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1. Introduction. The purpose of this paper is to extend various invariant 
subspace theorems for the circle group to multiply connected domains. Such 
attempts are not new. Actually, Sarason (4) studied the invariant subspaces of 
annulus operators acting on L2 and showed certain parallelisms between the 
unit disk case and the annulus case. Voichick (8) observed analytic functions 
on a finite Riemann surface and generalized the Beurling theorem on the closed 
invariant subspaces of H2 as well as the Beurling-Rudin theorem on the closed 
ideals of the disk algebra. Here we shall consider LP(T) and C(T) defined on 
the boundary T of a finite orientable Riemann surface R. We wish to find the 
subspaces of LP(T) and C(T) that are closed and invariant under multiplication 
by every function analytic on R and continuous on R. 

In §2, we gather some known facts about finite Riemann surfaces and certain 
analytic functions defined on them. As Voichick (8) pointed out, multiple-
valued inner functions on R play a very important role in the determination of 
invariant subspaces of H2(T). If we want to find invariant subspaces of LP(T), 
then it turns out that we need certain non-analytic analogues of the multiple-
valued inner functions. Such new functions are defined only on the boundary T 
of the surface R. In this paper, we call them i-functions. It is seen that our 
i-functions can be captured as single-valued functions, subject to certain 
restriction, defined on the product space r X g, where g denotes the integral 
homology group of the 1-cycles of R. This is quite natural because the multiple-
valuedness of analytic functions on R is due to the connectivity of the surface. 
The i-functions are defined in §3. Once we get the concept of i-functions, the 
whole theory is quite parallel to the well-known one for the circle group. In §4, 
we prove the invariant subspace theorem for Z / ( r ) , which corresponds to some 
results in (6; 7). In §§5 and 6, we discuss closed invariant subspaces of C(T) 
and M(T), where M(T) is the space of Radon measures on T. Our theorems in 
these sections extend our earlier results in (2) for the circle group. Finally we 
shall show that the theorems obtained by Sarason (4) and Voichick (8) follow 
quickly from our theorems. Moreover, we shall prove that A(R), the algebra 
of functions analytic on R and continuous on R, is a maximal closed subalgebra 
of C(T). A special case of this theorem, in which T is topologically a circle, was 
proved by Wermer (9). 

Received October 22, 1964. This work was done while the author held a visiting appointment 
at the University of California, Berkeley, and was supported in part by the National Science 
Foundation, Grant NSF GP-2026. 

240 

https://doi.org/10.4153/CJM-1966-027-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-027-1


FINITE RIEMANN SURFACES 241 

The author wishes to express his thanks to Professor Henry Helson for very 
helpful conversations. 

2. Preliminaries. Let R be a finite orientable Riemann surface in the 
sense of (5) with non-empty boundary T. The boundary T consists of a finite 
number of components Ti, T2, . . . . , Tk, each of which is a closed analytic 
curve. For each j = 1, 2, . . . , &, there exists an open annulus Uj of R such that 
Tj is one of the boundaries of Uj. Each Uj can be mapped conformally by a 
function Zj onto an annulus tj < \z0\ < 1 so that the continuous extension of 
Zj to Tj maps Tj onto \zj\ = 1. The functions Zj are called boundary uniformizers. 

It is well known that, for any divisor d on R (= R KJ T), there is a mero-
morphic function (or a meromorphic differential) whose divisor is exactly d. 
In particular, there is an analytic function on R that has a simple zero at an 
arbitrarily prescribed point in R and vanishes nowhere else on R. There is also 
a non-vanishing analytic differential co on R. We denote by a>* the tangential 
component of co along I\ i.e. co* = b(z)dd on T;- if co = a(z)dr + b(z)dd in terms 
of a boundary uniformizer Zj = reid near Tj. We fix such a differential through 
our discussion. 

Let G(£, t) be the Green function of R and let f0 be a point in i?, which is 
chosen once for all. We set 

dm = ~ Ldst 

2ir dnt 

for I f T, where the right-hand side is computed by means of boundary 
uniformizers for T. Then m is positive and Jf dm = /(fo) for a n y / Ç ^4, so that 
m is multiplicative on ^4. Here A = A (R) is the algebra of functions analytic on 
R and continuous on R. It is clear that m is equivalent to a>*. We write LP(T) 
instead of Lp(T,dm) and let HP(T) be the subspace of IJ(T) consisting of 
functions extendable to R as analytic functions. Each function in HP(T) can 
be regarded as the boundary value of an analytic function h on R such that \h\p 

has a harmonic majorant. The following theorem proved by Royden (3, 
Theorem 2) (see also Voichick (8, Corollary 5.3)) has fundamental importance 
and is a generalization of the F. and M. Riesz theorem on measures on the 
circle group. 

