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Abstract

We harmonize many time-complexity classes dtimef(f(n)) (f(n) > n) with the PR functions

(at and above the elementary level) in a transfinite hierarchy of classes of functions Tα. Class

Tα is obtained by means of unlimited operators, namely: a variant Π of the predicative or safe

recursion scheme, introduced by Leivant, and by Bellantoni and Cook, if α is a successor; and

constructive diagonalization if α is a limit. Substitution (sbst) is discarded because the time

complexity classes are not closed under this scheme. Tα is a structure for the PR functions

finer than Eα, to the point that we haveTε0
= E3 (elementary functions). Although no explicit

use is made of hierarchy functions, it is proved that f(n) ∈ Tα implies f(n) 6 nGα(n), where

Gα belongs to the slow growing hierarchy (of functions) studied, in particular, by Girard and

Wainer.

1 Introduction

1.1 Context

Since 1990 we have been indebted to Leivant (1991) for pointing out the analogy

between: growth of sets, produced by an uncontrolled use of the comprehension

principle (existence of a set for every description of its elements) together with

impredicative definitions (in which the definiendum occurs inside the definiens); and,

on the other side, growth of functions defined by nested recursion. A PR definition

like f(x, y + 1) = h(x, y + 1, f(x, y)) is asking to compute h for a number of times,

depending on the entity f being introduced. After the resource-free characterization

of PTIMEF by Bellantoni and Cook (1992) and Bellantoni (1992), other complexity

classes have been captured by means of variants of Safe Recursion (SR) schemes

(Leivant, 1994; Leivant and Marion, 1995; Bellantoni, 1995; Caporaso et al., 1997,

2000). Many of them reduce the circularity implicit in all recursions by denying the

role of the principal variable to all variables already used as auxiliary in a previous

recursion; they differ from one another in the choice of the initial functions and by

the kind of SR scheme.

In Bellantoni and Niggl (1997), two characterizations of the Grzegorczyk classes

En+3, harmonized with LINSPACEF and, respectively, PTIMEF, are presented, together

with a discussion of earlier results, like Leivant (1993) and Niggl (1998). Their
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classes are defined by closure under SR and substitution (SBST), while the step from

one class to the next is impredicative. A characterization harmonizing LINTIMEF

and PTIMEF with En+3, by means of unlimited operators (a variant of TM’s), can be

found in Caporaso (1996).

1.2 Position of the problem

A unified predicative taxonomy collecting and connecting, under a uniform criterion,

as many computational complexity classes as possible with other classes of recursive

functions is lacking. In addition, little is known about how far can we go if all forms

of uncontrolled circularity are avoided.

A method for getting rid of vicious circles in mathematical theories (analysis, set-

theory) is based on: a simple, safe method; and on a ramified construction by stages,

associated with ordinals – a definition at stage α may use only entities produced at

earlier stages β.

The Grzegorczyk extended hierarchy Eα is an example of ramified (though im-

predicative) construction. A transfinite sequence Eα of Ackermann-like hierarchy

functions is obtained first by putting Eα+1(n + 1) := En+1
α (n) (as usual), and (di-

agonalization) Eλ(n) := Eλ(n)(n). This allows defining the hierarchy Eα of classes of

functions by closure of
⋃
β<α Eβ + Eα under SBST and limited PR (PR6).

Eα, however, is growing too fast for the complexity classes. In addition, we feel

that SBST is incompatible with our aims, since most complexity classes are not closed

under this scheme. At higher levels, it obscures the safe recursion phenomenon: in

Caporaso et al. (1999), we show that all functions in the closure of E2 +nm under SR

are dominated by nn
n

. Hence, this class does not exhaust E3, and we prove elsewhere

that this kind of phenomenon also holds above the elementary functions: SBST is

needed to fill the existing gap between En+3 and the closure of En+2 under SR and a

single application of PR.

In our view, a unified predicative taxonomy should consist of a hierarchy Cα,
obtained by (1) discarding the hierarchy functions, (2) keeping the ramified approach,

(3) replacing PR6 by some sort of SR, and (4) replacing SBST with predicative

scheme(s) compatible with the complexity classes.

1.3 Statement of the result

On a ternary word algebra we define a recursion scheme Π, such that f(x, y, za) =

g(f(x, y, z), y, za) (a = 0, 1, 2); y and z are the only parameter and principal variable

of the recursion; the auxiliary variable x is the place where the previous value

of f is stored. No other variables are admitted, and renaming of z by x is not

allowed. Ternary words are interpreted and handled as tuples in binary modified

form, with the zeroes playing the role of commas. Thus, the parameter and the

principal variable may be encoding a potential infinity of binary variables, and Π is

essentially equivalent to a form of simultaneous SR. In addition to Π we adopt the

following constructive diagonalization scheme ∆: assume that the classes Tλ(n) are
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already defined; function f is defined at λ by ∆ in the enumerator e if

e ∈ Tλ(m); e(n) =d gn e; gn ∈ Tλ(n); f(n) = gn(n) (for some m and all n).

Given some initial constant-time functions, we call inessential SBST (I-SBST) the

restriction of SBST, asking that one of the two operands be an initial function.

Hierarchy Tα is defined by taking, as Tα+1, the closure under I-SBST of the class of

all functions definable by a single Π in Tα; and as Tλ, the closure under I-SBST of

the functions definable by a single diagonalization in functions ∈ Tλ(n).

There is no circularity in the ∆ scheme, which might be regarded as not less

predicative than SR. Thus, we feel that hierarchy Tα might be regarded as a partial

predicative answer from below to the Gödel problem of classifying the recursive

functions.

For 1 6 k < ω we have Tk =DTIMEF(nk) – a strengthening of the previous result

by Leivant (1994) (which captures the even classes DTIMEF(n2k)), that, together with

Caporaso (1996), might be regarded as a contribution to the discussed question of

the robustness of LINTIMEF.

For ω 6 α < ε0 we have Tα =DTIMEF(ncoll(α,n+O(1))), where coll(α, m) (read: the

collapse of α at m) is the result of replacing ω with m in Cantor normal form for α

(for example, Tω2 =
⋃
cDTIMEF((n+ c)(n+c)2

)).

For all α we have Tα =DTIMEF(nGα(n+O(1))), where Gα belongs to the slow growing

hierarchy (of functions) defended (with respect to Eα) by Girard (1987, pp. 329–345)

and thoroughly studied by Girard (1981) and Wainer (1989).

We show that that there is an ordinal ξ (= Bachmann’s φω(0)), such that
⋃
α<ξTα

equals the PR functions.

