ON EIGENVALUE PROBLEMS FOR ELLIPTIC HEMIVARIATIONAL INEQUALITIES

ZHENHAI LIU ${ }^{1}$ AND GUIFANG LIU ${ }^{2}$
${ }^{1}$ Department of Mathematics, Central South University, Changsha, Hunan 410075, People's Republic of China (zhhliu@mail.csu.edu.cn)
${ }^{2}$ Department of Mathematics, Hunan City University, Yiyang, Hunan 413049, People's Republic of China

(Received 7 October 2006)

Abstract This paper is devoted to the Dirichlet problem for quasilinear elliptic hemivariational inequalities at resonance as well as at non-resonance. Using Clarke's notion of the generalized gradient and the property of the first eigenfunction, we also build a Landesman-Lazer theory in the non-smooth framework of quasilinear elliptic hemivariational inequalities.

Keywords: elliptic hemivariational inequality; generalized Clarke subdifferential; pseudo-monotone operator; existence of solutions
2000 Mathematics subject classification: Primary 35B34; 47J20; 49J40; 65N25

1. Introduction

Let Ω be an open bounded subset of \mathbb{R}^{n}, let $H_{0}^{1}(\Omega)$ be the usual Sobolev space with the norm

$$
\|u\|=\left\{\int_{\Omega}|\nabla u|^{2} \mathrm{~d} x\right\}^{1 / 2}
$$

For convenience, we denote $H_{0}^{1}(\Omega)$ by V in the following. Let A be a mapping from V to its dual space V^{*}, which is defined by

$$
\begin{equation*}
\langle A u, v\rangle=\sum_{i=1}^{n} \int_{\Omega} A_{i}(x, u, \nabla u) D_{i} v \mathrm{~d} x+\int_{\Omega} A_{0}(x, u, \nabla u) v \mathrm{~d} x \quad \text { for all } u, v \in V \tag{1.1}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ denotes the duality pairing between V^{*} and $V, \nabla=\left(D_{1}, \ldots, D_{n}\right), D_{i}=\partial / \partial x_{i}$ and the functions $A_{i}, i=0,1, \ldots, n$, satisfy suitable regularity and growth assumptions (see below).

Let K be a non-empty, closed and convex subset of the Hilbert space V. In order to simplify some computations we shall assume that $0 \in K$. The norm convergence in V and V^{*} is denoted by ' \rightarrow ' and the weak convergence is denoted by ' $\boldsymbol{\sim}$ '. We formulate
the following variational hemivariational inequality (HVI): find $u \in K$ such that

$$
\begin{equation*}
\langle A u, v-u\rangle+\int_{\Omega} j^{0}(x, u ; v-u) \mathrm{d} x \geqslant \int_{\Omega} f(x, u)(v-u) \mathrm{d} x \quad \text { for all } v \in K \tag{HVI}
\end{equation*}
$$

Here $j^{0}(x, u(x) ; v(x))$ denotes the generalized derivative of $j(x, \cdot)$ at $u(x)$ in the direction $v(x)$ (see [1]).

Problem (HVI) has been considered by the author under the coerciveness conditions (see $[\mathbf{7}, \mathbf{8}]$). In the case when A is a linear elliptic operator of second order, Goeleven et al. $[\mathbf{3}, \mathbf{4}]$ and Mansour and Riahi $[\mathbf{9}]$ studied the semilinear eigenvalue problems. They provided the existence and stability of solutions for the semilinear problem (HVI) by using the critical-points method, the Leray-Schauder degree and by a version of Ky Fan's minimax inequality, respectively. Beyond the theoretical interest, solution of the problem (HVI) at resonance (as well as at non-resonance) is strongly motivated by applications in mechanics. This kind of inequality expression in (HVI) was introduced by Panagiotopoulos [11] in order to deal with problems in mechanics whose variational forms are such inequalities that express the principle of virtual work or power. Such formulations include a wide-ranging class of complicated problems in mechanics and engineering which could not previously be treated correctly by the methods of partial differential equations or variational inequalities, e.g. the case for the study of adhesive joints in structural mechanics, the behaviour of composites, the unilateral contact and non-monotone friction problems in cracks, the adhesive grasping problem in robotics, etc. $[\mathbf{4}, \mathbf{1 0}, \mathbf{1 1}]$. Among the important mechanical phenomena leading to problem (HVI) at resonance, a typical example is offered by a model of loading and unloading presented in [4].

The aim of the present paper is the mathematical study of nonlinear eigenvalue problems arising in the stability analysis of mechanical systems subjected to realistic nonmonotone boundary conditions [10]. Our main results are formulated in Theorems 3.1, 3.2 and 3.4 , pointing out a new insight in the general setting of the nonlinear problem (HVI) at resonance as well as non-resonance, for the celebrated Landesman and Lazer conditions $[\mathbf{5}, \mathbf{6}]$ as well as for other classical sufficient conditions of solvability such as those due to Chang [1], Goeleven et al. $[\mathbf{3}, \mathbf{4}]$ and Mansour and Riahi $[\mathbf{9}]$. We build a Landesman-Lazer theory in the non-smooth framework of nonlinear problem (HVI).

2. Preliminaries and assumptions

Recall that an operator $T: V \rightarrow 2^{V^{*}}$ is pseudo-monotone if and only if the following three conditions are fulfilled:
(i) for each $u \in V$, the set $T u$ is non-empty, bounded, closed and convex;
(ii) if $\left\{\left(u_{n}^{*}, u_{n},\right)\right\}_{n=1}^{\infty} \subset G(T)$ (the graph of the operator $\left.T\right)$ is such that $u_{n} \rightharpoonup u$ as $n \rightarrow$ ∞ and $\lim \sup _{n \rightarrow \infty}\left\langle u_{n}^{*}, u_{n}-u\right\rangle \leqslant 0$, then for each $v \in V$ there exists $v^{*}(v) \in T(u)$ with the property that

$$
\liminf _{n \rightarrow \infty}\left\langle u_{n}^{*}, u_{n}-v\right\rangle \geqslant\left\langle v^{*}(v), u-v\right\rangle
$$

(iii) the restriction of T to any finite-dimensional subspace F of V is weakly upper semi-continuous as an operator from F to V^{*}.

