅ B, then
the assertion A→ B is called a proper degeneration. Wewrite A /→ B if λ /∈ O(µ). Now
let A(∗) ∶= {A(α)}α∈I be a set of two-dimensional algebras and µα ∈ A2 represent
A(α) for α ∈ I. If λ ∈ {O(µα)}α∈I , then we write A(∗) → B and say that A(∗)
degenerates to B. In the opposite case we write A(∗) /→ B.

Let A(∗), B, µα (α ∈ I), and λ be as above. Let cki j (i , j, k = 1, 2) be the structure
constants of λ in the basis e1 , e2. If we construct maps a j

i ∶k∗ → k (i , j = 1, 2) and
f ∶k∗ → I such that a1

1(t)e1 + a2
1 (t)e2 and a1

2(t)e1 + a2
2(t)e2 form a basis of V for any

t ∈ k∗, and the structure constants of µ f (t) in this basis are polynomials cki j(t) ∈ k[t]
such that cki j(0) = cki j , then A(∗) → B. Indeed, if there is some closed subset R
containing O(µα) for all α ∈ I, then it contains, in particular, O(µ f (t)) for all t ∈ k∗,
and hence the element λt of A2 with structure constants cki j(t) belongs to R for any
t ∈ k∗. Note that the assertion λt ∈ R is equivalent to the annihilation of some set
polynomials in one variable in the point t. But if this set of polynomials vanishes for
all t ∈ k∗, then each of these polinomials has inûnitelymany roots, and hence it equals
zero. hus, t = 0 annihilates all the required polynomials, too, i.e., λ = λ0 ∈ R. We
will call (a1

1(t)e1 + a2
1 (t)e2 , a1

2(t)e1 + a2
2(t)e2) and f (t) a parametrized basis and a

parametrized index for A(∗) → B, respectively. he case of degeneration between
two algebras corresponds to the case ∣I∣ = 1. In this case we need only a parametrized
basis, because f (t) is the unique element of I for any t ∈ k∗.

We follow [29] for proving non-degenerations. Let Q be a set of polynomial equa-
tions in the variables xk

i , j (i , j, k = 1, 2). Suppose that Q satisûes the following prop-
erty: if xk

i , j = cki j is a solution to all equations in Q, then also xk
i , j = c̃ki j is a solution to

all equations in Q in the following cases:
(1) there are α1 , α2 ∈ k∗ such that c̃ki j =

α i α j

αk
cki j ;

(2) there is α ∈ k such that
c̃
1
11 = c111 + α(c112 + c121) + α2

c
1
22 ,

c̃
1
21 = c121 + αc122 ,
c̃
1
12 = c112 + αc122 ,
c̃
1
22 = c122 ,
c̃
2
11 = c211 + α(c212 + c221 − c111) + α2(c222 − c112 − c121) − α3

c
1
22 ,

c̃
2
21 = c221 + α(c222 − c121) − α2

c
1
22 ,

c̃
2
12 = c212 + α(c222 − c112) − α2

c
1
22 ,

c̃
2
22 = c222 − αc122 .
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Let R ⊂ A2 be a set of all algebra structures whose structure constants satisfy all
equations in Q. We will call such a set R a closed upper invariant set. Let {A(α)}α∈I
be a set of two-dimensional algebras such that A(α) can be represented by a structure
fromR for any α ∈ I. Let B be a two-dimensional algebra represented by the structure
λ ∈ A2. If O(λ) ∩ R = ∅, then A(∗) /→ B. In this case we call R a separating set for
A(∗) /→ B.

Let us recall two more tools for proving degenerations and non-degenerations.
First, if A → B, then dimAut(A) > dimAut(B). Note that if A(∗) → B, then ei-
ther dimAut(A(α)) = dimAut(B) for inûnitely many α ∈ I or dimAut(A(α)) <
dimAut(B) for some α ∈ I, but it is possible that dimAut(A(α)) ≥ dimAut(B) for
all α ∈ I. Note also that dimAut(A) = dimDer(A). Secondly, if A → C and C → B,
then A → B. If there is no C such that A → C and C → B are proper degenerations,
then the assertion A → B is called a primary degeneration. If there are no C and D
such that C → A, B → D, C /→ D, and one of the assertions C → A and B → D is a
proper degeneration, then the assertion A /→ B is called a primary non-degeneration.
It suõces to prove only primary degenerations and non-degenerations to describe de-
generations in the variety under consideration. Note also that any algebra degenerates
to the algebra with zero multiplication.

3 Algebraic Classification
he ûrst of our aims is to classify all two-dimensional algebras over kmodulo isomor-
phism. Our classiûcation is based on the following lemma.

Lemma 3.1 Let Abe a two-dimensional algebra. hen there exists a nonzero element

x ∈ A such that x and x2 are linearly dependent.

Proof he required assertion is equivalent to the existence of a one-dimensional
subalgebra in A. hen the lemma follows from the discussion immediately following
[1, Proposition 1]. ∎

Note that if x ∈ A and x2 are linearly dependent, then either x2 = 0 or x = αe for
some α ∈ k∗ and some e ∈ A such that e2 = e. If x2 = 0, then x is called a 2-nil element.
An element e such that e2 = e is called an idempotent.

Corollary 3.2 Any two-dimensional k-algebra belongs to one of the following disjoint

classes.

(A) Algebras that do not have nonzero idempotents and have a unique one-dimensional

subspace of 2-nil elements.
(B) Algebras that do not have nonzero idempotents and have two linearly independent

2-nil elements.
(C) Algebras that have a unique nonzero idempotent and do not have nonzero 2-nil

elements.

(D) Algebras that have a unique nonzero idempotent and a nonzero 2-nil element.
(E) Algebras that have two diòerent nonzero idempotents.

Proof he fact that the classes are disjoint is obvious. he fact that any two-
dimensional algebra belongs to one of the classes follows easily from Lemma 3.1 and
the remark a�er it. ∎
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To give the classiûcation of two-dimensional algebras we need to introduce some
notation. Let us consider the action of the cyclic group C2 = ⟨ρ ∣ ρ2⟩ on k deûned
by the equality ρα = −α for α ∈ k. Let us ûx some set of representatives of orbits
under this action and denote it by k≥0. For example, if k = C, then one can take
C≥0 = {α ∈ C ∣ Re(α) > 0} ∪ {α ∈ C ∣ Re(α) = 0, Im(α) ≥ 0}.

Let us also consider the action of C2 on k2 deûned by the equality ρ(α, β) = (1 −
α + β, β) for (α, β) ∈ k2. Let us ûx some set of representatives of orbits under this
action and denote it by U. Let us also deûne T = {(α, β) ∈ k2 ∣ α + β = 1}.

Given (α, β, γ, δ) ∈ k4, we deûneD(α, β, γ, δ) = (α + γ)(β + δ) − 1. We deûne
C1(α, β, γ, δ) = (β, δ), C2(α, β, γ, δ) = (γ, α),

C3(α, β, γ, δ) = ( βγ − (α − 1)(δ − 1)
D(α, β, γ, δ) ,

αδ − (β − 1)(γ − 1)
D(α, β, γ, δ) )

for (α, β, γ, δ) such that D(α, β, γ, δ) /= 0. Let us consider the set

X = {(C1(Γ),C2(Γ),C3(Γ)) ∣ Γ ∈ k4 ,D(Γ) /= 0,C1(Γ),C2(Γ) /∈ T} ⊂ (k2)3 .
One can show that the symmetric group S3 acts on X by the equality

σ(C1(Γ),C2(Γ),C3(Γ)) = (Cσ−1(1)(Γ),Cσ−1(2)(Γ),Cσ−1(3)(Γ)) for σ ∈ S3 .