1.4 Further work

It is known that Eε0
equals the class of all functions provably recursive in PA,

while stronger theories are reached at higher ordinals. One may then ask whether

provably recursive functions exist which are predicatively inaccessible (with respect to

hierarchies like Tα). That is, whether there is an ordinal β and a theory T (Σn-IND,

PA or stronger), such that Eβ equals the class of all T-provably recursive functions,

and properly contains all Tα. A recent result by Weiermann (1999) implies that

at Fefermann’s Γ0 we have TΓ0
= E(PR) (= elementary in Ackermann function).

Studying Tα at higher ordinals requires ordinal notations to be more constructive

than those known to us, and might be a sensible sequel of the present research.

2 Recursion-free functions

2.1 B-words, B-functions and codes

Notation

1. a, b are variables ranging over the alphabets introduced in this paper.
2. B denotes the binary alphabet {1, 2}. B-words denoted by U, . . . , Z are elements

of B∗, i.e. sequences (possibly empty) over B. 0 will denote the empty B-word.

top(X) is the last letter of word X, if any, and is 0 otherwise.
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3. The binary modified form n for n =
∑

(06j6m) bj2
j > 0 (bj = 1, 2) is b0 . . . bm (for

example, 5 = 21).

Definition 1

The initial B-functions are the destructor Ω and the constructors Γb

Ω(Xb) = X; Ω(0) = 0; Γb(X) = Xb;

and the branching Ψb such that

Ψb(X,Y , Z) = if top(X) = b then Y else Z.

All expressions introduced throughout this paper should be thought of as readable

transcriptions of a Polish prefix language over the united alphabet

U := {0, 1, 2, I,Ω,Γb,Ψb,Ξ,Φ,Υ,Π,Π∗,∆, x, y, z, 0, S ,+, φ,×, ◦},
where ◦ is a separator needed in certain special cases. Codes are built-up by

juxtaposition from the codes for the letters of U, univocity being ensured by the

arity associated tacitly with each such letter. For example: (1) α+ β stands for +αβ,

the arity of + is 2 and we set, for all α, β, dα+ βe =d +e dαe dβe ; (2) the code for a

function f defined by a scheme Σ in functions g and h is dΣe dge dhe.

Definition 2

1. Let us write n for 2n+11. The code for number i is i, and the code dae for the

ith letter a of U is i too (for example, dΩe =d 5e = 5 = 261).

2. Let us write 〈E1, . . . , En〉 for dE1
e . . .d En e. If the arity of a ∈ U is n, then

〈a, E1, . . . , En〉 codes the expression aE1 . . . En. Hence, by assigning arity 1 to

the letters of B, and arity 0 to 0, we have dY e = 〈b1, 〈. . . , 〈bm, 0〉〉 . . .〉 for all

Y = b1 . . . bm.

3. If E is a variable defined on a class C of syntactic entities, then EX is the entity

in C coded by X. Thus YX, αX, fX,MX . . . are the B-word, ordinal, function,

TM,. . . coded by X; however, we often write {X} instead of fX .

Throughout the paper, we shall make tacit use of the identities d{X}e = X and

{dfe} = f.

2.2 T-words and T-functions

T denotes the ternary alphabet {0, 1, 2}. T-words denoted by p, q, r, s, t are 0 or

sequences over T+ beginning by 1 or 2. In principle, T-words are ternary numbers.

In practice, we use them to handle tuples of B-words as single objects, according to

the following stipulation.

Notation

1. Given a T-word s of the form Xm0Xm−10 . . . X20X1, where Xm begins by 1 or

2, we call Xi the ith component of s denoted by (s)i, and s is said to have

#(s) := m components. If s is a B-word, then s is its only component; hence

#(s) = 1. If s is 0 then #(s) = 1 and (s)1 = 0. We often display a word s in

this form as Xm, . . . , X1.
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2. We write rpl(X; i; s) for the result of replacing (s)i with X if i 6 #(s); otherwise

rpl(X; i; s) is s.

Example 1

We denote 202 and 200 by 2, 2 and by 2, 0, 0. We display s = 100220 by 1, 0, 22, 0;

we then have rpl(11; 3; s) = 1, 0, 11, 0.

Variables and functions

An n-ary B-function maps (B∗)n (n < ω) into B∗. An n-ary T-function f takes n

T-words (0 < n 6 3) into a T-word. Unlike X, s, X1, s1 . . . which form a potential

infinity of informal variables, x, y, z are three fixed syntactic objects, respectively

called the ‘auxiliary variable’, the ‘parameter’, and the ‘principal variable’. They play

a precise and distinct role in the construction of the T-functions. u, v, w, u1, . . . are

variables defined on the syntactic objects x, y, z. With a notation like f(x, y, z) we

always admit that some of the indicated variables may be absent (with a bit of

common sense, however). f(s, t, r) is the value of f(x, y, z) when the system of values

s, t, r is assigned to the variables.

Note

The very role of the arguments s, t, r for f(x, y, z) is handling as single objects an

l-ple of variables over B∗, used as initial/auxiliary, an m-ple of parameters, and an

n-ple of recursion variables. Accordingly, f should be regarded as a function defined

on (B∗)l × (B∗)m × (B∗)n rather than on (T+)3. Since the number of arguments of

a function should be defined, an intended number of components is always assigned

implicitly to the arguments of a T-function (see section 4.3).

Definition 3

The initial T-functions are the identity I(x, y, z) = x; the destructors Ωi(x) and

constructors Γb
i (x) such that for all s we have

Ωi(s) = rpl(Ω((s)i); i; s); Γb
i (s) = rpl(Γb((s)i); i; s).

Definition 4

The initial class T0 of hierarchy Tα is the closure of the initial T-functions under

the following simple schemes:

1. The assignment schemes Ξ[q, u](g) and the renaming schemes Φuw(g) take

function g into the function f which is obtained, respectively, by assigning q

to u, and by replacing u with w (f = g if u is absent in g). The only allowed

renamings are Φxy,Φxz and Φzy . (In the Note in Section 3.1, we see that an

essential point in the present work is that Φzx is not allowed.)

2. Function f = Υ(g, h) is defined by the inessential substitution (I-SBST) scheme

if f is defined by SBST in g and h, provided that g or h is an initial function.

3. Function f = Ψb
i (e, g, h) is defined by the ith branching scheme in functions

e, g, h if for all s, t, r we have that e(s, t, r) = q implies

f(s, t, r) = if i 6 #(q) and top((q)i) = b then g(s, t, r) else h(s, t, r).
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Definition 5

A modifier is an element of the closure of the initial functions under I-SBST. A

function is in normal form if it is a modifier or if it is in the form

f(x, y, z) = if e1 then g1 else if e2 then g2 else . . . gn,

where all gi are modifiers, and all ei are expressions of the form ‘the kth digit of (s)n
is b’, that we will call tests.

It can be easily proved that all functions in T0 can be written in normal form.