For a locally Lipschitzian functional $h: V \rightarrow \mathbb{R}$, we denote by $h^{0}(u, v)$ the Clarke generalized directional derivative of h at u in the direction v, i.e.

$$
h^{0}(u, v):=\limsup _{\lambda \rightarrow 0+, w \rightarrow u} \frac{h(w+\lambda v)-h(w)}{\lambda}
$$

Recall also at this point that

$$
\begin{equation*}
\partial h(u):=\left\{u^{*} \in V^{*} \mid h^{0}(u, v) \geqslant\left\langle u^{*}, v\right\rangle \text { for all } v \in V\right\} \tag{2.1}
\end{equation*}
$$

denotes the generalized Clarke subdifferential.
From [1], we have

$$
\begin{equation*}
h^{0}(u, v)=\max \{\langle w, v\rangle \mid w \in \partial h(u)\} \tag{2.2}
\end{equation*}
$$

In the following we assume that the coefficients $A_{i}, i=0,1, \ldots, n$, are functions of $x \in \Omega$ and of $\xi=(\eta, \zeta) \in \mathbb{R}^{n+1}$, where $\eta \in \mathbb{R}, \zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{R}^{n}$. We assume that each $A_{i}(x, \xi)$ is a Carathéodory function, i.e. it is measurable in x for fixed $\xi \in \mathbb{R}^{n+1}$ and continuous in ξ for almost all $x \in \Omega$. We suppose that the $A_{i}(x, \xi), i=0,1, \ldots, n$, satisfy the following conditions.
$\left(A_{1}\right)$ There exist $c_{1}>0$ and $a \in L^{2}(\Omega)$ such that

$$
\left|A_{i}(x, \xi)\right| \leqslant c_{1}|\xi|+a(x)
$$

for a.e. $x \in \Omega$, for all $\xi=(\eta, \zeta) \in \mathbb{R}^{n+1}$.
$\left(A_{2}\right) \sum_{i=1}^{n}\left[A_{i}(x, \eta, \zeta)-A_{i}\left(x, \eta, \zeta^{\prime}\right)\right]\left(\zeta_{i}-\zeta_{i}^{\prime}\right)>0$ for a.e. $x \in \Omega$, for all $\eta \in \mathbb{R}$ and $\zeta, \zeta^{\prime} \in \mathbb{R}^{n}$ with $\zeta \neq \zeta^{\prime}$.
$\left(A_{3}\right)$ There exists a positive c_{2} and a non-negative function $Z \in L^{1}(\Omega)$ such that

$$
\sum_{i=1}^{n} A_{i}(x, \eta, \zeta) \zeta_{i} \geqslant c_{2} \sum_{i=1}^{n}\left|\zeta_{i}\right|^{2}-Z(x)
$$

for a.e. $x \in \Omega$, for all $\eta \in \mathbb{R}$ and $\zeta, \zeta^{\prime} \in \mathbb{R}^{n}$.
We define the first eigenvalue as

$$
\begin{equation*}
\lambda_{1}=\liminf _{\|u\|_{L^{2}} \rightarrow \infty} \frac{\langle A u, u\rangle}{\|u\|_{L^{2}}^{2}}, \quad u \in V \tag{2.3}
\end{equation*}
$$

Concerning problem (HVI) we deal with the functional $J: V\left(\subseteq L^{2}(\Omega)\right) \rightarrow \mathbb{R}$ of the following type:

$$
\begin{equation*}
J(u)=\int_{\Omega} j(x, u(x)) \mathrm{d} x, \quad u \in V \tag{2.4}
\end{equation*}
$$

We assume that $j: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following condition.
$\left(H_{1}\right) j(\cdot, s): \Omega \rightarrow \mathbb{R}$ is measurable, for all $s \in \mathbb{R} . j(x, \cdot): \mathbb{R} \rightarrow \mathbb{R}$ is locally Lipschitz for all $x \in \Omega, j(\cdot, 0) \in L^{1}(\Omega)$ and $|z| \leqslant d(x)+c|s|^{\sigma-1}$ for all $s \in \mathbb{R}$, a.e. $x \in \Omega$, for all $z \in \partial_{s} j(x, s)$, with constants $c>0$ and $1 \leqslant \sigma<2$ and $d \in L^{2}(\Omega)$.

The above assumptions on j ensure that J is locally Lipschitz on V and that

$$
\begin{equation*}
\int_{\Omega} j^{0}(x, u(x) ; v(x)) \mathrm{d} x \geqslant J^{0}(u, v) \quad \text { for all } u, v \in V . \tag{2.5}
\end{equation*}
$$

We also make the following assumptions.
$\left(H_{2}\right) f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function (i.e. $f(\cdot, s): \Omega \rightarrow \mathbb{R}$ is measurable, for all $s \in \mathbb{R}$, and $f(x, \cdot): \mathbb{R} \rightarrow \mathbb{R}$ is continuous, for almost all $x \in \Omega)$. There exist $L>0$ and $b(x) \in L^{2}(\Omega)$ such that $|f(x, t)| \leqslant b(x)+L|t|^{q-1}$ for a.e. $x \in \Omega$, for all $t \in \mathbb{R}$, where $1 \leqslant q<2 n /(n-2)$ for $n>2$ and $q>2$ for $n=1,2$.
$\left(H_{3}\right)$ There exist $\varepsilon_{0}>0$ and $c(x) \in L^{2}$ such that $t f(x, t) \leqslant\left(\lambda_{1}-\varepsilon_{0}\right)|t|^{2}+c(x)|t|$ for a.e. $x \in \Omega$, for all $t \in \mathbb{R}$, where $c(x) \geqslant 0$ a.e. in Ω and λ_{1} is defined by (2.3).

