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1. Introduction

Let Ω be an open bounded subset of R
n, let H1

0 (Ω) be the usual Sobolev space with the
norm

‖u‖ =
{ ∫

Ω

|∇u|2 dx

}1/2

.

For convenience, we denote H1
0 (Ω) by V in the following. Let A be a mapping from V

to its dual space V ∗, which is defined by

〈Au, v〉 =
n∑

i=1

∫
Ω

Ai(x, u,∇u)Div dx +
∫

Ω

A0(x, u,∇u)v dx for all u, v ∈ V, (1.1)

where 〈· , ·〉 denotes the duality pairing between V ∗ and V , ∇ = (D1, . . . , Dn), Di = ∂/∂xi

and the functions Ai, i = 0, 1, . . . , n, satisfy suitable regularity and growth assumptions
(see below).

Let K be a non-empty, closed and convex subset of the Hilbert space V . In order to
simplify some computations we shall assume that 0 ∈ K. The norm convergence in V

and V ∗ is denoted by ‘→’ and the weak convergence is denoted by ‘⇀’. We formulate
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the following variational hemivariational inequality (HVI): find u ∈ K such that

〈Au, v − u〉 +
∫

Ω

j0(x, u; v − u) dx �
∫

Ω

f(x, u)(v − u) dx for all v ∈ K. (HVI)

Here j0(x, u(x); v(x)) denotes the generalized derivative of j(x, ·) at u(x) in the direction
v(x) (see [1]).

Problem (HVI) has been considered by the author under the coerciveness conditions
(see [7,8]). In the case when A is a linear elliptic operator of second order, Goeleven et
al . [3,4] and Mansour and Riahi [9] studied the semilinear eigenvalue problems. They
provided the existence and stability of solutions for the semilinear problem (HVI) by
using the critical-points method, the Leray–Schauder degree and by a version of Ky
Fan’s minimax inequality, respectively. Beyond the theoretical interest, solution of the
problem (HVI) at resonance (as well as at non-resonance) is strongly motivated by appli-
cations in mechanics. This kind of inequality expression in (HVI) was introduced by
Panagiotopoulos [11] in order to deal with problems in mechanics whose variational
forms are such inequalities that express the principle of virtual work or power. Such
formulations include a wide-ranging class of complicated problems in mechanics and
engineering which could not previously be treated correctly by the methods of partial
differential equations or variational inequalities, e.g. the case for the study of adhesive
joints in structural mechanics, the behaviour of composites, the unilateral contact and
non-monotone friction problems in cracks, the adhesive grasping problem in robotics,
etc. [4,10,11]. Among the important mechanical phenomena leading to problem (HVI)
at resonance, a typical example is offered by a model of loading and unloading presented
in [4].

The aim of the present paper is the mathematical study of nonlinear eigenvalue prob-
lems arising in the stability analysis of mechanical systems subjected to realistic non-
monotone boundary conditions [10]. Our main results are formulated in Theorems 3.1,
3.2 and 3.4, pointing out a new insight in the general setting of the nonlinear prob-
lem (HVI) at resonance as well as non-resonance, for the celebrated Landesman and
Lazer conditions [5,6] as well as for other classical sufficient conditions of solvability such
as those due to Chang [1], Goeleven et al . [3,4] and Mansour and Riahi [9]. We build a
Landesman–Lazer theory in the non-smooth framework of nonlinear problem (HVI).

2. Preliminaries and assumptions

Recall that an operator T : V → 2V ∗
is pseudo-monotone if and only if the following

three conditions are fulfilled:

(i) for each u ∈ V , the set Tu is non-empty, bounded, closed and convex;

(ii) if {(u∗
n, un, )}∞

n=1 ⊂ G(T ) (the graph of the operator T ) is such that un ⇀ u as n →
∞ and lim supn→∞〈u∗

n, un − u〉 � 0, then for each v ∈ V there exists v∗(v) ∈ T (u)
with the property that

lim inf
n→∞

〈u∗
n, un − v〉 � 〈v∗(v), u − v〉;
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(iii) the restriction of T to any finite-dimensional subspace F of V is weakly upper
semi-continuous as an operator from F to V ∗.

