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Asymptotic Improvements of Lower
Bounds for the Least Common Multiples
of Arithmetic Progressions

Daniel M. Kane and Scott Duke Kominers

Abstract. For relatively prime positive integers u0 and r, we consider the least common multiple Ln :=
lcm(u0, u1, . . . , un) of the finite arithmetic progression {uk := u0 + kr}n

k=0. We derive new lower
bounds on Ln that improve upon those obtained previously when either u0 or n is large. When r is
prime, our best bound is sharp up to a factor of n + 1 for u0 properly chosen, and is also nearly sharp
as n→∞.

1 Introduction

The search for effective bounds on the least common multiples of arithmetic progres-
sions began with the work of Hanson [Han72] and Nair [Nai82], who respectively
found upper and lower bounds for lcm(1, . . . , n). Decades later, Bateman, Kalb, and
Stenger [BKS02] and Farhi [Far05] respectively obtained asymptotics and nontrivial
lower bounds for the least common multiples of general arithmetic progressions. The
bounds of Farhi [Far05] were then successively improved by Hong and Feng [HF06],
Hong and Yang [HY08], Hong and the second author [HK10], and Wu, Tan, and
Hong [WTH13]. Farhi and the first author [FK09] also obtained some related re-
sults regarding lcm(u0 + 1, . . . , u0 + n) that have recently been extended to general
arithmetic progressions by Hong and Qian [HQ11].

In this article, we study finite arithmetic progressions {uk}n
k=0, where uk := u0 +kr

for fixed positive integers u0 and r satisfying (u0, r) = 1. Throughout, we let n ≥ 0
be a nonnegative integer and define

Ln := lcm(u0, . . . , un)

to be the least common multiple of the sequence {u0, . . . , un}. We are interested in
the size of Ln for various choices of the parameters u0, r, and n, particularly in the
case where n is large relative to u0 and r.

The strongest previously known lower bound on Ln is the following result of Wu,
Tan, and Hong [WTH13].
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Theorem 1.1 ([WTH13, Thm. 1.3]) Let a, ` ≥ 2 be given integers. Then for any
integers α ≥ a, r ≥ max(a, `− 1), and n ≥ `αr, we have Ln ≥ u0r(`−1)α+a−`(r + 1)n.

After introducing relevant notation and preliminary results in Section 2, we prove
the following lower bound on Ln in Section 3.

Theorem 1.2 Letting k be an integer with 0 ≤ k ≤ n, we have

(1.1) Ln ≥
uk · · · un

(n− k)!

∏
p|r

p≤n−k

( p(n−k)/(p−1)

n− k + 1

)
,

where the product runs over primes p ≤ n− k dividing r.

In Section 4, we derive several consequences of Theorem 1.2. In particular, we
show the following result.

Corollary 1.3 If r > 1 and k is an integer with 0 ≤ k < n, then we have that

(1.2) Ln ≥ r
(n−k+1)r−1

r−1

(
( uk−1

r ) + (n− k + 1)

n− k + 1

)
.

Here and hereafter, we define binomial coefficients with non-integral arguments
by interpolating the defining factorials using the Gamma function.

In the case where r is prime, we determine the value of k that provides the strongest
form of (1.2) and show that in that case Corollary 1.3 improves upon Theorem 1.1
whenever u0 �n,r 1 or n � r2. Then, in Section 5, we show that the bound in
Corollary 1.3 is sharp up to a factor of n + 1 for u0 properly chosen and r prime.
We study asymptotics for large n in Section 6, showing that when r is prime, (1.2) is
nearly sharp as n→∞ (with u0 and r held fixed). We conclude in Section 7.

As we discuss in Section 7, our approach extends the methods of Hong and
Feng [HF06] and the other recent work [HY08,HK10,WTH13], pushing these meth-
ods nearly to their limits. The asymptotic estimates we obtain in Section 6 suggest
that still better bounds may be possible, but these bounds will likely require new
techniques.

2 Preliminaries

Following Hong and Feng [HF06] and the subsequent work, we denote, for each
integer 0 ≤ k ≤ n,

Cn,k :=
uk · · · un

(n− k)!
, Ln,k := lcm(uk, . . . , un).

From the latter definition, we have that Ln = Ln,0.
We now note two preliminary lemmata that we use in the sequel. First, we state

the following lemma that first appeared in [Far05] and has been reproved in several
sources.
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Lemma 2.1 ([Far05, Thm. 2.4], [Far07, Thm. 3], [HF06, Lem. 2.1]) For any integer
n ≥ 1, we have Ln = ` ·Cn,0 for some integer `.