3 Recursion and diagonalization

3.1 Predicative recursion

Definition 6

Function f = Π(g, h) is defined by the recursion scheme Π in the basis function

g(x, y, z) and in the step function h(x, y, z) if we have{
f(s, t, a) = g(s, t, a)

f(s, t, ra) = h(f(s, t, r), t, ra).

Notation

We write Π∗(g) for Π(Φzy(g),Φzy(g)) and we let dΠ∗ e dge code a function in this form

(see the next example for the rationale of this clause).

T(ω) will denote the closure of T0 under Π and the simple schemes. The next

lemma is an analogue for our system of the Bounding Theorem in Bellantoni and

Niggl (1997) and Niggl (1997).

Lemma 7

If f ∈ T(ω) is defined by means of d constructors and b > 0 Π’s, then

|f(s, t, r)| 6 |s|+ d(|t|+ |r|)b.
Proof

Induction on b and on the definition of f. For b = 0 we obviously have |f(s, t, r)| 6
|s|+ d.

Assume b = c + 1, and define n := |t| + |r|. Case 1. f begins with a constructor.

The two induction hypotheses give |f(s, t, r)| 6 |s|+ (d− 1)nb + 1.

Case 2. We may now assume f = Π(g, h) (since otherwise the result follows imme-

diately by the induction hypotheses). We show that we have |f(s, t, r)| 6 |s|+ d|r|nc.
The basis of induction on |r| is shown immediately by the two main induction

hypotheses:

|f(s, t, ra)| = |h(f(s, t, r), t, ra)|
6 |f(s, t, r)|+ d(n+ 1)c by the two main ind. hyp.

6 |s|+ d|r|nc + d(n+ 1)c by the ind. hyp. on |r|
6 |s|+ d(n+ 1)c+1.

q
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Note

Assume given h and a numerical function F such that for all q, t, r we have |h(q, t, r)| 6
|q|+ F(|t|, |r|). One sees immediately from the proof above that f = Π(g, h) implies

|f(s, t, ra)| 6 |f(s, t, r)|+ F(|t|, |ra|).
Example 2

Define a sequence fn (n < ω) of functions by

g0 := Γ1
1; gn+1 := Φzy(fn+1); fn+1 := Π(gn, gn).

We have{
f1(s, t, a) = s1

f1(s, t, ra) = f1(s, t, r)1
;

{
fn+1(s, t, a) = gn(s, t)

fn+1(s, t, ra) = gn(fn+1(s, t, r), t).

Thus, for all B-words s we have f1(s, t, r) = s1|r| and g1(s, t) = s1|t|. An induction on

n and r gives |fn+1(s, t, r)| = |s|+ |t|n|r| and |gn(s, t)| = |s|+ |t|n.
Notice that |dfn e| grows like 2n. Since this would interfere with further develop-

ments (see the conclusion of this example after Definition 12, and the construction

of functions gα in proof of Lemma 24), we observe that functions fn may be written

in the form

f0 := Γ1
1; fn+1 := Π∗(fn) (= Π∗(Π∗(. . . (Π∗(Γ1

1)) . . .)) (n+ 1 times)).

Note

Assume the renaming scheme Φzx is available, and let functions hn be obtained by

replacing Φzy by Φzx in the functions gn above. Since f1 may be regarded as a sum

in unary, we see that h2(s, t, ra) is doubling its value for r, and therefore needs an

exponential space. Functions hn are growing like functions En of the fast-growing

hierarchy reported in section 3.5. Thus, forbidding Φzx is essentially equivalent to the

semicolon used to keep x dormant (Simmons, 1988) or safe (Bellantoni and Cook,

1992).

3.2 Ordinals

Notation

1. Greek small letters are ordinal numbers; λ and µ are limit ordinals. λn or λ(n)

is the nth element of the Fundamental Sequence (FS) assigned to λ = sup(λn)

by the assignment of FS’s of the next definition.

2. Fn(E, . . .) denotes the nth iterate of F at E, i.e. F0(E, . . .) = E and Fn+1(E, . . .) =

F(Fn(E, . . .), . . .).

Definition 8

Define simultaneously the n-critical ordinals φn(α) and an assignment of FS’s by
φ0(α) = ωα

φn+1(0) = supm(φmn (0))

φn+1(β + 1) = supm(φmn (φn+1(β) + 1))

φn(λ) = supm(φn(λm)) (thus (ωλ)x = ωλx );

the other FS’s are given by (ωα+1)m = ωα · m; (λ+ µ)m = λ+ µm.
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Example 3

Writing ω0(α) for α and ωn+1(α) for ωωn(α), we have φ1(0) = sup(ωm(0)) = ε0;

φ1(1) = sup(ωm(ε0 + 1)) = ε1; and φ2(0) = sup(ε0, εε0
, εεε0 , . . .).

Ordinals are coded as follows: d0e codes 0; dα+ 1e := 〈S, α〉;d α+ β e = 〈+, α, β〉;
dα · ne := 〈×, α, n〉;d φmn (α)e := 〈φ, n, m, α〉.

The following lemma allows us to move in polynomial time from the code for a

limit ordinal to the code for the nth element of its FS.

Lemma 9

1. A poly-time TM FS can be defined such that FS (dλe, Y ) =d λ|Y | e.
2. The poly-time TM’s SC ,LM can be defined, which respectively accept the

codes for the successor and for the limit ordinals.

Proof

1. FS has to parse dλe to find a left/innermost +, × or φ. By scanning the

clauses of Definition 8, we see that we have the worst case (a quadratic time

complexity) when case φ0(φ0(. . . (φ0 · n1) . . .) · nk) · nk+1 has to be handled, since,

for example, we have (ωωω·5·4 · 3)m = ωωω·5·4 · 2 + ωωω·5·3+ωω·4+m

.

2. Immediate.

q

3.3 Unrestricted diagonalization

Definition 10

Assume a limit ordinal λ and a family of classes Cα (α 6 λ) of T-functions. Function

f = ∆u(e, λ) is defined by unrestricted diagonalization of degree m in the enumerator

e(z) at λ if e(z) ∈ Cm and if for all s, t, r we have

f(s, t, r) = {e(r)}(s, t, r); {e(r)} ∈ Cλ(|r|).
Example 2 (continued) We use ∆u for extending to the transfinite the sequence fn.

To this purpose, let us take as Cα the classes Tα of Definition 15. Let Γ[Y ](x) be

the function in T1 such that for all s we have Γ[Y ](s) = Y s. Define in T2 the

function e∗ := Π∗(Γ[dΠ∗ e]). We have{
e∗(s, a) = dΠ∗ es
e∗(s, ra) = dΠ∗ ee∗(s, r) = dΠ∗(Π∗(. . . (Π∗(s)) . . .))e (|r|+ 1 times).