For a locally Lipschitzian functional h : V → R, we denote by h0(u, v) the Clarke
generalized directional derivative of h at u in the direction v, i.e.

h0(u, v) := lim sup
λ→0+, w→u

h(w + λv) − h(w)
λ

.

Recall also at this point that

∂h(u) := {u∗ ∈ V ∗ | h0(u, v) � 〈u∗, v〉 for all v ∈ V } (2.1)

denotes the generalized Clarke subdifferential.
From [1], we have

h0(u, v) = max{〈w, v〉 | w ∈ ∂h(u)} (2.2)

In the following we assume that the coefficients Ai, i = 0, 1, . . . , n, are functions of
x ∈ Ω and of ξ = (η, ζ) ∈ R

n+1, where η ∈ R, ζ = (ζ1, . . . , ζn) ∈ R
n. We assume that

each Ai(x, ξ) is a Carathéodory function, i.e. it is measurable in x for fixed ξ ∈ R
n+1

and continuous in ξ for almost all x ∈ Ω. We suppose that the Ai(x, ξ), i = 0, 1, . . . , n,
satisfy the following conditions.

(A1) There exist c1 > 0 and a ∈ L2(Ω) such that

|Ai(x, ξ)| � c1|ξ| + a(x)

for a.e. x ∈ Ω, for all ξ = (η, ζ) ∈ R
n+1.

(A2)
∑n

i=1[Ai(x, η, ζ)−Ai(x, η, ζ ′)](ζi−ζ ′
i) > 0 for a.e. x ∈ Ω, for all η ∈ R and ζ, ζ ′ ∈ R

n

with ζ 	= ζ ′.

(A3) There exists a positive c2 and a non-negative function Z ∈ L1(Ω) such that

n∑
i=1

Ai(x, η, ζ)ζi � c2

n∑
i=1

|ζi|2 − Z(x)

for a.e. x ∈ Ω, for all η ∈ R and ζ, ζ ′ ∈ R
n.

We define the first eigenvalue as

λ1 = lim inf
‖u‖L2→∞

〈Au, u〉
‖u‖2

L2

, u ∈ V. (2.3)

Concerning problem (HVI) we deal with the functional J : V (⊆ L2(Ω)) → R of the
following type:

J(u) =
∫

Ω

j(x, u(x)) dx, u ∈ V. (2.4)

We assume that j : Ω × R → R satisfies the following condition.
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(H1) j(· , s) : Ω → R is measurable, for all s ∈ R. j(x, ·) : R → R is locally Lipschitz for
all x ∈ Ω, j(· , 0) ∈ L1(Ω) and |z| � d(x) + c|s|σ−1 for all s ∈ R, a.e. x ∈ Ω, for all
z ∈ ∂sj(x, s), with constants c > 0 and 1 � σ < 2 and d ∈ L2(Ω).

The above assumptions on j ensure that J is locally Lipschitz on V and that∫
Ω

j0(x, u(x); v(x)) dx � J0(u, v) for all u, v ∈ V. (2.5)

We also make the following assumptions.

(H2) f : Ω × R → R is a Carathéodory function (i.e. f(· , s) : Ω → R is measurable, for
all s ∈ R, and f(x, ·) : R → R is continuous, for almost all x ∈ Ω). There exist
L > 0 and b(x) ∈ L2(Ω) such that |f(x, t)| � b(x) + L|t|q−1 for a.e. x ∈ Ω, for all
t ∈ R, where 1 � q < 2n/(n − 2) for n > 2 and q > 2 for n = 1, 2.

(H3) There exist ε0 > 0 and c(x) ∈ L2 such that tf(x, t) � (λ1 − ε0)|t|2 + c(x)|t| for a.e.
x ∈ Ω, for all t ∈ R, where c(x) � 0 a.e. in Ω and λ1 is defined by (2.3).

Let F be the mapping from V to its dual space V ∗, which is defined by

〈Fu, v〉 :=
∫

Ω

f(x, u)v dx for all u, v ∈ V.