Indeed, suppose that (C1(Γ),C2(Γ),C3(Γ)) ∈ X for some Γ = (α, β, γ, δ). We need
to show that σ(C1(Γ),C2(Γ),C3(Γ)) ∈ X for any σ ∈ S3. We will check this for
σ interchanging 1 and 3; the other veriûcations are analogous. First, C3(Γ) ∈ T is
equivalent to the equality α+β+δ+γ−2 =D(Γ),which can be rewritten in the form
(α + γ − 1)(β + δ − 1) = 0. It is clear that the last equality is not valid. Let us introduce

Γ′ = (α, βγ − (α − 1)(δ − 1)
D(Γ) , γ,

αδ − (β − 1)(γ − 1)
D(Γ) ) .

It remains to check that D(Γ′) /= 0 and C3(Γ′) = (β, δ). he equality D(Γ′) = 0 is
equivalent to the equality (α + β + δ + γ − 2)(α + γ) =D(Γ), which can be rewritten
in the form (α + γ − 1)2 = 0. Hence, we get D(Γ′) /= 0. To prove that C3(Γ′) = (β, δ)
we need to verify two equalities. We will consider only the ûrst equality; the second
one is analogous. hus, it remains to show that

βγ − (α − 1)(δ − 1)
D(Γ) γ − (α − 1)( αδ − (β − 1)(γ − 1)

D(Γ) − 1)

= β( (α + β + γ + δ − 2)(α + γ)
D(Γ) − 1) .

Multiplying byD(Γ) and reducing all the equal terms, one sees that the last equality
is valid. Note that there exists a set of representatives of orbits Ṽ under the action of
S3 on X such that if (C1 ,C2 ,C3) ∈ Ṽ and C1 /= C2, then C3 /= C1 ,C2. Let us ûx such Ṽ

and deûne
V = {Γ ∈ k4 ∣ D(Γ) /= 0;C1(Γ),C2(Γ) /∈ T, (C1(Γ),C2(Γ),C3(Γ)) ∈ Ṽ} .

For Γ ∈ V, we also deûne C(Γ) = {C1(Γ),C2(Γ),C3(Γ)} ⊂ k2.
Let us consider the action of the cyclic group C2 on k∗∖{1} deûned by the equality

ρα = α−1 for α ∈ k∗ ∖ {1}. Let us ûx some set of representatives of orbits under this

824

https://doi.org/10.4153/S0008414X18000056 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X18000056


he Variety of Two-dimensional Algebras Over an Algebraically Closed Field

action and denote it by k∗>1. For example, if k = C, then one can take C∗
>1 = {α ∈ C∗ ∣

∣α∣ > 1} ∪ {α ∈ C∗ ∣ ∣α∣ = 1, 0 < arg(α) ≤ π}. For (α, β, γ) ∈ k2 × k∗>1 we deûne

C(α, β, γ) = {(αγ, (1 − α)γ), ( β
γ
,
1 − β
γ

)} ⊂ k2 .

Let F ⊂ A2 be the set formed by the algebra structures on the vector space V listed
in Table 1. his section is devoted to the proof of the following theorem that gives a
classiûcation of two-dimensional algebras over k up to isomorphism.

heorem 3.3 Any non-trivial two-dimensional k-algebra can be represented by a

unique structure from F.

In other words, heorem 3.3 states that A2 = ⋃µ∈F O(µ) ∪ {k2} and that, if
µ, λ ∈ F are diòerent structures, then O(µ)∩O(λ) = ∅. Whenever an algebra named
A appears in this section,we suppose that it is represented by some structure fromA2
with structure constants cki j (i , j, k = 1, 2). According to Corollary 3.2, it suõces to
consider each of the classesA–E separately. It is not diõcult to show that the letter in
the name of an algebra from F corresponds to its class in each case. his will follow
also from our proofs.

Lemma 3.4 If Abelongs to the classA, then it can be represented by a unique structure

from the set

(3.1) {A1(α)}α∈k ∪ {A2} ∪ {A3} ∪ {A4(α)} α∈k≥0 .

Proof Let us represent the algebra A by a structure such that e2e2 = 0. It is easy
to see that A belongs to the class A if and only if xt = e1 + te2 and x2

t are linearly
independent for any t ∈ k. Since

x
2
t = ( c111 + (c112 + c121)t) e1 + ( c211 + (c212 + c221)t) e2 ,

xt and x2
t are linearly independent if and only if

0 /=
RRRRRRRRRRRRR

c111 + (c112 + c121)t c211 + (c212 + c221)t
1 t

RRRRRRRRRRRRR
= (c112 + c121)t2 + (c111 − c212 − c221)t − c211 .

Since by our assumption xt and x2
t are linearly independent for any t ∈ k, we have

c112 + c121 = 0, c111 = c212 + c221, and c211 /= 0.
Now we have four cases.

● c112 = 0, c111 ≠ 0. Considering the basis e1
c111
, c211 e2
(c111)2

of V , one can check that A can be

represented by A1( c
2
21
c111

) .
● c112 = 0, c212 = −c221 /= 0. Considering the basis e1

c212
, c211 e2
(c212)2

of V , one can check that A
can be represented by A2.

● c112 = c212 = c221 = 0. Considering the basis e1, c211e2 of V , one can check that A can be
represented by A3.
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● c112 ≠ 0. Let a ∈ k∗ be such that c211c112a2 = 1 and c111a ∈ k≥0. Considering the basis
a( e1 − c221

c112
e2) , e2c112 of V , one can check that A can be represented by A4(c111a).

It remains to prove that any two diòerent structures from the set (3.1) represent
non-isomorphic algebras. First, note that dim(A2)2 = dim(A3)2 = 1 while dim
(A1(α))2 = dim(A4(α))2 = 2 for any α ∈ k. We also have A2 /≅ A3, because A3
has a nonzero annihilator.

Suppose that A is represented by the structure A1(α) for some α ∈ k. hen there
exists x ∈ A such that x2 = 0, xA+Ax ⊂ ⟨x⟩, and αxy = (1−α)yx for any y ∈ A. Such
an element does not exist in A4(β) for any β ∈ k nor in A1(β) for any β ∈ k ∖ {α}.

Suppose that A is represented by the structure A4(α) for some α ∈ k≥0. Suppose
that the structure constants of A in the basis E1, E2 equal the structure constants of
A4(β) for some β ∈ k≥0. Since E2E2 = 0 and E2E1 = −E1, it is easy to see that E2 = e2
and E1 = ae1 for some a ∈ k∗. hen we obtain from the equality E1E1 = βE1 + E2 that
a = ±1 and β = ±α. Since α, β ∈ k≥0, we have β = α. ∎

Lemma 3.5 If Abelongs to the classB, then it can be represented by a unique structure

from the set

(3.2) {B1(α)}α∈k ∪ {B2(α)}α∈k ∪ {B3}.

Proof Let us represent the algebra A by a structure such that e1e1 = e2e2 = 0. For
s, t ∈ k, let us deûne xs ,t = se1+ te2. Suppose that there are s, t ∈ k∗ such that 0 = x2

s ,t =
st(e1e2 + e2e1). hen e1e2 + e2e1 = 0 and A is anticommutative. It is easy to see that
any two-dimensional anticommutative algebra either has the trivial multiplication or
can be represented byB3 (note that by our deûnition A is anticommutative if and only
if x2 = 0 for any x ∈ A).

Suppose now that x2
s ,t /= 0 for any s, t ∈ k∗. Since A does not have idempotents,

xs ,t and x2
s ,t are linearly independent for s, t ∈ k∗. It is easy to check that xs ,t and

x2
s ,t are linearly dependent for s = c112 + c121, t = c212 + c221. Hence, c112 + c121 = 0 or
c212 + c221 = 0. Without loss of generality we may assume that c212 + c221 = 0. Since A is
not anticommutative, we have c112 + c121 /= 0 in this case.