Define further

e0 := Ξ[dΓ1
1
e, x](e∗);

eω(k+1) := Ξ[dfω(k+1)
e, x](e∗);

fω(k+1) := ∆u(eωk, ω(k + 1)).

Claim 1 For all k > 0 we have |fωk(s, t, t)| = |s|+ |t|k|t|.
Proof We show by induction on k that we have (writing c, m, n, l for |r|, |s|, |t|, |q|)

|{eωk(r)}(s, t, q)| = m+ nknnc−1l; (1)
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the claim follows, since, for n = c = l, we then have

|fω(k+1)(s, t, t)| = |{eωk(t)}(s, t, t)| = m+ nknnn−1n = m+ n(k+1)n.

We have {e0(r)} = {e∗(dΓ1
1
e, r)} = fc, and, by the first part of this example,

|fc(s, t, q)| = m+ nc−1l.

Induction on c and l. We have

|{eωk(a)}(s, t, b)| = |Π∗(fωk)(s, t, b)| = |fωk(s, t, t)| = (ind. on k) m+ nkn;

|{eωk(a)}(s, t, qb)| = |fωk({eωk(a)}(s, t, q), t, t)|
= (ind on k and l, since c− 1 = 0) m+ nkn + nknl;

|{eωk(ra)}(s, t, b)| = |Π∗({eωk(r)})(s, t, b)| (by definition of e∗)
= |{eωk(r)}(s, t, t)| = m+ nknnc−1;

|{eωk(ra)}(s, t, qb)| = |{eωk(ra)}(s, t, q)|+ |{eωk(r)}(s, t, t)| (Note 3.1)

= m+ nknnc−1l + nknnc−1.

We now show a function which computes in unary nn
2

. To this purpose, define (here

only, for simplicity, we code by d∆e dee a function in the form ∆u(e, λ)){
e∗∗(s, a) = s

e∗∗(s, ra) = d∆e dΞe e∗∗(s, r) dxe de∗ e
eω2 := Ξ[dfω e, x](e∗∗)
fω2 := ∆(eω2 , ω2).

Claim 2 We have |fω2 (s, t, t)| = |s|+ |t||t|2 .
Proof

Notations as under Claim 1. We show by induction on c that, for all r, q, s, t

{eω2 (r)}(s, t, q) = fωc(s, t, q).

eω2 (a) = Ξ[dfω e, x](e∗∗)(s) =d fω e.
We have

{eω2 (ra)}(s, t, q) = {d∆e dΞ[e∗∗(r), x](e∗)e}(s, t, q) = {d∆(e∗(dfωc)e, z)e}(s, t, q)

(by the induction hypotheses) = {d∆(eωc)
e}(s, t, q) (by definition of eωk) = fω(c+1)(s, t, q)

by def. of fk . q

It is not clear to these authors how far one can go with this approach from

below (ε0 is reached in Caporaso et al. (1999) without making use of the recursion

theorem).

3.4 Restricted diagonalization

Definition 11

The length lh(f) of function f is given by
1 if f is an initial function

|q|+ lh(g) + 1 if f = Ξ[q, u](g)

lh(e) + 1 if f is defined by unrestricted diagonalization in e

2lh(h) + 3 if f = Π∗(h)∑
i lh(gi) + 1 if f = Σ(g1, . . . , gn), with n 6 2, and Σ is an other scheme.
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The degree dg(f) of function f is given by
0 if f is an initial function

sup(m,maxz(dg({e(|z|)}))) if f defined by unrestricted diagonalization of

degree m in e

supi(dg(gi)) if f = Σ(g1, . . . , gn), and Σ is another scheme.

Definition 12

Function f(x, y, z) = ∆(e, λ) is defined by (restricted) diagonalization if its degree is

finite. The code for f = ∆(e, α) is 〈∆, e, α〉.
Example 2 (concluded) All functions of this example are defined by restricted

diagonalization, since they are defined by diagonalizations of degrees6 3 in functions

which enumerate functions whose degrees, in turn, are 6 2.

3.5 A fast-growing and two slow-growing hierarchies

The fast-growing hierarchy Eα and the slow-growing hierarchy Gα mentioned in the

Introduction are the following transfinite sequences of functions:

E0(n) = n+ 1; Eα+1(n) = Enα (n); Eλ(n) = Eλn (n)

G0(n) = 0; Gα+1(n) = Gα(n) + 1; Gλ(n) = Gλn (n).

We now define a variant of the slow-growing hierarchy which better copes with the

complexity classes.

Definition 13

The slow-growing hierarchy Bα(n) is given by

B0(n) = 1; Bα+1(n) = nBα(n); Bλ(n) = Bλn (n).

Note

1. By induction on α < φω(0) one sees that, for β 6 α, we have

Gβ+α(n) = Gβ(n) + Gα(n);Gωα(n) = nGα(n) = Bα(n);Bα+β(n) = Bα(n)Bβ(n).

2. Thus, αk > . . . > α1 implies Bωαk+...+ωα1 = Bωαk (n) · . . . · Bωα1 (n).

3. Hence Bm(n) = nm, Bω·c(n) = ncn, Bωc(n) = nn
c

, Bωc(n) = nn
...n

(c times).

4. On the other hand, we have E1(n) = 2n and E2(n) = 2nn.

Note

The connection between hierarchies Eα(n) and Bα(n) provided by the next lemma

is easily proved via a result by Cichon and Wainer (1983) that we now report. A

two-places variant Fα(n, m) of the fast hierarchy is defined, such that, for all n > 2

we have (Chichon and Wainer, 1983, p. 402)

E2+α(n− 1) 6 Fα(n, n) 6 E2+α(2(n+ 1)2). (2)

Now for all finite α (Chichon and Wainer, 1983, p. 406, since, for all finite α their

fγα equals Fα)

Gφa(α)(n) = Fa(Gα(n), n). (3)

https://doi.org/10.1017/S0956796800003853 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003853


A predicative approach to the classification problem 105

Lemma 14

1. For all a, b < ω and n > 2 we have Bφba(0)(n) 6 E
b+1
a+2(n).

2. For all a, b < ω and n > 2 we have Eba+2(n) 6 Bφ2b
a (0)(n+ b).

Proof

1. We have

Bφba(0)(n) = n
G
φba (0)

(n) 6 Gφ0(φba(0))(n) Note 3.5

6 Gφb+1
a (0)(n) 6 Gφb+1

a (ω)(n)