THEOREM 1. If a Borel measure n on T is orthogonal to A (R), then /x = hw* 
for an h G H1 ( r ) , and conversely. 

The open unit disk D is a universal covering surface of R, so that there exists 
a covering map T from D onto R, which is analytic and a local homeomorphism. 
We choose T in such a way that T(0) = f 0. Let @ be the group of linear trans­
formations r of D onto itself such that Tor— T. Then it is known that there 
exists a fundamental region A of ®, which has exactly k free sides jj with 
T(jj) = r7. If we put 7 = W Y ; and 12 = W{T(Y) : r 6 @), then 12 is an open 
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dense subset of the unit circumference X and T can be extended to be analytic 
and locally one-to-one in a neighbourhood of D \J 12. 

If / is a single-valued function on R, then / o T is an analytic function on D 
that is invariant under the group ®, meaning that / ( rz) = f(z) for any z £ D 
and r £ ® w i t h / = / o T. In what follows, we u s e / in place o f / o T. Now we 
say that a multiple-valued function A on R is multiplicative if A is analytic and 
|A| is single-valued. If h is multiplicative, then h is modulus invariant, i.e. |À| 
is invariant under ®. An analytic function F on D is modulus invariant if and 
only if, for each r £ ®, there exists a constant cT of modulus one such that 
F(rz) = cT F(z) for any s 6 D. Let §*(#) (1 < p < + » ) be the space of 
multiplicative functions h on R such that \h\p has a harmonic majorant on R. 
For £ = + oo , &œ(R) denotes the space of all bounded multiplicative functions 
on R. It is known that, for any h £ &P(R), \h\ has non-tangential limits a.e. 
on T, which form a function in LV(T). We note that the spaces &P(R) are not 
necessarily linear. 

Every function h £ &(R) can be factored into its inner and outer factors. 
Suppose that h is not identically zero. Then log \h\ is subharmonic on R and has 
non-tangential limits log \h(t)\j £ £ I\ a.e. on T, which form an integrable 
function. We define a multiplicative function h0 by 

log MOI ~ £ X^iog|/*(0Us ( . 
ho is determined uniquely up to a constant factor of modulus one. h0 has no 
zero and \h0\ = \h\ a.e. on T. Therefore we have |A(f)| < |Ao(f)| for any f Ç i?. 
Now let Ai = ^o"1^. Then /̂ f is also a multiplicative function on R. Clearly 
\hi(Ç)\ < 1 on R and |A*| = 1 a.e. on r . After Voichick (8), we say that a 
bounded multiplicative function h is inner if \h\ = 1 a.e. on I\ We also say that 
a multiplicative function g £ § x (R) is outer if 

So we have shown that every non-zero function h G fQl(R) is factored into an 
inner function and an outer function. 

Let us assume that h is an inner function. Then h is a modulus-invariant inner 
function on D. Let h = Fb Fs be a factorization of A into a Blaschke product Fb 

and a singular function Fs. 

LEMMA 1. Fb and Fs are modulus invariant. 

Proof. Let r G ®. Then A(rz) = cTh(z) for a constant cT of modulus one. 
So Fh{Tz)Fs(rz) = cT Fb(z)Fs(z). Since Fs(rz) vanishes nowhere on D, Fb(rz) 
has the same zeros as Fb(z). Hence Fb is the Blaschke factor of Fb{rz) so that 
Fb{rz) = Fb(z)C(z) for some inner function C(s). We also have 

Fb(r-iz) = Fb(z)D(z)y 
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where D(z) is another inner function. T h u s we have C{z)D(z) = 1 everywhere 
on D. Since \C(z)\ < 1 and \D(z)\ < l o n D , we conclude t h a t C a n d D mus t be 
constant . Hence Fb(z) and, consequently, Fs(z) are modulus invariant , as was 
to be proved. 