The following lemma will be useful (see, for example, [2]).

Lemma 2.1. Let T : V → 2V ∗
be a pseudo-monotone operator and let C ⊆ V be

non-empty, bounded, closed and convex. Then, for a given f ∈ V ∗, there exist u ∈ C and
u∗ ∈ T (u) such that

〈u∗ − f, v − u〉 � 0 for all v ∈ C.

In order to establish the existence results of problem (HVI), we also need the following
lemma (see, for example, [7,8]).

Lemma 2.2. Suppose that the assumptions (A1)–(A3) and (H1), (H2) hold. Then
the sum operator A − F + ∂J : V → 2V ∗

is pseudo-monotone.

Lemma 2.3 (Mansour and Riahi [9]). Assume that (H1), (H2) hold. Then, for all
v in V , the functional

u → g(u, v) :=
∫

Ω

j0(x, u; v − u) dx

is weakly upper semi-continuous, while

u → 〈Fu, v − u〉 :=
∫

Ω

f(x, u)(v − u) dx

is weakly continuous in V .

Lemma 2.4 (Shapiro [12]). Let Ω be a bounded open connected set. Then, under
the assumptions (A1)–(A3), λ1 defined by (2.3) is finite valued, i.e. −∞ < λ1 < ∞.
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3. Main results

The first theorem we intend to prove is the following.

Theorem 3.1. Let K be a non-empty, bounded, closed, convex subset of V . Suppose
in addition that assumptions (A1)–(A3) and (H1), (H2) hold. Then problem (HVI) has
at least one solution.

Proof. By means of Lemmas 2.1 and 2.2, there exist u ∈ K and u∗ ∈ ∂J(u) such that

〈Au − Fu + u∗, v − u〉 � 0 for all v ∈ K.

By use of (2.2), we have that

〈Au − Fu, v − u〉 + J0(u, v − u) � 0 for all v ∈ K.

By virtue of (2.5), we obtain

〈Au − Fu, v − u〉 +
∫

Ω

j0(x, u(x); v(x) − u(x)) dx � 0 for all v ∈ K.

Therefore, from the definition of operator F , we get

〈Au, v−u〉+
∫

Ω

j0(x, u(x); v(x)−u(x)) dx �
∫

Ω

f(x, u(x))(v(x)−u(x)) dx for all v ∈ K.

This ends the proof of the theorem. �

Theorem 3.2. Let K be a non-empty, closed, convex subset of V . Suppose in addition
that assumptions (A1)–(A3) and (H1)–(H3) hold. Then problem (HVI) has at least one
solution.

Proof. Set Kn := {v ∈ K | ‖v‖ � n}. Using Theorem 3.1, we get the existence of
un ∈ Kn such that

〈Aun − Fun, v − un〉 +
∫

Ω

j0(x, un; v − un) dx � 0 for all v ∈ Kn. (3.1)

Step 1. There exists M > 0 such that

‖un‖L2 � M for n = 1, 2, . . . . (3.2)

Suppose to the contrary that (3.2) does not hold. Then, without loss of generality, we
may assume that

lim
n→∞

‖un‖L2 = ∞. (3.3)

By taking v = 0 in (3.1), we have

〈Aun, un〉 �
∫

Ω

j0(x, un; −un) dx +
∫

Ω

f(x, un)un dx. (3.4)
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But it then follows from (2.3) and (3.3) that

λ1 � lim inf
n→∞

{∫
Ω

j0(x, un; −un) dx

‖un‖2
L2

+

∫
Ω

f(x, un(x))un(x) dx

‖un‖2
L2

}
. (3.5)

By virtue of (2.2) and (H1), we obtain

lim sup
n→∞

∫
Ω

j0(x, un; −un) dx

‖un‖2
L2

� lim sup
n→∞

∫
Ω

max{|zn(x)un|, zn(x) ∈ ∂j(x, un)} dx

‖un‖2
L2

� lim sup
n→∞

∫
Ω

(d(x)|un| + c|un|σ) dx

‖un‖2
L2

= 0.