Let F be the mapping from V to its dual space V^{*}, which is defined by

$$
\langle F u, v\rangle:=\int_{\Omega} f(x, u) v \mathrm{~d} x \quad \text { for all } u, v \in V
$$

The following lemma will be useful (see, for example, [2]).
Lemma 2.1. Let $T: V \rightarrow 2^{V^{*}}$ be a pseudo-monotone operator and let $C \subseteq V$ be non-empty, bounded, closed and convex. Then, for a given $f \in V^{*}$, there exist $u \in C$ and $u^{*} \in T(u)$ such that

$$
\left\langle u^{*}-f, v-u\right\rangle \geqslant 0 \quad \text { for all } v \in C .
$$

In order to establish the existence results of problem (HVI), we also need the following lemma (see, for example, $[\mathbf{7}, \mathbf{8}]$).

Lemma 2.2. Suppose that the assumptions $\left(A_{1}\right)-\left(A_{3}\right)$ and $\left(H_{1}\right),\left(H_{2}\right)$ hold. Then the sum operator $A-F+\partial J: V \rightarrow 2^{V^{*}}$ is pseudo-monotone.

Lemma 2.3 (Mansour and Riahi [9]). Assume that $\left(H_{1}\right),\left(H_{2}\right)$ hold. Then, for all v in V, the functional

$$
u \rightarrow g(u, v):=\int_{\Omega} j^{0}(x, u ; v-u) \mathrm{d} x
$$

is weakly upper semi-continuous, while

$$
u \rightarrow\langle F u, v-u\rangle:=\int_{\Omega} f(x, u)(v-u) \mathrm{d} x
$$

is weakly continuous in V.
Lemma 2.4 (Shapiro [12]). Let Ω be a bounded open connected set. Then, under the assumptions $\left(A_{1}\right)-\left(A_{3}\right), \lambda_{1}$ defined by (2.3) is finite valued, i.e. $-\infty<\lambda_{1}<\infty$.

3. Main results

The first theorem we intend to prove is the following.
Theorem 3.1. Let K be a non-empty, bounded, closed, convex subset of V. Suppose in addition that assumptions $\left(A_{1}\right)-\left(A_{3}\right)$ and $\left(H_{1}\right),\left(H_{2}\right)$ hold. Then problem (HVI) has at least one solution.

Proof. By means of Lemmas 2.1 and 2.2, there exist $u \in K$ and $u^{*} \in \partial J(u)$ such that

$$
\left\langle A u-F u+u^{*}, v-u\right\rangle \geqslant 0 \quad \text { for all } v \in K
$$

By use of (2.2), we have that

$$
\langle A u-F u, v-u\rangle+J^{0}(u, v-u) \geqslant 0 \quad \text { for all } v \in K
$$

By virtue of (2.5), we obtain

$$
\langle A u-F u, v-u\rangle+\int_{\Omega} j^{0}(x, u(x) ; v(x)-u(x)) \mathrm{d} x \geqslant 0 \quad \text { for all } v \in K
$$

Therefore, from the definition of operator F, we get
$\langle A u, v-u\rangle+\int_{\Omega} j^{0}(x, u(x) ; v(x)-u(x)) \mathrm{d} x \geqslant \int_{\Omega} f(x, u(x))(v(x)-u(x)) \mathrm{d} x \quad$ for all $v \in K$.
This ends the proof of the theorem.
Theorem 3.2. Let K be a non-empty, closed, convex subset of V. Suppose in addition that assumptions $\left(A_{1}\right)-\left(A_{3}\right)$ and $\left(H_{1}\right)-\left(H_{3}\right)$ hold. Then problem (HVI) has at least one solution.

Proof. Set $K_{n}:=\{v \in K \mid\|v\| \leqslant n\}$. Using Theorem 3.1, we get the existence of $u_{n} \in K_{n}$ such that

$$
\begin{equation*}
\left\langle A u_{n}-F u_{n}, v-u_{n}\right\rangle+\int_{\Omega} j^{0}\left(x, u_{n} ; v-u_{n}\right) \mathrm{d} x \geqslant 0 \quad \text { for all } v \in K_{n} \tag{3.1}
\end{equation*}
$$

Step 1. There exists $M>0$ such that

$$
\begin{equation*}
\left\|u_{n}\right\|_{L^{2}} \leqslant M \quad \text { for } n=1,2, \ldots \tag{3.2}
\end{equation*}
$$

Suppose to the contrary that (3.2) does not hold. Then, without loss of generality, we may assume that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L^{2}}=\infty \tag{3.3}
\end{equation*}
$$

By taking $v=0$ in (3.1), we have

$$
\begin{equation*}
\left\langle A u_{n}, u_{n}\right\rangle \leqslant \int_{\Omega} j^{0}\left(x, u_{n} ;-u_{n}\right) \mathrm{d} x+\int_{\Omega} f\left(x, u_{n}\right) u_{n} \mathrm{~d} x \tag{3.4}
\end{equation*}
$$

But it then follows from (2.3) and (3.3) that

$$
\begin{equation*}
\lambda_{1} \leqslant \liminf _{n \rightarrow \infty}\left\{\frac{\int_{\Omega} j^{0}\left(x, u_{n} ;-u_{n}\right) \mathrm{d} x}{\left\|u_{n}\right\|_{L^{2}}^{2}}+\frac{\int_{\Omega} f\left(x, u_{n}(x)\right) u_{n}(x) \mathrm{d} x}{\left\|u_{n}\right\|_{L^{2}}^{2}}\right\} \tag{3.5}
\end{equation*}
$$

By virtue of (2.2) and $\left(H_{1}\right)$, we obtain

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \frac{\int_{\Omega} j^{0}\left(x, u_{n} ;-u_{n}\right) \mathrm{d} x}{\left\|u_{n}\right\|_{L^{2}}^{2}} & \leqslant \limsup _{n \rightarrow \infty} \frac{\int_{\Omega} \max \left\{\left|z_{n}(x) u_{n}\right|, z_{n}(x) \in \partial j\left(x, u_{n}\right)\right\} \mathrm{d} x}{\left\|u_{n}\right\|_{L^{2}}^{2}} \\
& \leqslant \limsup _{n \rightarrow \infty} \frac{\int_{\Omega}\left(d(x)\left|u_{n}\right|+c\left|u_{n}\right|^{\sigma}\right) \mathrm{d} x}{\left\|u_{n}\right\|_{L^{2}}^{2}} \\
& =0 .
\end{aligned}
$$

By use of $\left(\mathrm{H}_{3}\right)$, we also have

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \frac{\int_{\Omega} f\left(x, u_{n}(x)\right) u_{n}(x) \mathrm{d} x}{\left\|u_{n}\right\|_{L^{2}}^{2}} & \leqslant \limsup _{n \rightarrow \infty} \frac{\int_{\Omega}\left[\left(\lambda_{1}-\varepsilon_{0}\right)\left|u_{n}(x)\right|^{2}+c(x)\left|u_{n}(x)\right|\right] \mathrm{d} x}{\left\|u_{n}\right\|_{L^{2}}^{2}} \\
& =\lambda_{1}-\varepsilon_{0} .
\end{aligned}
$$

From the last two inequalities and (3.5), we obtain a contradiction, which has proved that the inequality (3.2) holds.