If c212 /= 0, then, considering the basis e1
c212
, e2
c112+c

1
21

of V , one can check that A can be

represented by B1( c121
c112+c

1
21
) . If c212 = 0, then, considering the basis e1, e2

c112+c
1
21

of V , one

can check that A can be represented by B2( c121
c112+c

1
21
) .

It remains to prove that any two diòerent structures from the set (3.2) represent
non-isomorphic algebras. Since B3 is anticommutative, it is not isomorphic to other
algebras from (3.2). Note also that dim(B1(α))2 = 2 > 1 = dim(B2(β))2 for any
α, β ∈ k.

Suppose that A is represented by the structure Bi(α) for some α ∈ k and i = 1, 2.
Suppose that the structure constants of A in the basis E1, E2 equal the structure con-
stants of Bi(β) for some β ∈ k. Since E1E1 = E2E2 = 0, we have either E1 = ae1, E2 =
be2 or E1 = ae2, E2 = be1 for some a, b ∈ k∗. Since E1E2 +E2E1 = E1,we have E1 = ae1
and E2 = e2. hen we get β = α from the equality E1E2 = (1 − β)E1 + (2 − i)E2. ∎
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Lemma 3.6 If A belongs to the class C, then it can be represented by C(α, β) for a
unique pair (α, β) ∈ k × k≥0.

Proof Let us represent the algebra A by a structure such that e2e2 = e2. It is easy
to see that A belongs to the class C if and only if xt = e1 + te2 and x2

t are linearly
independent for any t ∈ k. Since

x
2
t = (c111 + (c112 + c121)t)e1 + (c211 + (c212 + c221)t + t

2)e2 ,
xt and x2

t are linearly independent if and only if

0 /=
RRRRRRRRRRRRR

c111 + (c112 + c121)t c211 + (c212 + c221)t + t2

1 t

RRRRRRRRRRRRR
= (c112 + c121 − 1)t2 + (c111 − c212 − c221)t − c211 .

Since by our assumption xt and x2
t are linearly independent for any t ∈ k, we have

c112 + c121 = 1, c111 = c212 + c221, and c211 /= 0.
Let a be such an element of k∗ that c211a2 = 1 and a(c212 − c111c121) ∈ k≥0. Consid-

ering the basis a(e1 − c111e2), e2 of V , one can check that A can be represented by
C( c121 , a(c212 − c111c121)) .

Suppose that A is represented by the structure C(α, β) for some pair (α, β) ∈ k ×
k≥0. Suppose that the structure constants of A in the basis E1, E2 equal the structure
constants of C(γ, δ) for some (γ, δ) ∈ k × k≥0. Since E2E2 = E2 and C(α, β) has a
unique idempotent, we have E2 = e2. We get E1 = ±e1 from the equality E1E1 = E2.
hen γ = α and δ = ±β. Since β, δ ∈ k≥0, we have (γ, δ) = (α, β). ∎

Lemma 3.7 If Abelongs to the classD, then it can be represented by a unique structure

from the set

(3.3) {D1(α, β)}(α ,β)∈U ∪ {D2(α, β)}(α ,β)∈k2∖T ∪ {D3(α, β)}(α ,β)∈k2∖T .

Proof Let us represent the algebra A by a structure such that e1e1 = e1 and e2e2 = 0.
Let us consider the following cases.

● c112 + c121 /= 0. If c212 + c221 /= 0, then one can check that

1
c212 + c221

( e1 +
c212 + c221 − 1
c112 + c121

e2)

is an idempotent that is not equal to e1. hus, c212 + c221 = 0. If ( c112
c112+c

1
21
, c212) ∈ U,

then, considering the basis e1, e2
c112+c

1
21

of V , one can check that A can be represented

byD1( c112
c112+c

1
21
, c212) . If (

c112
c112+c

1
21
, c212) /∈ U, then

( c121

c112 + c121
+ c212 , c212) ∈ U

and, considering the basis e1, e1 − e2
c112+c

1
21

of V , one can check that A can be repre-

sented byD1( c121
c112+c

1
21
+ c212 , c212) .
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● c112 = −c121 /= 0. Considering the basis e1, e2
c112

of V , one can check that A can be
represented byD3(c212 , c221). Since e1 + e2 is not idempotent, (c212 , c221) /∈ T.

● c112 = c121 /= 0. hen one can check that A is represented byD2(c212 , c221). Since e1 + e2
is not idempotent, (c212 , c221) /∈ T.

It remains to prove that any two diòerent structures from the set (3.3) represent
non-isomorphic algebras.

Suppose that A is represented by the structure D1(α, β) for some pair (α, β) ∈ U.
Note that e2e2 = (e1−e2)2 = 0 inD1(α, β)while the structuresD2(γ, δ) andD3(γ, δ)
have a unique one-dimensional subspace of 2-nil elements for any pair (γ, δ) ∈ k2.
Suppose now that the structure constants of A in the basis E1, E2 equal the structure
constants ofD1(γ, δ) for some pair (γ, δ) ∈ U. Since E1 is an idempotent andD1(α, β)
has a unique idempotent, we have E1 = e1. Since E2E2 = 0, we have either E2 = ae2
or E2 = a(e1 − e2) for some a ∈ k∗. We obtain a = 1 in both cases from the equality
E1E2 + E2E1 = E1. hen we have δ = β and either γ = α or γ = 1 − α + β. Since
(α, β), (γ, δ) ∈ U, we have (γ, δ) = (α, β).

Suppose that A is represented by the structureD2(α, β) for some pair (α, β) ∈ k2.
Note that A has an element x such that x2 = 0 and xA+Ax ⊂ ⟨x⟩whileD3(γ, δ) does
not have such an element for any pair (γ, δ) ∈ k2 because any square zero element of
D3(γ, δ) is linearly dependentwith e2. Suppose now that the structure constants of A
in the basis E1, E2 equal the structure constants ofD2(γ, δ) for some pair (γ, δ) ∈ k2.
Since E1 is an idempotent and D2(α, β) has a unique idempotent, we have E1 = e1.
Since E2E2 = 0, we have E2 = ae2 for some a ∈ k∗. hen it is easy to see that (γ, δ) =
(α, β).
Finally, suppose that A is represented by the structure D3(α, β) for some pair

(α, β) ∈ k2. Suppose that the structure constants of A in the basis E1, E2 equal the
structure constants of D3(γ, δ) for some pair (γ, δ) ∈ k2. Since E1 is an idempotent
and D3(α, β) has a unique idempotent, we have E1 = e1. Since E2E2 = 0, we have
E2 = ae2 for some a ∈ k∗. hen it is easy to see that a = 1 and (γ, δ) = (α, β). ∎

As a consequence of the proofs of Lemmas 3.4–3.7 we can describe the automor-
phism groups of the algebras of the classes A–D.

Corollary 3.8 (i) Aut(A1(α)) ≅ Aut(A2) is isomorphic to the additive group of k.
(ii) Aut(A3) is isomorphic to the subgroup of GL2(k) formed bymatrices of the form

( a 0
b a2 ), where a ∈ k∗ and b ∈ k.

(iii) Aut(A4(α)) ≅ C2 if α = 0 and chark /= 2; Aut(A4(α)) is trivial if either α ∈ k∗
or α = 0 and chark = 2.

(iv) Aut(B1(α)) is trivial; Aut(B2(α)) ≅ k∗.
(v) Aut(B3) is isomorphic to the subgroup of GL2(k) formed bymatrices of the form

( 1 0
b a ), where a ∈ k∗ and b ∈ k.