We pu t hb = Fb o T~l and hs = Fs o T~l. Then hb and hs are multiplicative 
functions and h = hb hs. hb has the same zeros as h, and hs has no zero in R. 
Since \hs\ < 1 and hs never vanishes on R, —log \hs\ is a positive harmonic 
function on R. By a theorem of Royden (3, Proposition 8) , there exists a unique 
positive measure v on Y such t h a t 

Since |&5j = 1 a.e. on T, i> must be a singular measure. /z5 is determined uniquely 
by v up to a constant factor of modulus one. 

Finally we note tha t , for any prescribed periods along a homology basis of 
1-cycles of R, there exists an analytic function on R t h a t does not vanish on R 
and whose periods are exactly the given ones; cf. (5, Chapter IV) . 

3. m - f u n c t i o n s a n d i - f u n c t i o n s . Voichick (8) has shown tha t multi­
plicative functions play an impor tant role in the description of invariant 
subspaces of H2(Y). Every multiplicative function h Ç ^(R) has non-
tangential limits a.e. on I \ The boundary values then form a multiple-valued 
function on Y. We shall first define a class of functions on Y including such 
multiple-valued functions. Since the multiple-valuedness of analytic functions 
on R is caused by the connectivity of the surface R, it is na tura l to introduce 
the integral homology group g of 1-cycles of R. 

Definition 1. A single-valued numerical function Q on r X g is called 
an m-function if (a) for any a 6 g, Q(t, a) is defined a.e. for t £ Y and measur­
able, and (b) for each a G g, there exists a constant ca of modulus one such t h a t 
Q(t, a + ff) = caCpQ(t,Qi) for any a, fi Ç g. An m-f unction Q is called an 
i-function if \Q\ = 1 a.e. on Y. 

Definition 2. Two m-f unctions Q\ and Ç2 are said to be equivalent if there 
exists an element a0 G g such t ha t <22(£, OL + a0) = Qi(t, a) a.e. for any t £ Y 
and a £ 9. If Q\ and Q2 are equivalent, then we write Q\ = Q2. 

WTe shall show t h a t every multiplicative function h in $èl(R) gives rise to an 
m-f unction, which we denote by h(t, a) for / Ç T, a 6 Q. If JR is simply con­
nected, then R is equivalent to the unit disk and there is nothing to prove. 
So we assume t h a t R is multiply connected. By making cuts along suitable 
curves on R, we can construct a simply connected domain—a normal form of 
R—so t h a t r forms a pa r t of the boundary. Let us fix such a normal form of R, 
for which f 0 is an interior point, and call it R0. Now let h be any multiplicative 
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function G &X(R) on R. Fi rs t we choose a branch of h a t f0 and call it Â(f, 0) , 
where 0 denotes the zero of the group g. A(f, 0) defines a single-valued analyt ic 
function on 7?0. h(Ç> 0) has non-tangential limits a.e. on T, which form a 
function h(t,Qi),t G T. For any a G g, let d be a 1-cycle t h a t s ta r t s from f0 and 
represents a. W e continue our branch A(f, 0) along d on i£ and get ano ther 
branch of h a t f0, which we denote by A(f, a ) . A(f, a) then defines a single-
valued analyt ic function on R0 and consequently defines a function on F a.e., 
which we call h(t, a). I t is clear t h a t h(t, a) depends only on a and not on the 
representat ive â of a. Since h is multiplicative, |A(f, 0) | = |A(f, a)I for f G i?0 

so t h a t A(f, a) = ca A(f, 0) for a cons tan t c« of modulus one. Therefore 

hit, a) = cah(t,0) 

on T. Obviously, the correspondence a —> £a is a representat ion of the group g 
onto the circle group. Hence h(t, a) is an m-function. So we have the following 

L E M M A 2. Any multiplicative function h G &l(R) defines an m-function 
h(ty a), t G r , a G g, fry means of the normal form R0 of R. h(t} a) is uniquely 
determined by h up to equivalence in the sense of Definition 2. 

I t is clear from our construction t h a t the cons tants ca depend only on the 
multiplicative function h and not on the normal form R0. Now we fix, once and 
for all, a normal form R0 of R and a fundamental region A of the group © in 
such a way t h a t the covering m a p T maps A onto R0, i.e. the boundary of A 
is mapped onto the cuts and the boundary T which define Ro. We may also 
assume wi thout loss of generality t h a t the origin 0 is in A and 7X0) = Ç0. 