Applying Lemma 2.1 to the arithmetic progression uk, uk+1, . . . , un, we see that for
all k with 0 ≤ k ≤ n,

Ln,k = An,k
uk · · · un

(n− k)!
= An,k ·Cn,k

for an integer An,k ≥ 1.
Now we introduce a lemma regarding the highest power of a prime dividing a

factorial.

Lemma 2.2 If p is a prime and m ≥ 0 is an integer, then the largest integer, s, so that
ps |m! satisfies

m

p − 1
> s ≥ m

p − 1
− logp(m + 1).

This result is well known; however, we include its proof in Appendix A for com-
pleteness.

3 Proof of Theorem 1.2

We begin by noting that

Ln = lcm(u0, . . . , un) ≥ lcm(uk, . . . , un) = Ln,k.

We recall that Ln,k = An,k ·Cn,k, where

Cn,k :=
uk · · · un

(n− k)!

and An,k is an integer. We notice that any prime p dividing r does not divide uk · · · un.
Therefore, since Ln,k is an integer, any power of p dividing (n − k)! must also divide
An,k. By Lemma 2.2, we know that (n− k)! is divisible by pap , with

ap ≥
n− k

p − 1
− logp(n− k + 1).

Hence, as p|(n− k)! implies that p ≤ n− k, we have

An,k ≥
∏
p|r

p≤n−k

pap ≥
∏
p|r

p≤n−k

( p(n−k)/(p−1)

n− k + 1

)
.

It then follows that

Ln ≥ Ln,k = Cn,kAn,k ≥
uk · · · un

(n− k)!

∏
p|r

p≤n−k

( p(n−k)/(p−1)

n− k + 1

)
,

as in (1.1).
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4 Consequences of Theorem 1.2

We begin with the following observation.

Observation 4.1 The quantity x(n−k)/(x−1)

n−k+1 is decreasing in x for x ≥ 2, and is equal
to 1 when x = n− k + 1.

Proof The value at x = n − k + 1 is easily verified. To show that the quantity in
question is decreasing for x ≥ 2, it suffices to show that x1/(x−1) is decreasing for
x ≥ 2. After taking a logarithm, we see that this is equivalent to showing that log(x)

x−1 is
decreasing for x ≥ 2.

Now, the derivative of log(x)
x−1 is

− log(x)

(x − 1)2
+

1

x(x − 1)
=

x − 1− x log(x)

x(x − 1)2
;

hence, the claim reduces to showing that

(4.1) 1 + x(log(x)− 1) > 0 for all x ≥ 2.

But (4.1) is immediate, because 1 + x(log(x)− 1) is increasing in x and is bigger than
1 + 2( 1

2 − 1) = 0 for x = 2.

We now derive two implications of Theorem 1.2.

Corollary 4.2 Letting k be an integer with 0 ≤ k < n, we have that

Ln ≥
uk · · · un

(n− k)!

( q(n−k)/(q−1)

n− k + 1

)
for any prime q dividing r.

Proof We see by Observation 4.1 that for primes not equal to p, the terms of the
product in (1.1) are bigger than 1. Thus, we have

(4.2) Ln ≥
uk · · · un

(n− k)!

∏
p|r

p≤n−k

( p(n−k)/(p−1)

n− k + 1

)
≥ uk · · · un

(n− k)!
· η,

where

η =

{
q(n−k)/(q−1)

n−k+1 if q ≤ n− k,

1 otherwise.

As η ≥ q(n−k)/(q−1)

n−k+1 (by Observation 4.1), (4.2) shows the result.

Corollary 4.3 If r > 1 and k is an integer with 0 ≤ k < n, then we have that

(4.3) Ln ≥
uk · · · un

(n− k)!

( r(n−k)/(r−1)

n− k + 1

)
.
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Proof Letting q be any prime factor of r, we have by Corollary 4.2 and Observa-
tion 4.1 that

Ln ≥
uk · · · un

(n− k)!

( q(n−k)/(q−1)

n− k + 1

)
≥ uk · · · un

(n− k)!

( r(n−k)/(r−1)

n− k + 1

)
.

The bounds of Corollaries 4.2 and 4.3 agree with that of Theorem 1.2 when r is
prime and at most n− k. Also, rearranging the terms on the right-hand side of (4.3)
yields Corollary 1.3.

Proof of Corollary 1.3 We note that

uk · · · un = (uk−1 + r) · · · (uk−1 + r(n− k + 1))

= rn−k+1
( uk−1

r
+ 1
)
· · ·
( uk−1

r
+ (n− k + 1)

)
= rn−k+1(n− k + 1)!