(vi) Aut(C(α, β)) ≅ C2 if β = 0 and chark /= 2; Aut(C(α, β)) is trivial if either

β ∈ k∗ or β = 0 and chark = 2.
(vii) Aut(D1(α, β)) ≅ C2 if β = 2α − 1 and Aut(C(α, β)) is trivial if β /= 2α − 1.
(viii) Aut(D2(α, β)) ≅ k∗ and Aut(D3(α, β)) is trivial if α + β /= 1.
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In particular,

dimAut(A4(α)) = dimAut(B1(α)) = dimAut(C1(α, β))
= dimAut(D1(α, β)) = dimAut(D3(α, β)) = 0,

dimAut(A1(α)) = dimAut(A2) = dimAut(B2(α)) = dimAut(D2(α, β)) = 1,
dimAut(A3) = dimAut(B3) = 2.

Proof (i)–(iii). Any structure of the class A has a unique subspace of 2-nil elements
generated by e2. hus, any automorphism of such an algebra sends e1 and e2 to ae1 +
be2 and ce2, respectively, where a, c ∈ k∗ and b ∈ k. It is easy to check that a = c = 1
for A1(α) and A2; c = a2 for A3; a = ±1, b = 0, and c = 1 for A4(0); and a = c = 1,
b = 0 for A4(α) if α /= 0.

(iv) It follows from the proof of Lemma 3.5 that any automorphism of the algebra
Bi(α), where i ∈ {1, 2}, sends e1 and e2 to ae1 and e2, respectively, for some a ∈ k∗. It
is easy to see that a = 1 for i = 1 and a can be arbitrary for i = 2.

(v) Since B3(V ,V) is generated by e2, any automorphism of B3 sends e1 and e2 to
ae1 + be2 and ce2, respectively, where a, c ∈ k∗ and b ∈ k. It is easy to see that such a
map is an automorphism if and only if a = 1.

(vi) It follows from the proof of Lemma 3.6 that any automorphism of the algebra
C(α, β) sends e1 and e2 to ±e1 and e2, respectively. It is easy to see that themap that
sends e1 and e2 to −e1 and e2 respectively is an automorphism if and only if β = 0 or
chark = 2.

(vii) It follows from the proof of Lemma 3.7 that any automorphism of the algebra
D1(α, β) sends e1 to e1 and sends e2 either to e2 or e1− e2. It is easy to see that themap
that sends e1 and e2 to e1 and e1 − e2, respectively, is an automorphism if and only if
β = 2α − 1.

(viii) It follows from the proof of Lemma 3.7 that any automorphismof the algebra
D2(α, β) sends e1 and e2 to e1 and ae2 respectively for some a ∈ k∗. It follows from
the same proof that any automorphism of the algebraD3(α, β) is trivial. ∎

We will ûnish the proof ofheorem 3.3 in the next section devoted to the algebras
of the class E.

4 Algebras of the Class E

In this section we consider the algebras of the class E. It is clear that such an algebra
is isomorphic to E1(Γ) for some Γ ∈ k4. First, we describe isomorphisms inside this
set and, thus, ûnish the proof ofheorem 3.3.

Lemma 4.1 E1(Γ1) ≅ E1(Γ2) if and only if one of the following conditions holds.

(i) Γ1 = Γ2;

(ii) C1(Γ1) = C2(Γ2) and C2(Γ1) = C1(Γ2);
(iii) C1(Γ1),C1(Γ2),C2(Γ1),C2(Γ2) ∈ T, C1(Γ1) /= C2(Γ1), C1(Γ2) /= C2(Γ2);
(iv) C1(Γ2),C2(Γ2) /∈ T, D(Γ2) /= 0, and there is some σ ∈ S3 such that Ci(Γ1) =

Cσ(i)(Γ2) for i ∈ {1, 2, 3}.
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Proof Suppose that g ∈ GL(V) is such that g ∗ E1(Γ1) = E1(Γ2). hen ge1 and
ge2 are two linearly independent idempotents of E1(Γ2). Let us describe all nonzero
idempotents of this algebra. Let Γ2 = (α, β, γ, δ) and u = xe1 + ye2 be some element
of V . hen E1(Γ2)(u, u) = u if and only if

x = x
2 + (α + γ)xy, y = (β + δ)xy + y

2 .

he solutions (x , y) = (0, 0), (1, 0), (0, 1) give the obvious idempotents 0, e1 and e2.
All the other pairs (x , y) satisfying the obtained equations are the solutions of the
system of linear equations

⎧⎪⎪⎨⎪⎪⎩

(β + δ)x + y = 1,
x + (α + γ)y = 1

with the additional conditions x /= 0 and y /= 0. Let us consider the following cases.
● C1(Γ2),C2(Γ2) ∈ T, i.e., α + γ = β + δ = 1. In this case E1(Γ2)(u, u) = u if and only

if either u = 0 or x + y = 1. hus, ge1 = ae1 + (1− a)e2 and ge2 = be1 + (1− b)e2 for
two diòerent a, b ∈ k. One can check that in this case

Γ1 = ((1 − b)α + bδ, aβ + (1 − a)γ, bβ + (1 − b)γ, (1 − a)α + aδ) .
IfC1(Γ2) = C2(Γ2), i.e., (β, δ) = (γ, α), thenwe get Γ1 = Γ2. IfC1(Γ2) /= C2(Γ2), then
the formula above gives all the possible Γ1 with C1(Γ1),C2(Γ1) ∈ T, and C1(Γ1) /=
C2(Γ1).

● One of the following three conditions holds.
– C1(Γ2) ∈ T, C2(Γ2) /∈ T, i.e., β + δ = 1, α + γ /= 1.
– C1(Γ2) /∈ T, C2(Γ2) ∈ T, i.e., β + δ /= 1, α + γ = 1.
– C1(Γ2),C2(Γ2) /∈ T, D(Γ2) = 0, i.e., β + δ, α + γ /= 1 and our system has zero
determinant.

It is easy to see that in all of these cases our system of linear equations does not
have solutions satisfying the additional conditions, i.e., e1 and e2 are all the nonzero
idempotents of E1(Γ2). hus, either ge1 = e1, ge2 = e2, and Γ1 = Γ2 or ge1 = e2,
ge2 = e1, C1(Γ1) = C2(Γ2), and C2(Γ1) = C1(Γ2).

● C1(Γ2),C2(Γ2) /∈ T,D(Γ2) /= 0, i.e., β + δ /= 1, α + γ /= 1 and our system has nonzero
determinant. In this case (x , y) = ( α+γ−1

D(Γ2)
, β+δ−1
D(Γ2)

) is the unique solution of our
system of linear equations. Hence, e1, e2, and e3 = α+γ−1

D(Γ2)
e1 + β+δ−1

D(Γ2)
e2 are all the

nonzero idempotents of E1(Γ2). hus, there is σ ∈ S3 such that ge i = eσ(i) for
i ∈ {1, 2}. hen direct calculations show that Ci(Γ1) = Cσ(i)(Γ2) for i ∈ {1, 2, 3}. ∎

Now we can ûnish the proof ofheorem 3.3.

Proof of Theorem 3.3. By Corollary 3.2, the algebra A belongs to one of the classes
A–E and the class containing A is unique. If A belongs to one of the classesA–D, then
the statement of the theorem follows from Lemmas 3.4–3.7.

Suppose that A belongs to the class E. hen A can be represented by E1(Γ) for
some Γ = (α, β, γ, δ) ∈ k4. Now we have the following.
● If C1(Γ) = C2(Γ) ∈ T, then E1(Γ) = E4(β).
● If C1(Γ), C2(Γ) ∈ T and C1(Γ) /= C2(Γ), then E1(Γ) ≅ E1(1, 1, 0, 0) = E4 by

Lemma 4.1.
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● If C1(Γ) ∈ T and C2(Γ) /∈ T, then E1(Γ) ≅ E1(1 − β, γ, β, α) = E2(β, γ, α) by
Lemma 4.1.