By use of (H3), we also have

lim sup
n→∞

∫
Ω

f(x, un(x))un(x) dx

‖un‖2
L2

� lim sup
n→∞

∫
Ω

[(λ1 − ε0)|un(x)|2 + c(x)|un(x)|] dx

‖un‖2
L2

= λ1 − ε0.

From the last two inequalities and (3.5), we obtain a contradiction, which has proved
that the inequality (3.2) holds.

Step 2. There exists M1 > 0 such that

‖un‖ � M1 for n = 1, 2, . . . . (3.6)

Using (3.4) once again, we obtain from (A3) that

c2

∫
Ω

|∇un|2 dx �
∫

Ω

Z(x) dx −
∫

Ω

A0(x, un,∇un)un dx

+
∫

Ω

j0(x, un; −un) dx +
∫

Ω

f(x, un(x))un(x) dx.

Using (A1), (A3), (H1) and (H2), we obtain

c2‖un‖2 �
∫

Ω

Z(x) dx +
∫

Ω

c1{|∇un|2 + |un|2}1/2|un| dx +
∫

Ω

a(x)|un| dx

+
∫

Ω

(d(x)|un| + c|un|σ) dx +
∫

Ω

[(λ1 − ε0)|un(x)|2 + c(x)|un(x)|] dx.

Therefore, by Hölder’s inequality, there exists a positive constant C such that

‖un‖2 � C

[ ∫
Ω

Z(x) dx + ‖un‖ ‖un‖L2 + ‖un‖ + ‖un‖2
L2

]
for n = 1, 2, . . . , (3.7)

which implies that the inequalities (3.6) hold due to (3.2).
By virtue of (3.6), there exists a positive integer n0 such that ‖un0‖ < n0.
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Step 3. un0 solves problem (HVI).
Since ‖un0‖ < n0, we have, for each y ∈ K, the existence of an ε > 0 such that

un0 + ε(y − un0) ∈ Kn0 . It suffices to take

ε

{
< (n0 − ‖un0‖)/‖y − un0‖ if y 	= un0 ,

= 1 if y = un0 .

We have

〈Aun0 − Fun0 , v − un0〉 +
∫

Ω

j0(x, un0 ; v − un0) dx � 0 for all v ∈ Kn0 . (3.8)

If we set v = un0 + ε(y − un0) in (3.8), we obtain

〈Aun0 − Fun0 , ε(y − un0)〉 +
∫

Ω

j0(x, un0 ; ε(y − un0)) dx � 0. (3.9)

Since j0(x, u, v) is positively homogeneous in v (see [1]), we have that

ε〈Aun0 − Fun0 , y − un0〉 + ε

∫
Ω

j0(x, un0 ; y − un0) dx � 0. (3.10)

Dividing (3.10) by ε > 0, we finally obtain

〈Aun0 − Fun0 , y − un0〉 +
∫

Ω

j0(un0 , y − un0) dx � 0 for all y ∈ K. (3.11)

This completes the proof. �

Now we turn to the solvability of problem (HVI) involving resonance. It is an easy
matter in this case to give examples that show that Theorem 3.2 is false if ε0 = 0 in
(H3) since this is already well known if A given in (1.1) is linear. Consequently, a further
condition is necessary to ensure that the conclusion of Theorem 3.2 holds for the situation
ε0 = 0 in (H3). Results of this nature are referred to in the literature as resonance results
(see [3–6]). We shall present one such result here that will hold for the Hilbert space
V (= H1

0 (Ω)). In order to do this, we first recall some facts concerning linear elliptic
theory.