W7e note, for later use, the relation between the homology group g of 1-cycles 
of R and the transformation group @. For any r G @, we draw a (smooth) 
curve L joining 0 with r(0) within D. Then T(L) is a 1-cycle s ta r t ing from f0. 
Clearly any two such curves define homologous cycles of R. Therefore T(L) 
determines an element a in g. T h e correspondence r —> a preserves group 
operations so t h a t it gives a homomorphism of ® onto g. W e call it the canonical 
homomorphism of © onto g. 

4. Invar iant s u b s p a c e s of LP(T). We shall determine closed invar iant 
subspaces of Lv ( Y). Let A 0 (R) be the subalgebra of A (R) consisting of functions 
in A (R) t h a t vanish a t f 0. 

Definition 3. Let 9J? be a closed subspace of LP(T), 1 < p < + <». Then 9)c 
is called doubly (simply) invariant if the Lp-closure [Ao(R)yjl]p of A0(R)y)} is 
equal to (strictly contained in) 9K. If p = + °° , then we replace the closedness 
by the weak* closedness in L°°( T) and the Z/-closure by the weak* closure. 

If R is the uni t disk D, then the s t ruc ture of closed invar iant subspaces of 
LP(X) on the uni t circumference X is well known. So we shall transfer our 
problem to the circle group X by means of the covering m a p 7". Although T 
does not preserve the measure m and in fact m o T may sometimes be an infinite 
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measure, it preserves measurability as well as null sets. The following lemma 
can be found in Voichick (8, Lemma 6.1): 

LEMMA 3. / / / G LP[T], then jo T G LP(X). 

THEOREM 2. (a) 99? is a closed (weakly* closed, if p = + °° ) doubly invariant 
subspace of LP(Y) if and only if 99? = CSL

P(T) for some measurable subset S 
of V, where, Cs is the characteristic function of S. S is determined uniquely by 99? 
up to a null set. 

(b) 99? is a closed (weakly* closed, if p = + oo ) simply invariant subspace of 
LP(T) if and only if 99? = IV(Q) for some i-function Q on V X g, where 1P(Q) 
denotes the totality of functions f G LP(T) such that f/Q is equivalent to an 
m-f unction defined by some function in fèp (R). Q is determined uniquely by 99? up 
to equivalence and a constant factor of modulus one. 

Proof, (i) 1 < p < +oo. Let 99? be a closed invariant subspace of LP(T), 
i.e. Ao(R)m C Wl By Lemma 3 , / o T Ç LP(X) for any / G 99?. Let {Wl}p be 
the closed invariant subspace of LP(X) generated by {foT:f£ 99?}. Then 
{99?}P is either doubly invariant (i.e. z{Wl}p = {9)?}p) or simply invariant 
(le.z\m}9 < W\P). 

Suppose first of all that {99?}̂  is doubly invariant. Then a theorem in (6) 
shows that {Wft}p = Cs> LP(X), where S' is a measurable subset of X. Let 
5 = T(Sr). Then 5 is a measurable subset of V and any / in 99? vanishes off S, 
i.e. 99? C CSL

P(Y). To show the converse inclusion, we note that, for any 
g G LP'(T) (p~l + p'~l = 1), there exists a gx G Lpf ( T) such that g dm = gia>*. 
This is possible because co* and dm are equivalent and the Radon-Nikodym 
derivatives o*/dm and dm/œ* are bounded. Suppose g _L 99?. Then gi a>* JL 9)?. 
Since 90? is invariant, we have /«fcfgi co* = 0 for any <j> £ A (R) and / G 9)?. 
By Theorem 1 ,/gi G i ï1 ( T). Going to X by means of T, we see that fgi G -H1 PO-
So jufgidz = 0 for any w G 4̂ = -4(2?), where D is the unit disk. By taking 
Lp-limits in uf, we see that/wgi ds = 0 for any » G {99?}p. As {99?}̂  = CSJJ(X), 
gi must vanish on S' so that gi vanishes on 5. This proves that g\ JL Cs LP(T). 
Consequently g _L Cs L

p ( T), and hence 99? = C 5 L p ( r ) . 
Now suppose that {99?}p is simply invariant. Then, by (7), {99?}p = qHp(X) for 

some g G L°"(X) with |g| = 1 a.e. on X. Since it is clear that {99?}p is invariant 
under the group @, q is modulus invariant on X, meaning that, for any r G ®, 
there exists a constant cT of modulus one satisfying q(TZ) = cT q(z) for s G X. 