● If C1(Γ) /∈ T and C2(Γ) ∈ T, then E1(Γ) = E2(γ, β, δ).
● If C1(Γ),C2(Γ) /∈ T,D(Γ) = 0 and α + γ ∈ k∗>1, then

E1(Γ) = E3(γ(β + δ), β(α + γ), α + γ) .
● If C1(Γ),C2(Γ) /∈ T,D(Γ) = 0, and α + γ /∈ k∗>1, then, by Lemma 4.1,

E1(Γ) ≅ E1(δ, γ, β, α) = E3(β(α + γ), γ(β + δ), β + δ).
● IfC1(Γ),C2(Γ) /∈ T andD(Γ) /= 0, then there is a unique σ ∈ S3 such that σ−1(C1(Γ),
C2(Γ),C3(Γ)) ∈ Ṽ and we have E1(Γ) ≅ E1(Γ′) by Lemma 4.1, where Γ′ ∈ V is such
that Ci(Γ′) = Cσ(i)(Γ) for i ∈ {1, 2, 3}.

By Lemma 4.1, the structures from the set

{E1(Γ)}Γ∈V ∪ {E2(α, β, γ)}(α ,β ,γ)∈k3∖k×T

∪ {E3(α, β, γ)}(α ,β ,γ)∈k2×k∗>1 ∪ {E4} ∪ {E5(α)}
α∈k

are pairwise non-isomorphic. ∎

As a consequence of the proof of Lemma 4.1 we can describe the automorphism
groups of algebras of the class E.

Corollary 4.2 (i) For Γ ∈ V,
(a) Aut(E1(Γ)) is trivial if C1(Γ) /= C2(Γ),
(b) Aut(E1(Γ)) ≅ C2 if C1(Γ) = C2(Γ) /= (−1,−1),
(c) Aut(E1(−1,−1,−1,−1)) ≅ S3 if chark /= 3.

(ii) Aut(E4) and Aut(E2(α, β, γ)) are trivial for (α, β, γ) ∈ k3 ∖ k × T.

(iii) For (α, β, γ) ∈ k2 × k∗>1, Aut(E3(α, β, γ)) ≅ C2 if γ = −1 and α = β and

Aut(E3(α, β, γ)) is trivial otherwise.

(iv) Aut(E5(α)) is isomorphic to the subgroup of GL2(k) formed by matrices of the

form ( a b
1−a 1−b ), where a, b ∈ k, a /= b.

In particular, we have

dimAut(E1(Γ)) = dimAut(E2(α, β, γ)) = dimAut(E3(α, β, γ))
= dimAut(E4) = 0,

dimAut(E5(α)) = 2.

Proof (i) Any automorphism of E1(Γ) must send e1 and e2 to eσ(1) and eσ(2), re-
spectively, for some σ ∈ S3,where e3 is deûned in the proof of Lemma 4.1. Such amap
is an automorphism if and only if Ci(Γ) = Cσ(i)(Γ) for i = 1, 2. If C1(Γ) /= C2(Γ),
then we have also C3(Γ) /= C1(Γ),C2(Γ) and, hence, only the identical element of S3
determines an automorphism. If C1(Γ) = C2(Γ) /= (−1,−1), then one can check that
C3(Γ) /= C1(Γ),C2(Γ) and, hence, only the identical element of S3 and the element
that swaps e1 and e2 determine automorphisms. If C1(Γ) = C2(Γ) = (−1,−1), then
any σ ∈ S3 determines an automorphism. Note that (−1,−1,−1,−1) ∈ V if and only if
chark /= 3.
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(ii) Follows directly from the proof of Lemma 4.1.
(iii) It follows from the proof of Lemma 4.1 that an automorphism of E3(α, β, γ) is

either trivial or swaps e1 and e2. he last mentionedmap is an automorphism if and
only if γ = −1 and α = β.

(iv) It follows directly from the proof of Lemma 4.1 that automorphisms of E5(α)
are exactly the linear maps that send e1 and e2 to ae1 + (1 − a)e2 and be1 + (1 − b)e2
for two diòerent a, b ∈ k. ∎

Now we will discuss some facts about degenerations of the form A → B, where A
is an algebra of the class E. First of all, let us prove the following lemma.

Lemma 4.3 (i) For any Γ ∈ V and (β, γ) ∈ C(Γ), there exists a degeneration
E1(Γ)→ D2(β, γ).

(ii) For any (α, β, γ) ∈ k3∖k×T, there exists a degeneration E2(α, β, γ)→ D2(β, γ).
(iii) For any (α, δ, є) ∈ k2 × k∗>1 and (β, γ) ∈ C(α, δ, є), there exists a degeneration

E3(α, δ, є)→ D2(β, γ).

Proof he parametrized basis E t
1 = e1, E t

2 = te2 gives the degeneration E1(Γ) →
D2(C1(Γ)) for any Γ ∈ k4. If Γ ∈ V and 1 ≤ i ≤ 3, then, by Lemma 4.1, there exists
Γ′ ∈ k4 such that E1(Γ) ≅ E1(Γ′) and Ci(Γ) = C1(Γ′). Hence, E1(Γ) ≅ E1(Γ′) →
D2(Ci(Γ)) . We also have E2(α, β, γ) = E1(1 − α, β, α, γ) → D2(β, γ) for (α, β, γ) ∈
k3 ∖ k × T and

E3(α, δ, є) = E1((1 − α)є,
δ

є
, αє,

1 − δ
є

)

≅ E1(
1 − δ
є

, αє,
δ

є
, (1 − α)є) → D2(αє, (1 − α)є)) ,D2 (

δ

є
,
1 − δ
є

)

for (α, δ, є) ∈ k2 × k∗>1. ∎

For Γ = (α, β, γ, δ) ∈ k4, let us deûne the following subset ofA2.

G(Γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

c
1
22 = 0; c121 = γc

2
22; c

1
12 = αc222;

( 1 − γ − δ(α + γ)) c212 − ( 1 − α − β(α + γ)) c221
= (β(1 − γ) − δ(1 − α)) c111;

( 1 − α − β(α + γ)) 2
c
2
11c

2
22

= (βc111 − c212)(D(Γ)c212 + ((α − 1)(δ − 1) − βγ)c111) ;

( 1 − γ − δ(α + γ)) 2
c
2
11c

2
22

= (δc111 − c221)(D(Γ)c221 + ((β − 1)(γ − 1) − αδ)c111) ;

( 1 − α − β(α + γ))( 1 − γ − δ(α + γ)) c211c222
= (βc111 − c212)(D(Γ)c221 + ((β − 1)(γ − 1) − αδ)c111) ;

( 1 − α − β(α + γ))( 1 − γ − δ(α + γ)) c211c222
= (δc111 − c221)(D(Γ)c212 + ((α − 1)(δ − 1) − βγ)c111)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

832

https://doi.org/10.4153/S0008414X18000056 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X18000056


he Variety of Two-dimensional Algebras Over an Algebraically Closed Field

Here and further in a deûnition of a subset of A2 we always assume by default that
µ ∈ A2 and cki j (i , j, k ∈ {1, 2}) are structure constants of µ. he following lemma
will allow us to use G(Γ) as a separating set for some non-degenerations. Its proof is
a direct calculation and so it is le� to the reader.

Lemma 4.4 he setG(Γ) is closed upper invariant and contains E1(Γ) for any Γ ∈ k4.

5 Degenerations of Two-dimensional Algebras

In this section we describe all degenerations of two-dimensional algebras. Note that
the results are valid for algebras over an algebraically closed ûeld of arbitrary
characteristic.

heorem 5.1 A2 has the graph of primary degenerations presented in Figure 1.