Let a : V × V → R be a continuous, symmetric, bilinear form which is coercive:

a(u, u) � α‖u‖2 for all u ∈ V,

with a constant α > 0. Thus,
‖ · ‖V := a(· , ·)1/2

is an equivalent norm on V , i.e. there exist two positive constants c3 and c4 such that

c3‖u‖2 � a(u, u) � c4‖u‖2. (3.12)
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Denote by
σ1 < σ2 � · · · � σn · · · → +∞ (3.13)

the sequence of eigenvalues of the linear problem

a(u, v) = σ〈u, v〉L2 for all v ∈ V. (3.14)

We also consider a basis {ϕn}∞
n=1 for V consisting of eigenfunctions, where ϕn corre-

sponds to σn, i.e. u = ϕn and σ = σn in (3.14), which is normalized in the following
sense:

a(ϕi, ϕj) = δij , (3.15)

where δii = 1 and δij = 0 if i 	= j.
In this statement we use essentially the compactness of the embedding V ⊂ L2(Ω).

The fact that σ1 is simple and the corresponding eigenfunction does not change sign in
Ω follows from the Krein–Rutman theorem (see, for example, [13]).

Remark 3.3. For example, we may assume that the bilinear form a(· , ·) is defined by
the following linear elliptic operator of second order:

Lu := −
N∑

ij=1

Dj(aij(x)Diu) + q(x)u

if L satisfies some suitable assumptions.

In Theorem 3.4, we shall replace (H3) by the following.

(H4) For all ε > 0, there exists hε ∈ L2 such that tf(x, t) � (λ1 + ε)|t|2 + hε(x)|t| for
a.e. x ∈ Ω, for all t ∈ R, where hε(x) � 0 a.e. in Ω.

We observe that (H4) is a generalization of the case when ε0 = 0 in (H3). We shall also
set the following assumption in Theorem 3.4.

(H5) λ1 = σ1, where λ1 is given by (2.3), and

lim inf
‖u‖→∞

〈Au, u〉 − a(u, u)
‖u‖2 � 0, u ∈ V.

Also in Theorem 3.4, we shall set

f± = lim sup
t→±∞

f(x, t)
t

. (3.16)

We intend to establish the following result.

Theorem 3.4. Let K be a non-empty, closed, convex subset of V . Suppose in addition
that assumptions (A1)–(A3), (H1), (H2) and (H4), (H5) hold. Suppose furthermore that
f(x, t) satisfies

σ1

∫
Ω

ϕ2
1 dx > max

{ ∫
Ω

f+ϕ2
1 dx,

∫
Ω

f−ϕ2
1 dx

}
, (3.17)

where ϕ1 is the first eigenfunction of the linear problem (3.14). Then problem (HVI) has
at least one solution.
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Proof. We first recall (see [13]) that

σ1 = inf
a(u, u)
‖u‖2

L2

, u ∈ V. (3.18)

Next, for n a positive integer we set

fn(x, t) = f(x, t) − t

n
(3.19)

and choose ε = (2n)−1 in (H4). It then follows that

tfn(x, t) � [λ1 − (2n)−1]t2 + h(2n)−1(x)|t| (3.20)

for a.e. x ∈ Ω and for all t ∈ R, where h(2n)−1 ∈ L2.
With (3.20) at our disposal, we see from Theorem 3.2 that there exists a un ∈ K such

that

〈Aun, v − un〉 +
∫

Ω

j0(x, un, (v − un)) dx �
∫

Ω

f(x, un)(v − un) dx −
∫

Ω

un(v − un)
n

dx

(3.21)
for all v ∈ K.

We claim that there exists an M2 > 0 such that

‖un‖ � M2 for all n. (3.22)

Suppose that (3.22) is false. Then we can assume, without loss of generality, that

lim
n→∞

‖un‖ = ∞. (3.23)

We shall show that (3.23) leads to a contradiction.
Let ε > 0 be given. It then follows from (H5) and (3.23) that there exists an n0 such

that
〈Aun, un〉 − a(un, un) � −ε‖un‖2 for all n � n0.

Taking v = 0 in (3.21) and using the above inequality, we see that

a(un, un)+
‖un‖2

L2

n
�

∫
Ω

j0(x, un,−un) dx+
∫

Ω

f(x, un)un dx+ ε‖un‖2 for all n � n0.