Step 2. There exists $M_{1}>0$ such that

$$
\begin{equation*}
\left\|u_{n}\right\| \leqslant M_{1} \quad \text { for } n=1,2, \ldots \tag{3.6}
\end{equation*}
$$

Using (3.4) once again, we obtain from $\left(A_{3}\right)$ that

$$
\begin{aligned}
c_{2} \int_{\Omega}\left|\nabla u_{n}\right|^{2} \mathrm{~d} x \leqslant \int_{\Omega} Z(x) \mathrm{d} x- & \int_{\Omega} A_{0}\left(x, u_{n}, \nabla u_{n}\right) u_{n} \mathrm{~d} x \\
& \quad+\int_{\Omega} j^{0}\left(x, u_{n} ;-u_{n}\right) \mathrm{d} x+\int_{\Omega} f\left(x, u_{n}(x)\right) u_{n}(x) \mathrm{d} x .
\end{aligned}
$$

Using $\left(A_{1}\right),\left(A_{3}\right),\left(H_{1}\right)$ and $\left(H_{2}\right)$, we obtain

$$
\begin{aligned}
c_{2}\left\|u_{n}\right\|^{2} \leqslant \int_{\Omega} & Z(x) \mathrm{d} x+\int_{\Omega} c_{1}\left\{\left|\nabla u_{n}\right|^{2}+\left|u_{n}\right|^{2}\right\}^{1 / 2}\left|u_{n}\right| \mathrm{d} x+\int_{\Omega} a(x)\left|u_{n}\right| \mathrm{d} x \\
& +\int_{\Omega}\left(d(x)\left|u_{n}\right|+c\left|u_{n}\right|^{\sigma}\right) \mathrm{d} x+\int_{\Omega}\left[\left(\lambda_{1}-\varepsilon_{0}\right)\left|u_{n}(x)\right|^{2}+c(x)\left|u_{n}(x)\right|\right] \mathrm{d} x
\end{aligned}
$$

Therefore, by Hölder's inequality, there exists a positive constant C such that

$$
\begin{equation*}
\left\|u_{n}\right\|^{2} \leqslant C\left[\int_{\Omega} Z(x) \mathrm{d} x+\left\|u_{n}\right\|\left\|u_{n}\right\|_{L^{2}}+\left\|u_{n}\right\|+\left\|u_{n}\right\|_{L^{2}}^{2}\right] \quad \text { for } n=1,2, \ldots \tag{3.7}
\end{equation*}
$$

which implies that the inequalities (3.6) hold due to (3.2).
By virtue of (3.6), there exists a positive integer n_{0} such that $\left\|u_{n_{0}}\right\|<n_{0}$.

Step 3. $u_{n_{0}}$ solves problem (HVI).
Since $\left\|u_{n_{0}}\right\|<n_{0}$, we have, for each $y \in K$, the existence of an $\varepsilon>0$ such that $u_{n_{0}}+\varepsilon\left(y-u_{n_{0}}\right) \in K_{n_{0}}$. It suffices to take

$$
\varepsilon \begin{cases}<\left(n_{0}-\left\|u_{n_{0}}\right\|\right) /\left\|y-u_{n_{0}}\right\| & \text { if } y \neq u_{n_{0}} \\ =1 & \text { if } y=u_{n_{0}}\end{cases}
$$

We have

$$
\begin{equation*}
\left\langle A u_{n_{0}}-F u_{n_{0}}, v-u_{n_{0}}\right\rangle+\int_{\Omega} j^{0}\left(x, u_{n_{0}} ; v-u_{n_{0}}\right) \mathrm{d} x \geqslant 0 \quad \text { for all } v \in K_{n_{0}} \tag{3.8}
\end{equation*}
$$

If we set $v=u_{n_{0}}+\varepsilon\left(y-u_{n_{0}}\right)$ in (3.8), we obtain

$$
\begin{equation*}
\left\langle A u_{n_{0}}-F u_{n_{0}}, \varepsilon\left(y-u_{n_{0}}\right)\right\rangle+\int_{\Omega} j^{0}\left(x, u_{n_{0}} ; \varepsilon\left(y-u_{n_{0}}\right)\right) \mathrm{d} x \geqslant 0 \tag{3.9}
\end{equation*}
$$

Since $j^{0}(x, u, v)$ is positively homogeneous in v (see [1]), we have that

$$
\begin{equation*}
\varepsilon\left\langle A u_{n_{0}}-F u_{n_{0}}, y-u_{n_{0}}\right\rangle+\varepsilon \int_{\Omega} j^{0}\left(x, u_{n_{0}} ; y-u_{n_{0}}\right) \mathrm{d} x \geqslant 0 . \tag{3.10}
\end{equation*}
$$

Dividing (3.10) by $\varepsilon>0$, we finally obtain

$$
\begin{equation*}
\left\langle A u_{n_{0}}-F u_{n_{0}}, y-u_{n_{0}}\right\rangle+\int_{\Omega} j^{0}\left(u_{n_{0}}, y-u_{n_{0}}\right) \mathrm{d} x \geqslant 0 \quad \text { for all } y \in K \tag{3.11}
\end{equation*}
$$

This completes the proof.
Now we turn to the solvability of problem (HVI) involving resonance. It is an easy matter in this case to give examples that show that Theorem 3.2 is false if $\varepsilon_{0}=0$ in $\left(H_{3}\right)$ since this is already well known if A given in (1.1) is linear. Consequently, a further condition is necessary to ensure that the conclusion of Theorem 3.2 holds for the situation $\varepsilon_{0}=0$ in $\left(H_{3}\right)$. Results of this nature are referred to in the literature as resonance results (see $[\mathbf{3 - 6}]$). We shall present one such result here that will hold for the Hilbert space $V\left(=H_{0}^{1}(\Omega)\right)$. In order to do this, we first recall some facts concerning linear elliptic theory.