Proof All primary degenerations that do not follow from Lemma 4.3 are presented
in Table 2. Table 3 describes separating sets for all required non-degenerations and,
thus, ûnishes the proof of the theorem.

he veriûcation of degenerations is an easy direct calculation in each case. An ex-
ample clarifying how to do this can be found in the proof of [21, heorem 3]. he
veriûcation of Table 3 is more diõcult. To clarify how one can achieve it, let us con-
sider the ûrst row of the table. It is easy to prove that A4(α) belongs to the presented
separating set that we denote by R. he fact that R is upper invariant can be checked
by a direct calculation. What exactly one has to check is explained in Section 2. Let
us prove that the orbits of B2(γ), D2(β, γ), and E5(β) do not intersect R. Let λ be
one of these structures. Suppose that the structure constants cki j (i , j, k = 1, 2) of λ
in the basis f1, f2 satisfy the deûning equations of R. hen c122 = c222 = 0, and hence
λ( f2 , f2) = 0. Since R is invariant under the basis rescaling, we may assume that
f2 ∈ {e1 , e2} if λ = B2(γ), f2 = e2 if λ = D2(β, γ), and f2 = e2 − e1 if λ = E5(β). Now
in view of the upper invariance ofR,wemay assume that ( f1 , f2) ∈ {(e1 , e2), (e2 , e1)}
if λ = B2(β, γ), ( f1 , f2) = (e1 , e2) if λ = D2(β, γ), and ( f1 , f2) = (e1 , e2 − e1) if
λ = E5(β). We have the following.
● c112 + c121 = 1 /= 0 if λ = B2(β, γ), f1 = e1, f2 = e2.
● c212 + c221 = 1 /= 0 = c111 if λ = B2(β, γ), f1 = e2, f2 = e1.
● α2c112c

2
11 = 0 /= (c111)2 if either λ = D2(β, γ), f1 = e1, f2 = e2 or λ = E5(β), f1 = e1,

f2 = e2 − e1.
hus, the structure constants of λ in any basis do not satisfy the deûning equations
of R, i.e., O(λ) ∩R = ∅. he other nondegenerations can be considered in the same
manner. ∎

Let us recall that n-dimensional algebra A has a level m if
● there exists a sequence of n-dimensional algebras A0 , . . . ,Am such that A0 = kn ,
Am = A, and, for 0 ≤ i ≤ m − 1, one has A i+1 → A i and A i+1 /≅ A i ;

● if A0 , . . . ,Am+1 is a sequence of algebras such that A0 = kn , Am+1 = A, and A i+1 →
A i for 1 ≤ i ≤ m, then A i+1 ≅ A i for some 1 ≤ i ≤ m.

heorem 5.1 gives us the following partition ofA2 to levels:
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Level Algebra Structures
0 k2

1 A3 ,B3 ,E5(α)
2 A1(α),A2 ,B2(α),D2(α, β),E4
3 A4(α),B1(α),C(α, β),D1(α, β),D3(α, β),E1(Γ),E2(α, β, γ)

Note also that the algebras k2, B3, E4, and E5(α) (α ∈ k) form a closed subset of A2
that has two interesting descriptions. First of all, these are exactly all two-dimensional
algebras that do not degenerate toA3. Secondly, any one-generated subalgebra of such
an algebra is one-dimensional and this property does not hold for other algebras. In
fact, these two descriptions deûne the same set of algebras in a variety of algebras of
any dimension. Note also that E4 is a unique two-dimensional algebra of level two
that does not have non-trivial derivations.

6 Closures for Orbits of Infinite Series

In this sectionwe describe closures of orbits for inûnite series from our classiûcation.
Tomake this description nicer andmore complete,we introduce two additional series
and one additional algebra. For α ∈ k,we introduceD′

2(α) = D2(α,−α) andD′
3(α) =

D3(α,−α). Note that D′
2(∗) ⊂ D2(∗) and D′

3(∗) ⊂ D3(∗). Also we deûne A′4 =
A4(0) ∈ A4(∗). Henceforth for a symbol X, we denote by X(∗) the set formed by all
X(Γ) that are deûned. For example,D2(∗) = {D2(Γ) ∣ Γ ∈ k2}, E3(∗) = {E3(Γ) ∣ Γ ∈
k2 × k∗}.

heorem 6.1 For each row of Table 4, the second column contains all isomorphism

classes of algebras whose orbits lie in the closure of the orbit of the series of algebras

contained in the ûrst column of the same row.

Proof All required degenerations that do not follow from heorem 5.1 are proved
in Table 5. Table 6 describes separating sets for all required non-degenerations and,
thus, ûnishes the proof of the theorem.

Note that the structures B1(α), D1(α, β), and E3(α, β, γ) do not lie in the corre-
sponding separating sets, but the structures

(0 1
1 0) ∗ B1(α), (0 1

1 0) ∗D1(α, β), (1 γ

0 1) ∗ E3(α, β, γ)

satisfy the required conditions. ∎

heorems 5.1 and 6.1 give a lattice of subsets for A2. his lattice is presented in
Figure 2. In this ûgure the le�most set coincides with A2 and sets placed in one col-
umn have the same dimension equal to the number standing above them. Two sets
of dimensions i and i + 1 are connected by an edge if and only if the set of dimen-
sion i + 1 contains the set of dimension i. Moreover, if X ,Y ⊂ A2 correspond to
two vertices of the diagram, then X ∩ Y is equal to the union of all Z ⊂ A2 corre-
sponding to vertices of the diagram such that there exist paths from X to Z and from
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Y to Z going from le� to right. For example, O(D1(∗)) ∩ O(C(∗)) = O(A′4) and
O(D1(∗)) ∩ O(D2(∗)) = O(B2(∗)) ∪ O(D′

2(∗)).

7 Subvarieties Defined by Identities

Now we are going to apply the results of previous sections to develop the varieties of
two-dimensional �exible and bicommutative algebras. In particular, we will describe
the varieties of commutative and anticommutative algebras. Since there exists only
one nontrivial two-dimensional anticommutative algebra, the last mentioned prob-
lem is not of big interest. Note also that in the same way one can recover the results
of [3], where the analogous problems were solved for two-dimensional Novikov and
pre-Lie algebras. Since the classiûcations of �exible and bicommutative algebras de-
pend on the characteristic of the ground ûeld, we assume everywhere in this section
that Charak /= 2.

7.1 Flexible Algebras

By deûnition, an algebra is called �exible if it satisûes the identity (xy)x = x(yx). It
is clear that all commutative and anticommutative algebras are �exible. Using heo-
rem 3.3, one can verify that any two-dimensional �exible algebra is either (anti)comm-

utative or E5(α). For α, β ∈ k, let us introduce the algebras

Dc2(α) = D2(α, α), Ec2(α) = E2( 1
2 , α, α),

Ec3(α) = E3( 1
2 ,

1
2 , α), Ec1 (α, β) = E1(α, β, α, β).