(3.24)
It follows in turn from (H4), (H5) and inequality (3.24) that

a(un, un) − σ1‖un‖2
L2 �

∫
Ω

j0(x, un,−un) dx

+
∫

Ω

hε(x)|un| dx + ε(‖un‖2 + ‖un‖2
L2) for all n � n0. (3.25)
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Since {ϕn}∞
n=1 is a normalized basis for V , we may set un =

∑∞
k=1 bn(k)ϕk. Then

bn(k) = a(un, ϕk) and

(un, ϕk) =
∫

Ω

unϕk dx = σ−1
k bn(k), (un, un) =

∫
Ω

u2
n dx =

∞∑
k=1

σ−1
k b2

n(k).

Consequently, it follows that

a(un, un) − σ1‖un‖2
L2 =

∞∑
k=1

(
1 − σ1

σk

)
|bn(k)|2. (3.26)

Since σ1 is simple, it then follows from (3.25), (3.26) that

∞∑
k=2

(
1 − σ1

σk

)
|bn(k)|2 �

∫
Ω

j0(x, un,−un) dx

+
∫

Ω

hε(x)|un| dx + ε(‖un‖2 + ‖un‖2
L2) for all n � n0. (3.27)

Next, we set

yn = bn(1)ϕ1, wn =
∞∑

k=2

bn(k)ϕk. (3.28)

Therefore,
un = yn + wn, (yn, wn) = a(yn, wn) = 0. (3.29)

We also set
Un =

un

‖un‖ , Yn =
yn

‖un‖ , Wn =
wn

‖un‖ . (3.30)

Next, we observe from (3.13) that

there exists γ > 0 such that γ �
(

1 − σ1

σk

)
for all k � 2. (3.31)

Since ‖wn‖2
V = a(wn, wn) =

∑∞
k=2 |bn(k)|2, it follows from (3.12), (3.27) and (3.31) that

γc3‖wn‖2 �
∫

Ω

j0(x, un; −un) dx+
∫

Ω

hε(x)|un| dx+ ε(‖un‖2 +‖un‖2
L2) for all n � n0.

By virtue of (2.2) and (H1), we obtain∫
Ω

j0(x, un; −un) dx �
∫

Ω

max{|zn(x)un|, zn(x) ∈ ∂j(x, un)} dx

�
∫

Ω

(d(x)|un| + c|un|σ) dx.

Since hε ∈ L2, it follows from Hölder’s inequality, and the two inequalities above that
there exists an M3 > 0 such that

γc3‖wn‖2 � M3(‖un‖L2 + ‖un‖σ
L2) + ε(‖un‖2 + ‖un‖2

L2) for all n � n0.
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By Poincaré’s inequality, there exists a positive constant c5 such that ‖u‖L2 � c5‖u‖ for
all u ∈ V . It follows that

γc3‖wn‖2 � M3(c5‖un‖ + cσ
5‖un‖σ) + ε(1 + c2

5)‖un‖2.

Dividing both sides of this inequality by ‖un‖2 and using (3.23) and (3.30), we see that

γc3 lim sup
n→∞

‖Wn‖2 � ε(1 + c2
5).

Since γ, c3 and c5 are positive constants and ε > 0 is arbitrary, we conclude from the
above inequality that

lim
n→∞

‖Wn‖2 = 0. (3.32)

Since Wn = Un − Yn and ‖Un‖ = 1, it follows from (3.32) that lim supn→∞‖Yn‖ � 1.
But then we obtain from (3.12) that {a(Yn, Yn)}∞

n is a uniformly bounded sequence. From
(3.28), we also see that Yn = (bn(1)/‖un‖)ϕ1. Then {|bn(1)/‖un‖|}∞

n=1 is a uniformly
bounded sequence. We consequently conclude (where for ease of notation we use the full
sequence rather than a subsequence) that

there exists b ∈ R such that lim
n→∞

‖Yn − Y ‖ = 0, where Y = bϕ1. (3.33)

We next see that
‖Un − Y ‖ � ‖Yn − Y ‖ + ‖Wn‖.