6 Fa(Gφba(ω)(n), n) Note 3.5, (3)

6 Ea+2(2(Gφba(ω)(n) + 1)2) Note 3.5, (2)

6 E2
a+2(Gφba(ω)(n)) since Ea+2(2(n2 + 1))

6 Ea+2(E2(n)) for n > 2

6 Eba+2(Fa(Gω(n), n)) by repeating for b− 1 times

6 Eba+2(Fa(n, n)) 6 E
b+1
a+2(n) since Gω(n) = n

2. Induction on b. By Note 3.5 and definitions of Ga and Bα, we have

Ea+2(n) 6 Fa(n+ 1, n+ 1)

6 Fa(Gω(n+ 1), n+ 1) 6 Gφa(ω)(n+ 1) 6 Bφa(ω)(n+ 1) 6 Bφ2
a(0)(n+ 1).

We have Eb+1
a+2(n) 6 Eba+2(Bφ2

a(0)(n+1)) (same arguments as under the basis of the

induction)6 Bφ2b
a (0)(Bφ2

a(0)(n+1)+b) (induction hypothesis)6 B
φ

2(b+1)
a (0)(n+b+1).

q

3.6 The hierarchy Tα

The extended Grzegorczyk hierarchy consists of the classes Eα of functions obtained

by closure under PR6 and ordinary SBST of {Eα} ∪⋃β<α Eβ .

We follow here another approach: a hierarchyTα is defined by means of unlimited

operators and, therefore, without any explicit reference to hierarchy functions; the

variant Bα of the slow hierarchy is then used to discuss the size of the elements of

hierarchy Tα.

Definition 15

The hierarchy Tα is given by (see Definition 4 for T0)

1. Tα+1 is the closure of the functions defined by Π in Tα under the simple

schemes.

2. Tλ is the closure of the functions defined by ∆ in Tλn under the simple

schemes.

Sometimes we write T(α) for
⋃
β<αTβ .

3.7 Main result

Notation

DTIMEF∗(f(n)) is the class DTIMEF(f(n+ O(1))).
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Notice that if n · nn is an upper time bound for f, we have f ∈DTIMEF∗(nn),
though f 6∈DTIMEF(nn). However the small classes are not disturbed by the distinc-

tion between DTIMEF∗(f) and DTIMEF(f), since DTIMEF∗(Bm(n))=DTIMEF (Bm(n))

=DTIMEF(nm).

The next theorem holds under the notion of equivalence of Definition 17.

Theorem 16

1. For all α we have DTIMEF∗(Bα(n)) =Tα.

2. For all n we have T(φn+1(0)) = En+3.

For example, T(ω) and T(ε0) are equivalent to PTIMEF and to the elementary

functions.

Proof

1. By Lemmas 20 and 25.

2. By part 1 and Lemma 14, since it is known that a function is in En+3 iff (Rose,

1984, p. 77) it can be computed by a TM in time bounded by a function in

En+3 iff it is dominated by Ecn+2 for a constant c (in the application of part 2

of Lemma 14 one uses the notation above). q

4 Three classes of Turing Machines

4.1 Ordinary TMs

Simulation of T-functions will be performed by means of ordinary many-tapes TM’s

over a finite alphabet U1, obtained by adding to U the symbol # (to be used as

blank), and a number of markers PSI,DELTA, . . .

A while-ordinary TM is in the form M := while M1 do M2 where the states of M1

and M2 are disjoint, M1 is an acceptor with final states qyes , qno , and M2 has to be

repeated while M1 accepts. Time for M is the overall time taken by the repetitions

of M1 and M2, without any extra-charge, since moving from M1 to M2 and back is

ruled by means of changes in the states, which do not require any action on the tapes.

4.2 A restricted form of TM

For simulations by T-functions we will restrict ourselves to push-down binary TM’s.

Such a TM M has m+ 1 states and k push-down tapes over B. Its final (initial) state

is 0(1). The behaviour of M at each step only depends on the current state i, and

on the top symbol of a tape defined by a special function j(i). M consists of m

rows (one for each state i 6= 0) of the form (i, j(i), i1, j1, I1, i2, j2, I2, i3). Each such row

should be understood as

if the current state is i then

if top(j(i)) = 1 then enter state i1 and apply I1 to j1;

if top(j(i)) = 2 or j(i) is empty then enter state i2 and apply I2 to j2
if j(i) is empty then enter state i3,

where I1 and I2 may be the commands pop, push 1 and push 2.
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Note

All classes DTIMEF(F(n)) considered in this paper are robust with respect to the

distinction between ordinary and binary push-down TM’s. Indeed, let an ordinary n

tapes TM M be given, and assume that its alphabet has already been reduced to B.

M is simulated by a TM N with 2n push-down tapes, which stores in (its tape) 2i− 1

the contents at the left of the scanned symbol of M’s ith tape, and on 2i the part at

the right, read in reverse order. A move left (right) on i by M corresponds to a pop

(push) on 2i and to a push (pop) on 2i+ 1.

4.3 Equivalence between T-functions and Turing-computable functions

Notation

Given a binary TM M with k push-down tapes, Ti = X means that the contents of

tape Ti is the B-word (possibly empty) X.

M by input s = X1, . . . , Xn standard computes q = Y1, . . . , Ym if M starts operating

with Ti = Xi (1 6 i 6 n), and stops operating with Tj = Yj (1 6 j 6 m), leaving

un-changed all other k −max(n, m) tapes.

Notation

M(s) =sc q; and M(s) =sc M1(s) for M(s) =sc q iff M1(s) =sc q.

G : (B∗)m 7→ B∗ is standard computed by M if G(s) = q implies M(s) =sc q.

Definition 17

DTIMEF(F(n)) ⊆ Tα if for all G standard computed by a binary push-down TM MG

in time F(|s|), there is f ∈ Tα such that MG(s) =sc f(s).

Conversely, Tα ⊆DTIMEF(F(n)) if for all f ∈ Tα and for all m > 0, there is an

ordinary TM M(m) which, by input s, t, r such that #(s),#(t),#(r) 6 m, yields f(s, t, r)

within time F(|s|+ |t|+ |r|).

Comment The restriction of the second part of this definition to arguments

whose number of components is pre-asigned plays an essential role in the proof of

Lemma 20. See the Note in section 2.2 for a justification of this restriction.

4.4 Poly-time TMs

Definition 18

An explicitly poly-time TM (EPTM) is a triple p = (M, a, b), where M is a binary

push-down TM; and where a and b are numbers such that M by input q runs in time

(a + |q|)b. We call a the additive term and b the main term . (a, b) is an appropriate

bound for M if (M, a, b) is an EPTM.

(M, a, b)(s) =sc q means that M(s) =sc q and (a, b) is an appropriate bound for M.

The code for an EPTM (M, a, b) is 〈M, a, ◦, b〉 (where n is n in modified binary, and

◦ is needed to separate dae from dbe). pZ is the EPTM coded by Z .
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5 Simulation by TMs

Definition 19

Function g(x, y, z) ∈ T1 is simple if it is obtained by modifying x only. More

precisely, if all modifiers occurring in g are in the form h(x) and if no renaming

occurs in the basis and step functions of all recursions used to define g. A function

f is simple if all functions in T1 used to define it are simple.