It follows from our classiûcation that any nontrivial two-dimensional commutative
algebra can be represented by a unique structure from the set

{A1( 1
2 ),A3 ,B2( 1

2 ),C(
1
2 , 0),D1( 1

2 , 0),E5(
1
2 )}

∪ {Dc2(α),Ec2(α)}α∈k∖{ 1
2 }
∪ {Ec3(α)}α∈k∗>1 ∪ {Ec1 (α, β)}

(α ,β ,α ,β)∈V

and that any noncommutative �exible algebra can be represented by a structure from
the set {B3} ∪ {Eα}α∈k∖{ 1

2 }
. Using heorem 5.1, we get the graph of primary degen-

erations for the variety of two-dimensional �exible algebras presented in Figure 3.
It is easy to see that the variety of commutative algebras is simply k6, i.e., irre-

ducible. hen it is clear that the variety of �exible algebras has two irreducible com-
ponents. he ûrst component is {O(E5(α))}α∈k = {E5(α),B3 , k2}α∈k. he second
component, formed by all commutative algebras, is equal to the closure of the orbit
of the algebra series Ec1 (∗).

his variety of �exible algebras does not have rigid algebras, and has the lat-
tice of subsets presented in Figure 4. he lattice satisûes the same properties as the
lattice from the previous section. To prove this it is enough to use heorem 6.1
and its proof. he only diòerence is that one must use the parametrized indices
( 1

2 +
t
2 ,

1
2 +

t
2 ), (

1
2 ,

1
2 −

t2
2 ,

1
2 −

t2
2 ), and ( 1

2 ,
1
2 ,

1
t ) in the degenerationsD2(∗)→ A1( 1

2 ),
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E2(∗) → C( 1
2 , 0), and E3(∗) → D1( 1

2 , 0), respectively, to obtain the degenerations
Dc2(∗)→ A1( 1

2 ), E
c
2(∗)→ C( 1

2 , 0), and E
c
3(∗)→ D1( 1

2 , 0).

7.2 Bicommutative Algebras

he variety of bicommutative algebras (see, for example, [10]) is deûned by the iden-
tities x(yz) = y(xz) and (xy)z = (xz)y. It follows from heorem 3.3 that any non-
trivial bicommutative algebra is isomorphic to a unique algebra from the set

{A3 ,B2(0),B2(1),D1(0, 0),D2(1, 1),D2(0, 0),E1(0, 0, 0, 0)}.

Using heorem 5.1, we get the graph of primary degenerations for the variety of two-
dimensional bicommutative algebras. his graph is presented in Figure 5.

hus, the irreducible components in the variety of two-dimensional bicommuta-
tive algebras are

O(D1(0, 0)) = {D1(0, 0),D2(0, 0),B2(0),B2(1),A3 , k2},

O(E1(0, 0, 0, 0)) = {E1(0, 0, 0, 0),D2(0, 0),D2(1, 1),A3 , k2}.

hese components are generated by the rigid bicommutative algebras D1(0, 0) and
E1(0, 0, 0, 0) and all have dimension 4.

Appendix A. Tables.

Table 1

A1(α), α ∈ k e1 e1 = e1 + e2 , e1 e2 = αe2 , e2 e1 = (1 − α)e2 , e2 e2 = 0

A2 e1 e1 = e2 , e1 e2 = e2 , e2 e1 = −e2 , e2 e2 = 0

A3 e1 e1 = e2 , e1 e2 = 0, e2 e1 = 0, e2 e2 = 0

A4(α), α ∈ k≥0 e1 e1 = αe1 + e2 , e1 e2 = e1 + αe2 , e2 e1 = −e1 , e2 e2 = 0

B1(α), α ∈ k e1 e1 = 0, e1 e2 = (1 − α)e1 + e2 , e2 e1 = αe1 − e2 , e2 e2 = 0

B2(α), α ∈ k e1 e1 = 0, e1 e2 = (1 − α)e1 , e2 e1 = αe1 , e2 e2 = 0

B3 e1 e1 = 0, e1 e2 = e2 , e2 e1 = −e2 , e2 e2 = 0

C(α , β), (α , β) ∈ k × k≥0 e1 e1 = e2 , e1 e2 = (1 − α)e1 + βe2 , e2 e1 = αe1 − βe2 , e2 e2 = e2

D1(α , β), (α , β) ∈ U e1 e1 = e1 , e1 e2 = (1 − α)e1 + βe2 , e2 e1 = αe1 − βe2 , e2 e2 = 0

D2(α , β), (α , β) ∈ k2 ∖T e1 e1 = e1 , e1 e2 = αe2 , e2 e1 = βe2 , e2 e2 = 0

D3(α , β), (α , β) ∈ k2 ∖T e1 e1 = e1 , e1 e2 = e1 + αe2 , e2 e1 = −e1 + βe2 , e2 e2 = 0

E1(α , β , γ , δ), (α , β , γ , δ) ∈ V e1 e1 = e1 , e1 e2 = αe1 + βe2 , e2 e1 = γe1 + δe2 , e2 e2 = e2

E2(α , β , γ),

(α , β , γ) ∈ k3 ∖ k ×T

e1 e1 = e1 , e1 e2 = (1 − α)e1 + βe2 , e2 e1 = αe1 + γe2 , e2 e2 = e2

E3(α , β , γ),

(α , β , γ) ∈ k2 × k∗>1
e1 e1 = e1 , e1 e2 = (1 − α)γe1 +

β

γ
e2 , e2 e1 = αγe1 +

1−β
γ
e2 , e2 e2 = e2

E4 e1 e1 = e1 , e1 e2 = e1 + e2 , e2 e1 = 0, e2 e2 = e2

E5(α), α ∈ k e1 e1 = e1 , e1 e2 = (1 − α)e1 + αe2 , e2 e1 = αe1 + (1 − α)e2 , e2 e2 = e2
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Table 2
degenerations parametrized bases
A1(α)→ A3 E t

1 = te1 E t
2 = t2e2

A1(α)→ E5(α) E t
1 = e1 E t

2 = e1 + t−1e2

A2 → A3 E t
1 = te1 E t

2 = t2e2

A2 → B3 E t
1 = e1 E t

2 = t−1e2

A4(α)→ A2 E t
1 = te1 − e2 E t

2 = t2e2

B1(γ)→ A2 E t
1 = e1 + te2 E t

2 = −t2e2
B1(γ)→ B2(γ) E t

1 = te1 E t
2 = e2

B2(γ)→ A3 E t
1 = e1 + te2 E t

2 = te1

C(α, β)→ A1(α) E t
1 = te1 + e2 E t

2 = t2e2

D1(α, β)→ B2(α) E t
1 = te1 E t

2 = e2
D1(α, β)→ B2(1 − α + β) E t

1 = te2 E t
2 = e1 − e2

D1(α, β)→ D2(β,−β) E t
1 = e1 E t

2 = te2

D2(β, γ)→ A3 E t
1 = te1 + te2 E t

2 = t2e1 + (β + γ)t2e2
D3(β, γ)→ A2 E t

1 = t
1−β−γ e1 − e2 E t

2 = te2

D3(β, γ)→ D2(β, γ) E t
1 = e1 E t

2 = te2

E2(α, β, γ)→ A1(α) E t
1 = te1 + e2 E t

2 = (1 − β − γ)t2e1
E3(α, δ, є)→ B2 ( 1−δ−(1−α)є

1−є ) E t
1 = te1 E t

2 = єe1−e2
є−1

E4 → B3 E t
1 = e1 − e2 E t

2 = te2

E4 → E5(α) E t
1 = αe1 + (1 − α)e2 E t

2 = (α − t)e1 + (1 − α + t)e2

Table 3
non-degenerations separating sets

A4(α) /→ B2(γ),D2(β , γ), E5(β)
⎧⎪⎪
⎨
⎪⎪⎩

µ
RRRRRRRRRRR

c122 = c
2
22 = c

1
12 + c

1
21 = 0, c212 + c

2
21 = c

1
11 ,

α2 c112 c
2
11 = (c

1
11)

2

⎫⎪⎪
⎬
⎪⎪⎭

B1(γ) /→ B2(β) (β ≠ γ),D2(β , δ), E5(α),
⎧⎪⎪
⎨
⎪⎪⎩

µ
RRRRRRRRRRR

c122 = c
2
22 = 0, c212 + c

2
21 = −c

1
11 ,

c211(c
1
21 + c

1
12) = −(c

1
11)