Let $a: V \times V \rightarrow \mathbb{R}$ be a continuous, symmetric, bilinear form which is coercive:

$$
a(u, u) \geqslant \alpha\|u\|^{2} \quad \text { for all } u \in V
$$

with a constant $\alpha>0$. Thus,

$$
\|\cdot\|_{V}:=a(\cdot, \cdot)^{1 / 2}
$$

is an equivalent norm on V, i.e. there exist two positive constants c_{3} and c_{4} such that

$$
\begin{equation*}
c_{3}\|u\|^{2} \leqslant a(u, u) \leqslant c_{4}\|u\|^{2} \tag{3.12}
\end{equation*}
$$

Denote by

$$
\begin{equation*}
\sigma_{1}<\sigma_{2} \leqslant \cdots \leqslant \sigma_{n} \cdots \rightarrow+\infty \tag{3.13}
\end{equation*}
$$

the sequence of eigenvalues of the linear problem

$$
\begin{equation*}
a(u, v)=\sigma\langle u, v\rangle_{L^{2}} \quad \text { for all } v \in V \tag{3.14}
\end{equation*}
$$

We also consider a basis $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$ for V consisting of eigenfunctions, where φ_{n} corresponds to σ_{n}, i.e. $u=\varphi_{n}$ and $\sigma=\sigma_{n}$ in (3.14), which is normalized in the following sense:

$$
\begin{equation*}
a\left(\varphi_{i}, \varphi_{j}\right)=\delta_{i j} \tag{3.15}
\end{equation*}
$$

where $\delta_{i i}=1$ and $\delta_{i j}=0$ if $i \neq j$.
In this statement we use essentially the compactness of the embedding $V \subset L^{2}(\Omega)$. The fact that σ_{1} is simple and the corresponding eigenfunction does not change sign in Ω follows from the Krein-Rutman theorem (see, for example, [13]).

Remark 3.3. For example, we may assume that the bilinear form $a(\cdot, \cdot)$ is defined by the following linear elliptic operator of second order:

$$
L u:=-\sum_{i j=1}^{N} D_{j}\left(a_{i j}(x) D_{i} u\right)+q(x) u
$$

if L satisfies some suitable assumptions.
In Theorem 3.4, we shall replace $\left(H_{3}\right)$ by the following.
$\left(H_{4}\right)$ For all $\varepsilon>0$, there exists $h_{\varepsilon} \in L^{2}$ such that $t f(x, t) \leqslant\left(\lambda_{1}+\varepsilon\right)|t|^{2}+h_{\varepsilon}(x)|t|$ for a.e. $x \in \Omega$, for all $t \in \mathbb{R}$, where $h_{\varepsilon}(x) \geqslant 0$ a.e. in Ω.

We observe that $\left(H_{4}\right)$ is a generalization of the case when $\varepsilon_{0}=0$ in $\left(H_{3}\right)$. We shall also set the following assumption in Theorem 3.4.
$\left(H_{5}\right) \lambda_{1}=\sigma_{1}$, where λ_{1} is given by (2.3), and

$$
\liminf _{\|u\| \rightarrow \infty} \frac{\langle A u, u\rangle-a(u, u)}{\|u\|^{2}} \geqslant 0, \quad u \in V
$$

Also in Theorem 3.4, we shall set

$$
\begin{equation*}
f_{ \pm}=\limsup _{t \rightarrow \pm \infty} \frac{f(x, t)}{t} \tag{3.16}
\end{equation*}
$$

We intend to establish the following result.
Theorem 3.4. Let K be a non-empty, closed, convex subset of V. Suppose in addition that assumptions $\left(A_{1}\right)-\left(A_{3}\right),\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{4}\right),\left(H_{5}\right)$ hold. Suppose furthermore that $f(x, t)$ satisfies

$$
\begin{equation*}
\sigma_{1} \int_{\Omega} \varphi_{1}^{2} \mathrm{~d} x>\max \left\{\int_{\Omega} f_{+} \varphi_{1}^{2} \mathrm{~d} x, \int_{\Omega} f_{-} \varphi_{1}^{2} \mathrm{~d} x\right\} \tag{3.17}
\end{equation*}
$$

where φ_{1} is the first eigenfunction of the linear problem (3.14). Then problem (HVI) has at least one solution.

Proof. We first recall (see [13]) that

$$
\begin{equation*}
\sigma_{1}=\inf \frac{a(u, u)}{\|u\|_{L^{2}}^{2}}, \quad u \in V \tag{3.18}
\end{equation*}
$$

Next, for n a positive integer we set

$$
\begin{equation*}
f_{n}(x, t)=f(x, t)-\frac{t}{n} \tag{3.19}
\end{equation*}
$$

and choose $\varepsilon=(2 n)^{-1}$ in $\left(H_{4}\right)$. It then follows that

$$
\begin{equation*}
t f_{n}(x, t) \leqslant\left[\lambda_{1}-(2 n)^{-1}\right] t^{2}+h_{(2 n)^{-1}}(x)|t| \tag{3.20}
\end{equation*}
$$

for a.e. $x \in \Omega$ and for all $t \in \mathbb{R}$, where $h_{(2 n)^{-1}} \in L^{2}$.
With (3.20) at our disposal, we see from Theorem 3.2 that there exists a $u_{n} \in K$ such that

$$
\begin{equation*}
\left\langle A u_{n}, v-u_{n}\right\rangle+\int_{\Omega} j^{0}\left(x, u_{n},\left(v-u_{n}\right)\right) \mathrm{d} x \geqslant \int_{\Omega} f\left(x, u_{n}\right)\left(v-u_{n}\right) \mathrm{d} x-\int_{\Omega} \frac{u_{n}\left(v-u_{n}\right)}{n} \mathrm{~d} x \tag{3.21}
\end{equation*}
$$

for all $v \in K$.
We claim that there exists an $M_{2}>0$ such that

$$
\begin{equation*}
\left\|u_{n}\right\| \leqslant M_{2} \quad \text { for all } n \tag{3.22}
\end{equation*}
$$