Comment

Let g ∈ T1 be simple, and let it begin with Π. Since x is used to store the previous

values of g, since all its modifiers are changing x only, and since no renaming occurs

in g, it does not happen that, during the recursive computation of g(s, t, r), there is

a value qa of the recursion variable such that g forgets its value for q, to re-start

with a value for qa, obtained by modifying t or qa. Notice that all functions of next

section are simple; hence, simplicity does not interfere with the simulation of TMs.

Notation

τ (possibly with superscripts) is a tuple of tapes over U1 (see section 4.1). τ...i is the

i-th tape of tuple τ....

Since every T-function f may be described by a word Ef over U, we identify the

input-functions f for the interpreter of next lemma with their representations Ef
over its tapes.

Lemma 20

Tα ⊆ DTIMEF∗(Bα(n)).

Proof

Define /f/ := lh(f) + dg(f). We show that for all N > 0 there exists an ordinary

TM INT(N) such that, for all simple f ∈ Tα and for all s, t, r whose number of

components is 6 N (cf. Definition 17) we have (writing c for /f/, and n for |t|+ |r|)
INT (N)(f, s, t, r) = f(s, t, r) within time c2Bα(n+ c2). (4)

Hence, every f ∈ Tα is simulated in time O(Bα(n+O(1))) by the sequence composition

of the constant-time TM writing (the word over U describing) f with INT(N).

Construction

In addition to some working tapes the TM INT (N) sketched-down in figure 1 uses

as stacks the following n-ples of ordinary tapes (subscript (N) omitted hereinafter):

• τx, τy, τz , to store the intermediate computed values associated with x, y, z;

• τu, to store the current value of the principal variable of the current enumera-

tion or recursion;

• τ, to store some sub-functions of f;

the initial contents of τx, τy, τz, τ are the input values s, t, r, and f, while τu is

empty.

INT repeats, until τ is not empty, the following cycle (the terms pop, push should

be understood as sequences of writing/erasing instructions, not as elementary com-

mands of a push-down TM):
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• it pops a function k from the top of τ, and un-nests the outermost sub-function

j of k;

• according to the form of j, it carries out a different action on the stacks;

• in all other cases, it pushes into τ an information of the form j MK k, where

MK is a mark (belonging to U1) informing about the outermost scheme used

to define j.

INT (f, s, t, r):=

τ := f; τx := s; τy := t; τz := r;

while τ not empty do A := pop(τ);

case

A = Υ(g, h) then push g#h in τ

A = Φvw(h) then push h in τ; copy last record of τw into τv

A = Ψb
i (e, g, h) then push A PSI into τ; copy last record of τx into τu

A = Ψb
i (e, g, h)#PSI then pop τ; if top(τxi ) = b then push g into τ else push h into τ;

pop last record from τx;

pop last record from τu and push it into τx

A = ∆(h, α) then push DELTA#h into τ; copy last record of τx into τu

A = DELTA then pop τ; pop last record of τx and push it into τ;

pop last record from τu and push it into τx

A = Π(g, h) then push A#PI#g into τ; copy last record of τz into τu

push last digit of τu into τz

A = Π(g, h)#PI then if τu = τz then pop τ; pop τu; pop τz

else push h into τ; pop last digit of τu and push it into τz

A = Π∗(h) then push Π(Φzy(h),Φzy(h)) into τ

A = Ωi then cancel and move left on τxi
A = Γb

i then write b on τxi and move right.

end case; end while.

Fig. 1

Time complexity

We show, by induction on α and c that, for all f ∈ Tα (not beginning with Π∗),
INT moves within c2Bα(n+ c2) steps from a configuration of the form

τ = e#f; τx = s0#s; τy = t0#t; τz = r0#r; τu = q,

to a configuration of the form

τ = e; τx = s0#f(s, t, r); τy = t0#t; τz = r0#r; τu = q.

Basis α = 0 and f is a constructor or destructor. The simulation is performed in

one step.

Step Case 1

f = Ψb
i (g0, g1, g2). We need a time T1 to copy g0 and one of the gi+1s on the top

of τ; and a time T2 for the execution of g1, and of one of the gi+1s. We have

T1 6 3
∑

06j62 //gi (to copy g0) +2
∑

06j62 //gi to replace f by the gi+1 to be

simulated next) 6
∑

j 6=j∗ 2/gj/ /gj∗/. Hence, by applying the induction hypothesis

on c to the g’s we obtain T1 + T2 6
∑

j 6=j∗ 2/gj/ /gj∗/ +
∑

06j62 /gi/
2Bα(n + c2) 6

(
∑

06j62 /gi/+ 1)2Bα(n+ c2) = c2Bα(n+ c2).
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Case 2

f = Υ(g, h). Similarly.

Case 3

f = Π(g, h). We have α = β + 1. Let the form of r be a|r| . . . a1. INT needs (i) a

time T1 to copy r into τu; and for r preparatory steps which: un-nest g and (|r| − 1

times) h; copy back, bit by bit, r in τz; and (ii) a time T2 to simulate g and h. Since

we now have Bα(n + c2) > n + c2 > |r|, by arguments like under Case 1, we obtain

T1 6 5(/g/+ /h/)Bα(n+ c2).

We now evaluate T2. By the induction on α, INT needs time 6 m+/g/2Bβ(n+c2)

to compute g, thus moving from the first to the second of the two following

configurations:

τ = e#f#PI#g τx = s0#s τy = t0#t τz = r0#r#a|r| τu = q#r

τ = e#f#PI τx = s0#g(s, t, a1) τy = t0#t τz = r0#r#a|r| τu = q#r.

If |r| > 1 then INT puts τ := e#f#PI#h; τz := r0#r#a|r|a|r|−1, and computes h for

|r| − 1 times, producing the configurations τ = e#f#PI (each time)

τx = s0#h(f(s, t, a|r|), t, a|r|a|r|−1) τy = t0#t τz = r0#r#a|r|a|r|−1 τu = q#r;

. . .

τx = s0#h(f(s, t, a|r| . . . a|r|−i), t, a|r|a|r|−i−1) τy = t0#t τz = r0#r#a|r| . . . a|r|−i−1 τu = q#r;

By applying |r| − 1 times the induction hypotheses on α we obtain (since c >
lh(h) + lh(g) + 1)

T2 6 /g/2Bβ(n+ c2) + (|r| − 1)/h/2Bβ(n+ c2)

T1 + T2 6 (5(/g/+ /h/) + max(/g/2, /h/2))/r/Bβ(n+ c2) 6 c2Bα(n+ c2).