(
( uk−1

r ) + (n− k + 1)

n− k + 1

)
;

the result then follows from Corollary 4.3.

We now determine the value of k that yields the best bound in Corollary 1.3. It is
clear that increasing k in (1.2) increases the right-hand term of (1.2) by a factor of

r−
r

r−1

( n− k + 1

ukr−1

)
=
( 1

r · r1/(r−1)

)( n− k + 1

ukr−1

)
=

n− k + 1

ukr1/(r−1)
.

Since this factor is decreasing in k, the optimal bound (1.2) is achieved when

k = k∗ := max
{

0,
⌊ n + 1− u0r1/(r−1)

rr/(r−1) + 1

⌋}
.

Remarks

The Wu, Tan, and Hong [WTH13] proof of Theorem 1.1 follows from establishing
the inequality

Ln ≥
uk · · · un

(n− k)!
· rb(n−k)/rc(4.4)

= Cn,k · rb(n−k)/rc(4.5)

≥
(

u0(r + 1)n
)

rb(n−k)/rc(4.6)

and then taking

(4.7) k = max
{

0,
⌊ n− u0

r + 1

⌋
+ 1
}
≈ n

r + 1
.

The exact bound in Theorem 1.1 follows from (4.4)–(4.6) because, as Wu, Tan, and
Hong [WTH13] show,(

u0(r + 1)n
)

rb(n−k)/rc ≥ u0r(`−1)α+a−`(r + 1)n

for a, `, and α satisfying the hypotheses of Theorem 1.1.
We improve upon Theorem 1.1 in several ways. First, our bound in Corollary 1.3

is sharper than the inequality in (4.4) for n � r2. Indeed, the right-hand side of
(1.2) is equal to uk···un

(n−k)! · rb(n−k)/rc up to a power of r. But the power appearing in
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(1.2) is proportional to n
r−1 , rather than n

r . Second, we leave our bound in its native
form, rather than weakening it by replacing Cn,k by u0(r + 1)n as in (4.6). This latter
improvement is particularly significant for u0 large. In particular, for fixed n and r,
we have Cn,k proportional to un−k

0 , which is much greater than u0(r + 1)n when u0

is large. Finally, we use k∗, which optimizes our bound, instead of using the value
of k employed by Wu, Tan, and Hong [WTH13]. With k as in (4.7), if n � r2 or
u0 �n,r 1, we have

r
(n−k∗+1)r−1

r−1

(
(

uk∗−1

r ) + (n− k∗ + 1)

n− k∗ + 1

)
≥ r

(n−k+1)r−1
r−1

(
( uk−1

r ) + (n− k + 1)

n− k + 1

)
�
(

u0(r + 1)n
)

rb(n−k)/rc

≥ u0r(`−1)α+a−`(r + 1)n.

(4.8)

We see that the bound obtained in Corollary 1.3 (which is given by the left-hand side
of (4.8)) is larger than the bound of Theorem 1.1 (which is given by the right-hand
side of (4.8)). Furthermore, this difference is significant when n� r2 or u0 �n,r 1.

5 Bounds for Large u0

When u0 > n, we have k∗ = 0 and therefore get the best bound from Corollary 1.3 by
setting k = 0 in (1.2). This indicates that the following consequence of Corollary 4.3
is sharpest for large u0.

Corollary 5.1 If r > 1, then we have that

(5.1) Ln ≥ r
(n+1)r−1

r−1

(
( u−1

r ) + n + 1

n + 1

)
=

u0 · · · un

n!

( r
n

r−1

n + 1

)
.

For appropriately chosen u0, and r prime, the bound (5.1) of Corollary 5.1 is sharp
to within a factor of n + 1.

Observation 5.2 If r is prime and u0 is divisible by the prime-to-r part of n!, then
bound (5.1) is tight up to a factor of n + 1.

Proof Let N be the prime-to-r part of n! and observe that by Lemma 2.2, N >

n!r−
n

r−1 . Hence it suffices to show that

L̃ :=
u0 · · · un

N
≥ Ln.

We claim that L̃ is a common multiple of {u0, . . . , un}. To see this, we note that
since N |u0, we have that L̃ is a multiple of ui for 1 ≤ i ≤ n. Furthermore,

u1 · u2 · · · un ≡ (r)(2r) · · · (nr) ≡ n!rn ≡ 0 mod N.