2 , γc112 = (1 − γ)c121

⎫⎪⎪
⎬
⎪⎪⎭

C(α , β) /→ B2(γ), B3 ,D2(γ , δ), E5(γ) (γ ≠ α)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

µ

RRRRRRRRRRRRRRRR

c122 = 0, c221 + c
2
12 = c

1
11 ,

c121 = αc
2
22 , c

1
12 = (1 − α)c

2
22 ,

(αc221 − (1 − α)c
2
12)

2
= β2 c211 c

2
22

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

D1(α , β) /→
B2(γ) (γ /∈ {α , 1 − α + β}), B3 ,
D2(γ , δ) ( (γ , δ) ≠ (β , −β)) , E5(γ)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

µ

RRRRRRRRRRRRRRRR

c122 = c
2
22 = 0, αc112 = (1 − α)c

1
21 ,

(α − β)c212 − (1 − α + β)c
2
21 = βc

1
11 ,

c111(c
2
12 + c

2
21) = c

2
11(c

1
12 + c

1
21),

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

D3(β , γ) /→ B2(δ),D2(δ , є) ( (δ , є) ≠ (β , γ)) , E5(α)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

µ

RRRRRRRRRRRRRRRR

c122 = c
2
22 = c

1
12 + c

1
21 = 0,

c212 + c
2
21 = (β + γ)c111 ,

(1 − β − γ)(c212 − βc
1
11)c

1
11 = c

2
11 c

1
12

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

E1(Γ) /→ B2(γ), B3 ,D2(β , γ) ( (β , γ) /∈ C(Γ)) , E5(α) G(Γ)

E2(α , β , γ) /→
B2(δ), B3 ,D2(δ , є) ( (δ , є) ≠ (β , γ)) ,
E5(δ) (δ ≠ α)

G(1 − α , β , α , γ)

E3(α , δ , є) /→
B2(γ) (γ /=

1−δ−(1−α)є
1−є ) , B3 ,

D2(β , γ) ( (β , γ) /∈ C(α , δ , є)) , E5(γ)
G ((1 − α)є , δ

є
, αє , 1−δ

є
)

E4 /→ A3 {µ ∣ c122 = c
2
11 = 0, c112 + c

1
21 = c

2
22 , c

2
12 + c

2
21 = c

1
11 }
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Table 4
A1(∗) A1(∗),A2 ,A3 ,B3 , E5(∗), k2

A4(∗) A1(∗),A2 ,A3 ,A4(∗),B3 , E4 , E5(∗), k2

B1(∗) A2 ,A3 ,A′4 ,B1(∗),B2(∗),B3 , k2

B2(∗) A2 ,A3 ,B2(∗),B3 , k2

C(∗) A1(∗),A2 ,A3 ,A4(∗),B3 ,C(∗), E4 , E5(∗), k2

D1(∗) A2 ,A3 ,A′4 ,B1(∗),B2(∗),B3 ,D1(∗),D′2(∗),D′3(∗), k2

D2(∗) A1(∗),A2 ,A3 ,B2(∗),B3 ,D2(∗), E5(∗), k2

D′2(∗) A2 ,A3 ,B3 ,D′2(∗), k2

D3(∗) A1(∗),A2 ,A3 ,A4(∗),B1(∗),B2(∗),B3 ,D2(∗),D3(∗), E4 , E5(∗), k2

D′3(∗) A2 ,A3 ,A′4 ,B3 ,D′2(∗),D′3(∗), k2

E1(∗) A2

E2(∗) A1(∗),A2 ,A3 ,A4(∗),B1(∗),B2(∗),B3 ,C(∗),D2(∗),D3(∗), E2(∗), E4 , E5(∗), k2

E3(∗) A1(∗),A2 ,A3 ,A4(∗),B1(∗),B2(∗),B3 ,D1(∗),D2(∗),D3(∗), E3(∗), E4 , E5(∗), k2

E5(∗) B3 , E5(∗), k2

Table 5
degenerations parametrized bases parametrized indices

A1(∗)→ A2 E t
1 = te1 , E t

2 = t2e2 є(t) = 1
t

A4(∗)→ A1(α) E t
1 = te1 + (1 − α)e2 , E t

2 = t2e2 є(t) = 1
t

A4(∗)→ E4 E t
1 = te1 , E t

2 = te1 + e2 є(t) = 1
t

B1(∗)→ A′4 E t
1 = −t−1e1 + te2 , E t

2 = −t2e2 є(t) = 1
t2

B2(∗)→ A2 E t
1 = e1 + te2 , E t

2 = −t2e2 є(t) = 1
t

C(∗)→ A4(α) E t
1 = te1 + αe2 , E t

2 = t2e2 є(t) = (− 1
t2 ,

α(1+t2)
t3 )

D1(∗)→ B1(α) E t
1 = te1 , E t

2 = e2 є(t) = (α, 1
t )

D1(∗)→ D′
3(α) E t

1 = e1 , E t
2 = te2 є(t) = (− 1

t , α)
D2(∗)→ A1(α) E t

1 = e1 + e2 , E t
2 = te2 є(t) = (α + t, 1 − α)

D2(∗)→ B2(α) E t
1 = e2 , E t

2 = te1 є(t) = ( αt ,
1−α
t )

D′
2(∗)→ A2 E t

1 = te1 − e2 , E t
2 = te2 є(t) = 1

t
D3(∗)→ A4(α) E t

1 = αe1 + 1
α t e2 , E

t
2 = e2 є(t) = (1 + t + 1

α2 t ,−
1
α2 t )

D3(∗)→ B1(α) E t
1 = −e2 , E t

2 = te1 є(t) = ( αt ,
1−α
t )

D′
3(∗)→ A′4 E t

1 = te1 − 1
t e2 , E

t
2 = e2 є(t) = − 1

t2

E2(∗)→ C(α, β) E t
1 = t−1e1 − t−1e2 , E t

2 = e2 є(t) = (α, α + βt, 1 − α − βt − t2)
E2(∗)→ D3(α, β) E t

1 = e1 , E t
2 = te2 є(t) = (− 1

t , α, β)
E3(∗)→ D1(α, β) E t

1 = e1 , E t
2 = te2 є(t) = (α, βt ,

1
t )

E3(∗)→ D3(α, β) E t
1 = e1 , E t

2 = −te2 є(t) = ( α+βt , α
α+β ,

1
α+β )

E5(∗)→ B3 E t
1 = te1 , E t

2 = e2 − e1 є(t) = 1
t
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Table 6
non-degenerations separating sets

B1(∗) /→ D′2(α) {µ ∣ c122 = c
2
22 = c

1
12 + c

1
21 = c

1
11 = 0}

C(∗) /→ B2(α),D2(α, β) (α + β /= 1) {µ ∣ c122 = 0, c112 + c
1
21 = c

2
22 , c

2
12 + c

2
21 = c

1
11}

D1(∗) /→ A4(α) (α /= 0),D2(α, β) (α + β ≠ 0), E5(α) {µ ∣ c122 = c
1
12 + c

1
21 = c

1
11 = 0}

D′3(∗) /→ B2(α) {µ ∣ c122 = c
2
22 = c

1
12 + c

1
21 = c

2
12 + c

2
21 = 0}

E2(∗) /→ D1(α, β), E1(Γ) (Γ ∈ V), E3(α, β, γ) (γ /= 1) {µ ∣ c122 = 0, c112 + c
1
21 = c

2
22}

E3(∗) /→ C(α, β), E1(Γ) (Γ ∈ V), E2(α, β, γ) (β + γ /= 1) {µ ∣ c122 = c
2
22 = 0}

Appendix B. Figures.

Figure 1

Figure 2
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Figure 3

Figure 4

Figure 5
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