Case 4

f = ∆(h, λ). INT computes h(r), understands from the mark DELTA that the result

is giving the function to be computed next, and accordingly, pushes it into τ. To

compute h(r) and {h(r)}(s, t, r) INT needs, by the induction hypotheses on α and by

Lemma 7 (twice), time 6 /h/nc + /{h(r)}/2Bλ(|r|)(n+ c2) 6 /h/nc + /h/2n2cBλ(|r|)(n+

c2) 6 c2n2cBλ(|r|)(n+ c2) 6 c2Bλ(|r|+c2)(n+ c2) = c2Bλ(n+ c2), where, to believe the last

inequality, observe that we have the worst for λ = ω, where c2n2cBω(|r|)(n + c2) 6

c2n2c(n+ c2)n 6 c2(n+ c2)n+c
2

6 c2Bω(|r|+c2)(n+ c2). q

Note

Assume that f(x, y, z) ∈ T1 is not simple. It may then happen that, in the com-

putation of f(s, t, r) at values q1, . . . , qn, the step function modifies y or z, instead

of the previous value of f. Copying t or the current value of z into τx for n times

may require a quadratic time. A long and tedious way to face this difficulty uses

the fact that only |f|(|qi+1| − |qi|) digits may have been added or killed in the phase

of the computation between z := qi and z := qi+1; and that the overall amount

of such digits during the whole computation is 6 |h||r|. By using additional tapes

τu,h, τu,t, τu,c (u = y, z) one may store: in τu,h the head of u shared in common by the

original value of u and the current value of f; in τu,t the original tail of u; and in

τu,c the current tail of f. At the end of each phase, the value of f may be destroyed

and τu,t may be copied in τh, thus recovering the original value of u.
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6 Simulation of TMs

Definition 21
Let M be a binary push-down TM with k tapes, and m+ 1 states:

1. The code for M is 〈R1, . . . , Rm〉, where Ri is its ith row, coded, in turn, by

〈i, j, i1, j1, I1, i2, j2, I2, i3〉.
2. An instantaneous description (id) of M is a T-word s = X1i, . . . , Xk , where Xj

is the current contents of tape j and i is the current state.

Lemma 22
For every TM M, a function nxtM(x) can be defined in T0, which, for all s coding

an id of M, returns s if the state is 0, and the next id otherwise.

Proof
Let a binary push-down TM M be given. For every i, a test st[i](x) can be defined,

such that st[i](s) is true iff i is the state of the id coded by s. Define

nxt(x) = if st[0](x) then x else if st[1](x) and top(j(1)) = 1 then E11 else

if st[1](x) and top(j(1)) 6= 1 then E12 else . . . if st[m](x)

and top(j(m)) 6= 1 then Em2,

where Eib is a modifier up-dating the state and applying the appropriate push/pop

to jb. q

To prove that the iteration for Bα(n) times of every function f ∈ T0 is in Tα, we

need a version of the recursion theorem, allowing the iterator of f at level Tλ to

call itself at level Tλ(n). Since the core of the recursion theorem is a self-referential

substitution, and since the implementation of full SBST in our classes is cumbersome,

we first prove a version for poly-time TM’s of this theorem, and we then import it

in T(ω).

Lemma 23
1. (Uniform composition of EPTM’s) For all l, m, n > 0 there exist the EPTM’s Clmn

such that if X1 and X2 are codes of EPTM’s, then Clmn(X1, X2) codes an EPTM

satisfying

pClmn(X1 ,X2)(Y1, . . . , Ym+n+l)

=sc pX1
(Y1, . . . , Yl , pX2

(Yl+1, . . . , Yl+m), Yl+m+1, . . . , Yl+m+n).

2. (The Smn theorem) For all m, n, there exist the EPTM’s Smn such that such that if

X codes an EPTM then for all B-words Y1, ...., Ym we have

pSmn (X,Y1 ,...,Ym)(Ym+1, . . . , Ym+n) =sc pX(Y1, . . . , Ym+n);

pS0
n (X)(Y1, . . . , Yn) =sc pX(X,Y1, . . . , Yn),

and the main term in the bound for pSmn (X,Y1 ,...,Ym) depends on X, and not on

the Yi.
3. (The recursion theorem) For each EPTM p(Z, Y ) there is U such that pU(Y ) =sc

p(U,Y ).
4. There is a function sim ∈ T(ω) such that for all EPTM pY , s and q

pY (s) =sc q iff {sim(Y )}(s) = q.
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Proof

1. Let Mlmn be a TM which, by input Xi =d (Mi, ai, bi)
e (i = 1, 2):

(i) recovers the number Ni of tapes used by Mi;

(ii) writes the code for a (N1 +N2)-tapes TM M whose rows consist of

(A) instructions copying the first l and the last n tapes into (tapes) N2 +

1, . . . , N2 + l + n; and copying Yl+1, . . . , Yl+m into 1, . . . , l;

(B) the rows of M2;

(C) instructions copying 1 in l + 1 and N2 + 1, . . . , N2 + l + n in 1, . . . , l, l +

2, . . . , l + n+ 1;

(D) the rows of M1, with the state-numbers re-assigned in order to avoid

confusion with the previous lines;

(iii) writes the code for a bound (a, b) such that a and b consist respectively of

|a1|+ |a2|+ 2 two’s, and of |b1|+ |b2|+ 2 two’s.

Observe that (a, b) is appropriate forM, since we have (a+n)b > (a1a2+1+n)b1b2

(1 is added to the additive term in order to consider the copying back and

forth mentioned under parts (A) and (C)); and since we have m < 2|m|+1, and,

therefore, mn < 2|m|+|n|+2.

Parts (i)–(iii) can obviously be performed in polynomial time, and we may

take as Clmn the result of adding an appropriate bound to Mlmn.

2. (i) Let us write Y and Z for Y1, . . . , Ym and Ym+1, . . . , Ym+n. Define l := |Y|.
(ii) Let Mm

n [Y] be the TM’s (one for each Y, m, n) which copy Z into tapes m+

1, . . . , m+ n and write Y on tapes 1, . . . , m. Observe that (l, 2) is appropriate

for Mm
n [Y](Z), and define WRmn [Y] := (Mm

n [Y], l, 2).

(iii) We now take uniformly Y into dWRmn [Y]e. To this purpose, observe that a

TM Um
n can be defined which, by input Y yields dWRmn [Y]e; and that, since

the length of Mm
n [Y] is linear in l, there is a constant c, depending only on

m and n, such that (c, 2) is appropriate for Um
n . Define UWRmn := (Um

n , c, 2).

(iv) Define an EPTM by

Smn := pC1m0(dC0m0
e ,dUWRmn

e).