Thus u1···un
N is an integer, and hence u0 |L̃. Thus L̃ is a common multiple of

{u0, . . . , un} and is therefore larger than Ln = lcm(u0, . . . , un).
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6 Asymptotics for Large n

We now determine the asymptotics of the lower bound (1.2) of Corollary 1.3 when n
is large relative to u0 and r > 1. We notice that for n large and k within some
(additive) constant κ of its optimal value, k∗, the multiplicative change in (1.2) is
(1 + ou0,r,κ(1)), where ou0,r,κ(1) denotes some function of n, u0, κ, and r that has limit
0 whenever u0, r, and κ are held constant and n→∞. Furthermore, as the binomial
coefficient in (1.2) is interpolated using the Gamma function, this observation holds
even for fractional values of k.

Observation 6.1 Let

f (n, k) = fu0,r(n, k) := r
(n−k+1)r−1

r−1

(
( uk−1

r ) + (n− k + 1)

n− k + 1

)
.

Then, for |k− k∗| < κ, we have that

f (n, k)

f (n, k∗)
= 1 + ou0,r,κ(1).

Proof First, we note that log( f (n, k)) is a smooth function in k. As log( f (n, k∗)) >

log( f (n, k∗ ± 1)), we see that log( f (n, k)) must have derivative 0 at some k = k̃ with

|k∗ − k̃| ≤ 1. We show that for all |k− k̃| < κ + 1,

f (n, k)

f (n, k̃)
= 1 + ou0,r,κ(1).

To show this, it is sufficient to show that the second derivative of log( f (n, k)) is

ou0,r,κ(1) for all k with |k − k̃| < κ + 1. To see this, we observe that the logarith-
mic second derivative of r((n−k+1)r−1)/(r−1) is trivial, while the logarithmic second
derivative of (

( uk−1

r ) + (n− k + 1)

n− k + 1

)
is the negative of the sum of the logarithmic second derivatives of Γ at n− k + 2 and
uk−1

r + 1. Thus, the result follows from the fact that ∂2

∂x2 log(Γ(x))→ 0 as x→∞.

By Observation 6.1, we get asymptotically equivalent bounds (for fixed u0 and r,
as n→∞) if we consider (1.2) with any k within Ou0,r(1) of k∗.

Now, we set

k̃∗ := 1 +
n

rr/(r−1) + 1
− u0

r(r−r/(r−1) + 1)
,

noting that k̃∗ is within Ou0,r(1) of k∗ for all n. We set

β := r−r/(r−1) =

( uk̃∗−1

r

)
+ (n− k̃∗ + 1)

n− k̃∗ + 1
− 1,

so that if we take k = k̃∗ in (1.2), the ratio of the terms in the binomial coefficient
equals β + 1. For ease of notation, we also denote

µ :=
( uk̃∗−1

r

)
+
(

n− k̃∗ + 1
)

=
un

r
,
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so that the binomial coefficient in (1.2) with k = k̃∗ is

(6.1)

(
µ

µ/(β + 1)

)
.

By Stirling’s formula, (6.1) is

1 + β√
2πµβ

(
(1 + β)

1
1+β

( 1 + β

β

) β
1+β

)µ

(1 + ou0,r(1)).

It follows that our lower bound is asymptotic to

(6.2) r
(n−k̃∗+1)r−1

r−1

( 1 + β√
2πµβ

)(
(1 + β)

1
1+β

( 1 + β

β

) β
1+β

)µ

(1 + ou0,r(1)).

The exponential part of (6.2) is

(6.3)

(
r

r
(1+β)(r−1) (1 + β)

1
1+β

( 1 + β

β

) β
1+β

) n

.

Bateman, Kalb, and Stenger [BKS02] computed the asymptotics of the least com-
mon multiple of a long sequence of consecutive integers, deriving an asymptotic for-
mula for log(Ln) for fixed u0 and r. Now, for completeness, we reproduce the [BKS02]
asymptotic before comparing it with our bound (6.2).

We note that
log(Ln) =

∑
d|Ln

Λ(d),

where Λ(d) is the Von Mangoldt function. By definition, Λ(d) is 0 unless d is a power
of a prime. Furthermore, for d a power of a prime, d|Ln if and only if d|uk for some
k (0 ≤ k ≤ n). Therefore we have that

(6.4) log(Ln) =
∑
d|uk

for some 0 ≤ k ≤ n

Λ(d).

We claim that if n is sufficiently large, Ln is divisible by all of the finitely many
positive integers less than u0 and congruent to u0 modulo r. In particular, if n > ru2

0

and u0 > u > 0 with u ≡ u0 mod r, then u(ru0 + 1) divides Ln, and thus so does u.
For such n, the d in (6.4) are exactly the d dividing some positive integer u ≤ un with
u ≡ u0 mod r. Clearly the smallest positive integer congruent to u0 modulo r and
divisible by d is d · `d, where `d is the smallest positive representative of the conjugacy
class of u0

d modulo r. Hence, we may break up the sum in (6.4) to obtain

(6.5) log(Ln) =
∑

(`,r)=1
0<`≤r

∑
d< un

`

d≡ u0
` mod r

Λ(d).