Suppose that (3.22) is false. Then we can assume, without loss of generality, that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}\right\|=\infty \tag{3.23}
\end{equation*}
$$

We shall show that (3.23) leads to a contradiction.
Let $\varepsilon>0$ be given. It then follows from $\left(H_{5}\right)$ and (3.23) that there exists an n_{0} such that

$$
\left\langle A u_{n}, u_{n}\right\rangle-a\left(u_{n}, u_{n}\right) \geqslant-\varepsilon\left\|u_{n}\right\|^{2} \quad \text { for all } n \geqslant n_{0}
$$

Taking $v=0$ in (3.21) and using the above inequality, we see that

$$
\begin{equation*}
a\left(u_{n}, u_{n}\right)+\frac{\left\|u_{n}\right\|_{L^{2}}^{2}}{n} \leqslant \int_{\Omega} j^{0}\left(x, u_{n},-u_{n}\right) \mathrm{d} x+\int_{\Omega} f\left(x, u_{n}\right) u_{n} \mathrm{~d} x+\varepsilon\left\|u_{n}\right\|^{2} \quad \text { for all } n \geqslant n_{0} \tag{3.24}
\end{equation*}
$$

It follows in turn from $\left(H_{4}\right),\left(H_{5}\right)$ and inequality (3.24) that

$$
\begin{align*}
a\left(u_{n}, u_{n}\right)-\sigma_{1}\left\|u_{n}\right\|_{L^{2}}^{2} \leqslant & \int_{\Omega} j^{0}\left(x, u_{n},-u_{n}\right) \mathrm{d} x \\
& +\int_{\Omega} h_{\varepsilon}(x)\left|u_{n}\right| \mathrm{d} x+\varepsilon\left(\left\|u_{n}\right\|^{2}+\left\|u_{n}\right\|_{L^{2}}^{2}\right) \quad \text { for all } n \geqslant n_{0} \tag{3.25}
\end{align*}
$$

Since $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$ is a normalized basis for V, we may set $u_{n}=\sum_{k=1}^{\infty} b_{n}(k) \varphi_{k}$. Then $b_{n}(k)=a\left(u_{n}, \varphi_{k}\right)$ and

$$
\left(u_{n}, \varphi_{k}\right)=\int_{\Omega} u_{n} \varphi_{k} \mathrm{~d} x=\sigma_{k}^{-1} b_{n}(k), \quad\left(u_{n}, u_{n}\right)=\int_{\Omega} u_{n}^{2} \mathrm{~d} x=\sum_{k=1}^{\infty} \sigma_{k}^{-1} b_{n}^{2}(k)
$$

Consequently, it follows that

$$
\begin{equation*}
a\left(u_{n}, u_{n}\right)-\sigma_{1}\left\|u_{n}\right\|_{L^{2}}^{2}=\sum_{k=1}^{\infty}\left(1-\frac{\sigma_{1}}{\sigma_{k}}\right)\left|b_{n}(k)\right|^{2} . \tag{3.26}
\end{equation*}
$$

Since σ_{1} is simple, it then follows from (3.25), (3.26) that

$$
\begin{align*}
\sum_{k=2}^{\infty}\left(1-\frac{\sigma_{1}}{\sigma_{k}}\right)\left|b_{n}(k)\right|^{2} \leqslant & \int_{\Omega} j^{0}\left(x, u_{n},-u_{n}\right) \mathrm{d} x \\
& +\int_{\Omega} h_{\varepsilon}(x)\left|u_{n}\right| \mathrm{d} x+\varepsilon\left(\left\|u_{n}\right\|^{2}+\left\|u_{n}\right\|_{L^{2}}^{2}\right) \text { for all } n \geqslant n_{0} \tag{3.27}
\end{align*}
$$

Next, we set

$$
\begin{equation*}
y_{n}=b_{n}(1) \varphi_{1}, \quad w_{n}=\sum_{k=2}^{\infty} b_{n}(k) \varphi_{k} \tag{3.28}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
u_{n}=y_{n}+w_{n}, \quad\left(y_{n}, w_{n}\right)=a\left(y_{n}, w_{n}\right)=0 \tag{3.29}
\end{equation*}
$$

We also set

$$
\begin{equation*}
U_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}, \quad Y_{n}=\frac{y_{n}}{\left\|u_{n}\right\|}, \quad W_{n}=\frac{w_{n}}{\left\|u_{n}\right\|} \tag{3.30}
\end{equation*}
$$

Next, we observe from (3.13) that

$$
\begin{equation*}
\text { there exists } \gamma>0 \text { such that } \gamma \leqslant\left(1-\frac{\sigma_{1}}{\sigma_{k}}\right) \text { for all } k \geqslant 2 \tag{3.31}
\end{equation*}
$$

Since $\left\|w_{n}\right\|_{V}^{2}=a\left(w_{n}, w_{n}\right)=\sum_{k=2}^{\infty}\left|b_{n}(k)\right|^{2}$, it follows from (3.12), (3.27) and (3.31) that $\gamma c_{3}\left\|w_{n}\right\|^{2} \leqslant \int_{\Omega} j^{0}\left(x, u_{n} ;-u_{n}\right) \mathrm{d} x+\int_{\Omega} h_{\varepsilon}(x)\left|u_{n}\right| \mathrm{d} x+\varepsilon\left(\left\|u_{n}\right\|^{2}+\left\|u_{n}\right\|_{L^{2}}^{2} \quad\right.$ for all $n \geqslant n_{0}$.