By part 1, we have

Smn (X,Y) = C0m0(X,UWRmn (Y)). (5)

By (5) we have

pSmn (X,Y)(Z) = pC0m0(X,UWRmn (Y))(Z)

= pX(pUWRmn (Y)(Z)) = pX(WRmn [Y](Z)) = pX(Y,Z).

(v) For m = 0, use a duplicating TM and composition to define S0
n (X) :=

S1
n (X,X).

(vi) To see that the main term of pS... is independent from Y, observe that: by

parts (ii) and (iii), l is only contributing to certain additive terms; and that,

by arguments at the end of the proof of part 1, in compositions of the

form C... the additive terms don’t contribute to the main terms.
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3. Given pX , define W := C011(X,d S0
1
e). We have pW (Y ,Z) =sc pX(S0

1 (Y ), Z).

Define further U := S0
1 (W ). We obtain pU(Z) =sc pS0

1 (W )(Z) =sc pW (W,Z) =sc

pX(S0
1 (W ), Z) =sc pX(U,Z).

4. sim by input Z = 〈M, a, ◦, b〉, returns the required result by taking dMe into
dnxtM e, and by producing the code for a sequence of the form

Π(I,Φzy(Π(I, . . . ,Φzy(Π(I, nxtM)) . . .)))

(|a| + |b| times). Both these tasks are straightforward and can be performed

within a time linear in |Z |. Notice that the output of sim is the code for a

function ∈ T(ω).

q

Example 4

In the proof of next lemma we need a uniform way to move from the codes for an

EPTM p and a limit ordinal λ to the code for an EPTM q such that q(U) = p(dλ(|U|)e).
To this purpose, let fs be the EPTM which is obtained by adding an adequate bound

to the EPTM FS of Lemma 9. Define an EPTM by G(Z, Y ) := S1
1 (C020(Z,dfse), Y ).

For all pZ and λ, we have

pG(Z,dλe)(U) = pC020(Z,dfse)(
dλe, U) = pZ (fs(dλe, U)) = pZ (dλ(|U|)e).

By the last statement of part 2 of Lemma 23, if pZ is in DTIMEF(nc) then pG(Z,Y ) is

in a class DTIMEF(nd), where d only depends upon c.

Lemma 24

For all h(x) ∈ T0 and for all ordinal α 6 φω(0) there exists gα ∈ Tα such that

gα(s, t) = hBα(|t|)(s).

Construction of gα
Given h define a TM satisfying

M(Z, Y ) =


dhe if Y codes the ordinal 0
dΠ∗ eM(Z,dαe) if Y codes a successor α+ 1
d∆esim(G(Z, Y ))Y if Y codes a limit ordinal

1 otherwise,

where (i) the different cases are decided by the poly-time TM’s SC and LM of

Lemma 9; (ii) expressions dΠ∗ eM(Z,dαe) and d∆esim(G(Z, Y ))Y should be understood

as mere concatenations of the indicated codes with the values of M(. . .) and,

respectively, of sim(. . .); and (iii) the values of the EPTM G of the last example and

of the function sim are obtained by including in the finite control of M a copy of G

and of the EPTM which simulates sim.

Time for M is polynomial, since this TM is defined by composition of EPTM’s and

by a loop which adds a string of a constant length at each repetition.

Let p be the EPTM which is obtained by adding an appropriate bound (a, b) to

M. By Lemma 23, there exists a fixed-point U such that pU(Y ) = p(U,Y ), with

pU ∈ DTIMEF(nd) for some d. Define

f∗ = {sim(U)}; fα = {f∗(dαe)}; gα(x, y) = fα(x, y, y). (6)
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Proof of the lemma

We show by transfinite induction on α that fα ∈ Tα, and

fβ+1(s, t, r) = h|r|Bβ (|t|)(s); fλ(s, t, t) = hBλ(|t|)(|t|)(s); (7)

hence fβ+1(s, t, t) = hBβ+1(|t|)(s).

Basis α = 0. We have f0 = {f∗(d0e)} (by (6))= {dhe} (by first line in the definition of

M) = h.

Step Case 1

α = β + 1. We have

fα = {f∗(dαe)} by (6)

= {{sim(U)}(dαe)} again by (6)

= {pU(dαe)} by part 4 of Lemma 23

= {p(U,dβ + 1e)} by part 3 of the same lemma, and definition of U

= Π(Φzy(fβ),Φzy(fβ)) by definition of p and Π∗.

fα ∈ Tα follows by the induction hypothesis and by closure of Tβ under renaming.

We now prove (7) by induction on |r|.
Basis. fα(s, t, a) = Π(Φzy(fβ),Φzy(fβ))(s, t, a) last equality above

= Φzy(fβ)(s, t, a) by definition of Π

= fβ(s, t, t) = h|a|Bβ (|t|)(s) ind.hyp. on α.

Step. fα(s, t, ra) = Π(Φzy(fβ),Φzy(fβ))(s, t, ra) see line 1

= fβ(fα(s, t, r), t, t) definition of Π and Φzy

= hBβ (|t|)(fα(s, t, r)) ind. hyp. on α

= hBβ (|t|)(h|r|Bβ (|t|)(s)) ind. hyp. on r

= h(|r|+1)Bβ (|t|)(s) computations.

Case 2

α is the limit ordinal λ. We have fλ = {f∗(dλe)} = ∆({sim(G(U,dλe))}, λ). Notice that

{sim(G(U, dλe))} ∈ T(ω), by definition of G and sim. Hence, by definition of the

diagonalization scheme, the result follows by the induction after checking that, for

all r, we have

{{sim(G(U,dλe))}(r)} = fλ(|r|).
Indeed, we have

{{sim(G(U,dλe))}(r)} = {pG(U,dλe)(r)} by part 4 of Lemma 23

= {pU(dλ(|r|)e)} by example 4

= {{sim(U)}(dλ(|r|)e)} by part 4 of Lemma 23

= {f∗(dλ(|r|e))} by (6)

= fλ(|r|) by (6) again.

To see that the degree of all gα is finite, recall that runtime for pU is bounded above

by nd for some d. By arguments repeatedly used in this proof, for all λ we have

that the form of fλ is ∆(sim(G(U,dλe)), λ). By the last remark in Example 4, we have

pG(U,dλe) ∈DTIMEF(nb) for some b depending only on d. Thus, by Lemma 20, the

degree of every fλ is b.
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Lemma 25

DTIMEF∗(Bα(n)) ⊆ Tα.

Proof

Let M compute function F(s) in time Bα(|s|+c). By the last lemma there is a function

gM(x, y) such that gM(s, t) returns the Bα(|t|)-th iterate of nxtM(s). By means of one

Φxy and of c functions Γ1
1, we can define a function returning the Bα(|s|+c)-th iterate

of nxtM(s). q
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