We recall that the inner sum in (6.5) is
(

1
ϕ(r)

)(
un
`

)
(1 + ou0,r(1)), where ϕ is the Euler

totient function (see [IK04, p. 122, eq. (5.71)]). Therefore, we have that

(6.6) log(Ln) =
un

φ(r)

( ∑
(`,r)=1
0<`≤r

1

`

)
(1 + ou0,r(1)).
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If we assume that r is prime, then (6.6) reduces to

log(Ln) =
un

r − 1
Hr−1

(
1 + ou0,r(1)

)
,

where Hr−1 denotes the (r − 1)-st harmonic number.

Remarks

We note that our proven asymptotic for log(Ln) has linear term

n
( rHr−1

r − 1

)
= n
(

log(r) + γ + O
( log(r)

r

))
,

where γ is the Euler–Mascheroni constant. The asymptotic lower bound (6.2) we
prove has exponential term (6.3) with logarithm

n
( r log(r)

(r − 1)(β + 1)
+

log(1 + β)

1 + β
+
( β

1 + β

)
log
( 1 + β

β

))
=

n
(

log(r) + O
( log(r)

r

))
,

as we have β = O
(

1
r

)
. Thus, we see that our bound (1.2) of Corollary 1.3 is within

a multiplicative factor of

eγn(1+ou0 ,r(1)+O(log(r)/r))

of being sharp. In particular, we have for any fixed u0 that

lim
r→∞
r prime

lim
n→∞

(
r

(n−k∗+1)r−1
r−1

((
uk∗−1

r )+(n−k∗+1)
n−k∗+1

)
Ln

) 1/n

= e−γ .

7 Conclusion

Determining lower bounds on Ln is clearly equivalent to the problem of finding lower
bounds for An,k. We have so far obtained these bounds by noting that, although Ln,k is
always an integer, Cn,k need not be integral. In essence, this is the same strategy that
has been applied in the work of Hong and Feng [HF06], Hong and Yang [HY08],
Hong and the second author [HK10], and Wu, Tan, and Hong [WTH13]. In this
article, we have pushed these techniques nearly to their limits. It is relatively easy to
show that Cn,k does not have any prime factors in its denominator that do not also
divide r. Furthermore, we have accounted almost exactly for the contributions of
these primes to the denominator of Cn,k. Hence, further progress towards bounding
Ln should come from new techniques for bounding An,k.

Fortunately, there is hope that better bounds on An,k can be obtained. The
proof that Cn,k divides Ln,k considers the potential common divisors of the elements
{uk, . . . , un}. On the other hand, unless uk is chosen very carefully, not all of these
common divisors actually appear. In particular, for An,k to have no factors prime to
r, it needs to be the case that the prime-to-r part of n− k−m divides uk · · · uk+m for
each m. For each such divisibility condition that fails, we gain extra factors for An,k.
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Furthermore, we know that such factors must exist since (as was shown in Section 6),
for large n and prime r, our bound fails by a factor of roughly eγn.

Appendix A Proof of Lemma 2.2

For each k > 1 there are b m
pk c integers in 1, 2, . . . ,m divisible by pk. Together these

produce all the factors of p dividing m!. Thus

s =

∞∑
k=1

⌊
m

pk

⌋
<

∞∑
k=1

m

pk
=

m

p − 1
.

It follows easily by induction upon m that
∑∞

k=1b
m
pk c = m−d

p−1 , where d is the sum of

the digits in the base-p representation of m. Thus, we need only show that

(A.1) logp(m + 1) ≥ d

p − 1
.

To prove (A.1), we first fix the value of d. We note that the smallest value of m that
attains this value of d occurs when all of the base-p digits of m are p − 1, except for
the leading digit, which is, say, ` (1 ≤ ` ≤ p − 1). We then have m + 1 = pw(` + 1)
and d = w(p − 1) + ` for some w and ` such that 1 ≤ ` ≤ p − 1. We need to show
that

w + logp(` + 1) = logp(pw(` + 1)) ≥ w(p − 1) + `

p − 1
= w +

`

p − 1
.

Canceling the additive terms of w on each side, all that is left to prove is that

(A.2) logp(` + 1) ≥ `

p − 1
.

But (A.2) follows from the concavity of the logarithm function, since equality holds
in (A.2) for ` = 0 and for ` = p − 1.
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