By virtue of (2.2) and $\left(H_{1}\right)$, we obtain

$$
\begin{aligned}
\int_{\Omega} j^{0}\left(x, u_{n} ;-u_{n}\right) \mathrm{d} x & \leqslant \int_{\Omega} \max \left\{\left|z_{n}(x) u_{n}\right|, z_{n}(x) \in \partial j\left(x, u_{n}\right)\right\} \mathrm{d} x \\
& \leqslant \int_{\Omega}\left(d(x)\left|u_{n}\right|+c\left|u_{n}\right|^{\sigma}\right) \mathrm{d} x
\end{aligned}
$$

Since $h_{\varepsilon} \in L^{2}$, it follows from Hölder's inequality, and the two inequalities above that there exists an $M_{3}>0$ such that

$$
\gamma c_{3}\left\|w_{n}\right\|^{2} \leqslant M_{3}\left(\left\|u_{n}\right\|_{L^{2}}+\left\|u_{n}\right\|_{L^{2}}^{\sigma}\right)+\varepsilon\left(\left\|u_{n}\right\|^{2}+\left\|u_{n}\right\|_{L^{2}}^{2}\right) \quad \text { for all } n \geqslant n_{0}
$$

By Poincaré's inequality, there exists a positive constant c_{5} such that $\|u\|_{L^{2}} \leqslant c_{5}\|u\|$ for all $u \in V$. It follows that

$$
\gamma c_{3}\left\|w_{n}\right\|^{2} \leqslant M_{3}\left(c_{5}\left\|u_{n}\right\|+c_{5}^{\sigma}\left\|u_{n}\right\|^{\sigma}\right)+\varepsilon\left(1+c_{5}^{2}\right)\left\|u_{n}\right\|^{2} .
$$

Dividing both sides of this inequality by $\left\|u_{n}\right\|^{2}$ and using (3.23) and (3.30), we see that

$$
\gamma c_{3} \limsup _{n \rightarrow \infty}\left\|W_{n}\right\|^{2} \leqslant \varepsilon\left(1+c_{5}^{2}\right)
$$

Since γ, c_{3} and c_{5} are positive constants and $\varepsilon>0$ is arbitrary, we conclude from the above inequality that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|W_{n}\right\|^{2}=0 \tag{3.32}
\end{equation*}
$$

Since $W_{n}=U_{n}-Y_{n}$ and $\left\|U_{n}\right\|=1$, it follows from (3.32) that limsup $\sup _{n \rightarrow \infty}\left\|Y_{n}\right\| \leqslant 1$. But then we obtain from (3.12) that $\left\{a\left(Y_{n}, Y_{n}\right)\right\}_{n}^{\infty}$ is a uniformly bounded sequence. From (3.28), we also see that $Y_{n}=\left(b_{n}(1) /\left\|u_{n}\right\|\right) \varphi_{1}$. Then $\left\{\left|b_{n}(1) /\left\|u_{n}\right\|\right|\right\}_{n=1}^{\infty}$ is a uniformly bounded sequence. We consequently conclude (where for ease of notation we use the full sequence rather than a subsequence) that

$$
\begin{equation*}
\text { there exists } b \in \mathbb{R} \text { such that } \lim _{n \rightarrow \infty}\left\|Y_{n}-Y\right\|=0, \text { where } Y=b \varphi_{1} \tag{3.33}
\end{equation*}
$$

We next see that

$$
\left\|U_{n}-Y\right\| \leqslant\left\|Y_{n}-Y\right\|+\left\|W_{n}\right\| .
$$

Hence, it follows from (3.32) and (3.33) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|U_{n}-Y\right\|=0 \tag{3.34}
\end{equation*}
$$

From this fact (and once again using the entire sequence rather than a subsequence), we see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} U_{n}(x)=Y(x) \quad \text { a.e. in } \Omega . \tag{3.35}
\end{equation*}
$$

Next, we divide both sides of the inequality in (3.24) by $\left\|u_{n}\right\|^{2}$, and use (3.29) and (3.30) to obtain

$$
\begin{align*}
a\left(Y_{n}, Y_{n}\right)+a\left(W_{n}, W_{n}\right)+\frac{\left\|U_{n}\right\|_{L^{2}}^{2}}{n} \leqslant \int_{\Omega} & \frac{j^{0}\left(x, u_{n},-u_{n}\right)}{\left\|u_{n}\right\|^{2}} \mathrm{~d} x \\
& +\int_{\Omega} \frac{f\left(x, u_{n}\right) U_{n}}{\left\|u_{n}\right\|} \mathrm{d} x+\varepsilon \quad \text { for all } n \geqslant n_{0} . \tag{3.36}
\end{align*}
$$

Now from (3.12) and (3.32), we see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a\left(W_{n}, W_{n}\right)=0 \tag{3.37}
\end{equation*}
$$

Since $a(\cdot, \cdot)$ is an inner product on V and $a\left(Y_{n}-Y, Y_{n}-Y\right) \rightarrow 0$ as $n \rightarrow \infty$, by (3.12) and (3.33) we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a\left(Y_{n}, Y_{n}\right)=a(Y, Y) \tag{3.38}
\end{equation*}
$$

Also, from Poincaré's inequality, we obtain

$$
\begin{align*}
\lim _{n \rightarrow \infty} \frac{\left\|U_{n}\right\|_{L^{2}}^{2}}{n} & \leqslant c_{5}^{2} \lim _{n \rightarrow \infty} \frac{\left\|U_{n}\right\|^{2}}{n}=c_{5} \lim _{n \rightarrow \infty} \frac{1}{n}=0 \\
\limsup _{n \rightarrow \infty} \frac{\int_{\Omega} j^{0}\left(u_{n},-u_{n}\right) \mathrm{d} x}{\left\|u_{n}\right\|^{2}} & \leqslant \limsup _{n \rightarrow \infty} \frac{\int_{\Omega} \max \left\{\left|z_{n}(x) u_{n}\right|, z_{n}(x) \in \partial j\left(x, u_{n}\right) \mathrm{d} x\right\}}{\left\|u_{n}\right\|^{2}} \\
& \leqslant \limsup _{n \rightarrow \infty} \frac{\int_{\Omega}\left\{\left(d(x)\left|u_{n}\right|+c\left|u_{n}\right|^{\sigma}\right) \mathrm{d} x\right\}}{\left\|u_{n}\right\|^{2}} \\
& =0 . \tag{3.39}
\end{align*}
$$