Hence, it follows from (3.32) and (3.33) that

lim
n→∞

‖Un − Y ‖ = 0. (3.34)

From this fact (and once again using the entire sequence rather than a subsequence), we
see that

lim
n→∞

Un(x) = Y (x) a.e. in Ω. (3.35)

Next, we divide both sides of the inequality in (3.24) by ‖un‖2, and use (3.29) and
(3.30) to obtain

a(Yn, Yn) + a(Wn, Wn) +
‖Un‖2

L2

n
�

∫
Ω

j0(x, un,−un)
‖un‖2 dx

+
∫

Ω

f(x, un)Un

‖un‖ dx + ε for all n � n0. (3.36)

Now from (3.12) and (3.32), we see that

lim
n→∞

a(Wn, Wn) = 0. (3.37)

Since a(· , ·) is an inner product on V and a(Yn − Y, Yn − Y ) → 0 as n → ∞, by (3.12)
and (3.33) we obtain that

lim
n→∞

a(Yn, Yn) = a(Y, Y ). (3.38)
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Also, from Poincaré’s inequality, we obtain

lim
n→∞

‖Un‖2
L2

n
� c2

5 lim
n→∞

‖Un‖2

n
= c5 lim

n→∞

1
n

= 0,

lim sup
n→∞

∫
Ω

j0(un,−un) dx

‖un‖2 � lim sup
n→∞

∫
Ω

max{|zn(x)un|, zn(x) ∈ ∂j(x, un) dx}
‖un‖2

� lim sup
n→∞

∫
Ω

{(d(x)|un| + c|un|σ) dx}
‖un‖2

= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.39)

We conclude from this last inequality and (3.36)–(3.39) that

a(Y, Y ) � lim sup
n→∞

∫
Ω

f(x, un)Un‖un‖−1 dx + ε.

But ε > 0 is arbitrary. Hence, we obtain from the latter inequality that

a(Y, Y ) � lim sup
n→∞

∫
Ω

f(x, un)Un‖un‖−1 dx. (3.40)

Since Y = bϕ1, we have

a(Y, Y ) = b2 = σ1

∫
Ω

Y 2 dx. (3.41)

Since un = Un‖un‖ and Un(x) → Y (x) = bϕ1(x) a.e. in Ω by (3.35), we have un(x) →
+∞, if b > 0. Therefore, we obtain

lim sup
n→∞

∫
Ω

f(x, un)Un‖un‖−1 dx �
∫

Ω

f+Y 2 dx. (3.42)

Similarly, un(x) → −∞, if b < 0, and we have

lim sup
n→∞

∫
Ω

f(x, un)Un‖un‖−1 dx �
∫

Ω

f−Y 2 dx. (3.43)

From (3.40)–(3.43) we consequently have that

σ1

∫
Ω

ϕ2
1 dx � max

{ ∫
Ω

f+ϕ2
1 dx,

∫
Ω

f−ϕ2
1 dx

}
,

which is a direct contradiction to the inequality in (3.17). We conclude that (3.23) is
false and therefore that our claim (3.22) is indeed true.

Since V is a Hilbert space and is embedded compactly into L2(Ω), by (3.22) there
exists u ∈ K ⊆ V such that (where we have once again used the full sequence)

un ⇀ u in V, un → u in L2(Ω). (3.44)

Taking v = u in (3.21), we have

〈Aun, u − un〉 +
∫

Ω

j0(x, un, (u − un)) dx �
∫

Ω

f(x, un)(u − un) dx −
∫

Ω

un(u − un)
n

dx.
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By virtue of (3.44) and Lemma 2.3, we obtain

lim sup
n→∞

〈Aun, un − u〉 � 0.

Since the operator A is pseudo-monotone, we have

lim inf
n→∞

〈Aun, un − v〉 � 〈Au, u − v〉 for all v ∈ V. (3.45)

Letting n → ∞ in (3.21), using Lemma 2.3 and (3.45), we finally have

〈Au, v − u〉 +
∫

Ω

j0(x, u, (v − u)) dx �
∫

Ω

f(x, u)(v − u) dx for all v ∈ K,

which has proved that u is a solution of problem (HVI). �
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