We conclude from this last inequality and (3.36)-(3.39) that

$$
a(Y, Y) \leqslant \limsup _{n \rightarrow \infty} \int_{\Omega} f\left(x, u_{n}\right) U_{n}\left\|u_{n}\right\|^{-1} \mathrm{~d} x+\varepsilon
$$

But $\varepsilon>0$ is arbitrary. Hence, we obtain from the latter inequality that

$$
\begin{equation*}
a(Y, Y) \leqslant \limsup _{n \rightarrow \infty} \int_{\Omega} f\left(x, u_{n}\right) U_{n}\left\|u_{n}\right\|^{-1} \mathrm{~d} x \tag{3.40}
\end{equation*}
$$

Since $Y=b \varphi_{1}$, we have

$$
\begin{equation*}
a(Y, Y)=b^{2}=\sigma_{1} \int_{\Omega} Y^{2} \mathrm{~d} x \tag{3.41}
\end{equation*}
$$

Since $u_{n}=U_{n}\left\|u_{n}\right\|$ and $U_{n}(x) \rightarrow Y(x)=b \varphi_{1}(x)$ a.e. in Ω by (3.35), we have $u_{n}(x) \rightarrow$ $+\infty$, if $b>0$. Therefore, we obtain

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{\Omega} f\left(x, u_{n}\right) U_{n}\left\|u_{n}\right\|^{-1} \mathrm{~d} x \leqslant \int_{\Omega} f_{+} Y^{2} \mathrm{~d} x . \tag{3.42}
\end{equation*}
$$

Similarly, $u_{n}(x) \rightarrow-\infty$, if $b<0$, and we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{\Omega} f\left(x, u_{n}\right) U_{n}\left\|u_{n}\right\|^{-1} \mathrm{~d} x \leqslant \int_{\Omega} f_{-} Y^{2} \mathrm{~d} x \tag{3.43}
\end{equation*}
$$

From (3.40)-(3.43) we consequently have that

$$
\sigma_{1} \int_{\Omega} \varphi_{1}^{2} \mathrm{~d} x \leqslant \max \left\{\int_{\Omega} f_{+} \varphi_{1}^{2} \mathrm{~d} x, \int_{\Omega} f_{-} \varphi_{1}^{2} \mathrm{~d} x\right\},
$$

which is a direct contradiction to the inequality in (3.17). We conclude that (3.23) is false and therefore that our claim (3.22) is indeed true.

Since V is a Hilbert space and is embedded compactly into $L^{2}(\Omega)$, by (3.22) there exists $u \in K \subseteq V$ such that (where we have once again used the full sequence)

$$
\begin{equation*}
u_{n} \rightharpoonup u \quad \text { in } V, \quad u_{n} \rightarrow u \quad \text { in } L^{2}(\Omega) \tag{3.44}
\end{equation*}
$$

Taking $v=u$ in (3.21), we have

$$
\left\langle A u_{n}, u-u_{n}\right\rangle+\int_{\Omega} j^{0}\left(x, u_{n},\left(u-u_{n}\right)\right) \mathrm{d} x \geqslant \int_{\Omega} f\left(x, u_{n}\right)\left(u-u_{n}\right) \mathrm{d} x-\int_{\Omega} \frac{u_{n}\left(u-u_{n}\right)}{n} \mathrm{~d} x .
$$

By virtue of (3.44) and Lemma 2.3, we obtain

$$
\limsup _{n \rightarrow \infty}\left\langle A u_{n}, u_{n}-u\right\rangle \leqslant 0
$$

Since the operator A is pseudo-monotone, we have

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left\langle A u_{n}, u_{n}-v\right\rangle \geqslant\langle A u, u-v\rangle \quad \text { for all } v \in V \tag{3.45}
\end{equation*}
$$

Letting $n \rightarrow \infty$ in (3.21), using Lemma 2.3 and (3.45), we finally have

$$
\langle A u, v-u\rangle+\int_{\Omega} j^{0}(x, u,(v-u)) \mathrm{d} x \geqslant \int_{\Omega} f(x, u)(v-u) \mathrm{d} x \quad \text { for all } v \in K
$$

which has proved that u is a solution of problem (HVI).
Acknowledgements. This research was supported by Grant no. 10671211 of the NNSF of China.

References

1. K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Analysis Applic. 80 (1981), 102-129.
2. F. Giannessi and A. A. Khan, Regularization of non-coercive quasi variational inequalities, Control Cybernet. 29 (2000), 1-20.
3. D. Goeleven, D. Motreanu and P. D. Panagiotopoulos, Multiple solutions for a class of eigenvalue problems in hemivariational inequalities, Nonlin. Analysis 29 (1997), 9-26.
4. D. Goeleven, D. Motreanu and P. D. Panagiotopoulos, Eigenvalue problems for variational-hemivariational inequalities at resonance, Nonlin. Analysis 33 (1998), 161180.
5. P. Hess, On a theorem of Landesman and Lazer, Indiana Univ. Math. J. 23 (1974), 827-829.
6. E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems, J. Math. Mech. 7 (1970), 609-623.
7. Z. H. Liu, On quasilinear elliptic hemivariational inequalities, Appl. Math. Mech. 20 (1999), 225-230.
8. Z. H. Liu, On quasilinear elliptic hemivariational inequalities of higher order, Acta Math. Hungar. 85 (1999), 1-8.
9. M. A. Mansour and H. Riahi, On the eigenvalues problem for hemivariational inequalities: existence and stability, J. Convex Analysis 9 (2002), 309-325.
10. Z. Naniewicz and P. D. Panagiotopoulos, Mathematical theory of hemivariational inequalities and applications (Marcel Dekker, New York, 1995).
11. P. D. Panagiotopoulos, Hemivariational inequalities, Applications to Mechanics and Engineering (Springer, 1993).
12. V. L. Shapiro, Quasilinear ellipticity and the 1st eigenvalue, Commun. PDEs 6 (1991), 1819-1855.
13. Q. X. Ye and Z. Y. Li, Introduction to reaction-diffusion equations (Kexue Press, Beijing, 1990).