We consider the fundamental region A of the group @ mentioned in §2 and 
define an i-function Q as follows. For the zero element 0 of the homology 
group g of 1-cycles of R, we put 

Q(t,0) = q(z), lit = Tz, z G y. 

Then Q(i, 0) is defined a.e. on I\ For any a G Q, take any r that is mapped to a 
under the canonical homomorphism of © onto çj. Then we set 

Q(t,a) = q(rz), if / = Tz, z G y. 
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Then Q is an i-function. Indeed, we have 

Q(t,a) = q{rz) = cT q(z) = crQ(t,0). 

Since the mapping r —> cT is a representation of @ onto the circle group and since 
the circle group is commutative, the mapping induces a representation of g 
onto the circle group and therefore cT depends only on the homology class to 
which r corresponds under the canonical homomorphism. So Q is an i-functiom 

We want to show that 2ft = IP(Q). Let / G 2ft. Then f =foT = & for 
some \p G HP(X). Since / is invariant, ^ is a modulus invariant function. 
Let h = \f/ o T~x. Since Ro is denned as the image of A under T, it is easy to see 
that/(£)/()(/, a) = h(t, a) for t G I\ a G g. Since h is a multiplicative function 
G $P(R) on R, we have seen that / G IP(Q). Hence 2ft C p ( Q ) . To see the 
converse inclusion, we take any g G LP'(T), p~l + p'~l — 1, such that g _J_ 2ft. 
As before, we define g\ G Lp/ ( T) by gi co* = g dm. Then 

JVgi w* = $4>fg dm = 0 

for any <*> G ^ (R) and / G 2». By Theorem 1 , / g l G i f ( r ) . Thus/gi G i ^ P O 
and consequently jufgidz = 0 for any u £ A = A {D). By taking //-limits in 
uf, we have that jvgi dz — 0 for any «/ G {2ft}P. Since {3Jl}p = qHp(X), we have 
JqFgxdz = 0 for any .F G i?*(X). This shows that gfi G iP ' (X) . If/ G Jp((?), 
then / /Ç G §p(i?) so thatf/q G iP (X) .Thus 

fgi=fh= Cf/q)(qh) eiP(X). 

Therefore/gi G H1^). From this follows immediately that 

Jfg dm = jfgl co* = 0. 

Hence g _L Jp (Ç) and so 2ft = IP(Q). 

(ii) >̂ = + oo. Let 2ft be a weakly* closed invariant subspace of LX(T). We 
define 5ft C L*(r) by setting 

5ft = {/ G L^T): ffgœ* = 0 for all g G 2ft}. 

Then 21 is closed and invariant. By (i) we then have two cases: either 
21 = CS' Ll(T) for some measurable subset S' of r or 31 = Il(Q') for some 
i-function Q'. In the first case, it is obvious that 2ft = CsL

œ(r), where 
5 = r - S'. In the second case, 2ft = Iœ(Q) for Q = Q'. Indeed, if / G 2ft, 
then ftfgœ* = 0 for any g G 5ft and 0 G 4 ( # ) . S o / g G ^ ( r ) . Since 

g G 5ft = / i ( eO , 

then g/Q' = gQ' = g<2 G ^( -R) , i.e. g(t)Q(f,a) = h(f,a) for an A G S 1 ^ ) . 
We have 

f(t)/Q(t,a) = W)z(t))/(zV)Q(t>«)) =f(*)g(t)Mt,a). 
Since we can always find a non-vanishing A, this shows that f(f)/Q(t, a) can be 
extended to a bounded multiplicative function on R. So / G Iœ(Q)> Hence 
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m C Iœ(Q). Now we take any g £ L^T) ssch that gco* JL 9K. We have 
g G SR = J 1 ((?')• Take any f £ Iœ(Q). Then f(t)/Q(t,a)=h(t,a) for 
A Ç ê°°(i?).So 

J/(fl*(0«*(fl = //(flÇ^ a ) " ^ / , «)g(Aco*(fl 
= Ji(U)(0(U)?W)«*(fl = 0 

since both h(t, a) and Q(t,a)g(t) are analytic. Thus gco* ± /°°(Ç). Hence 
9K = Iœ(Q), as was to be proved. 

(iii) Clearly the spaces Cs L
p ( T) are doubly invariant. So we have only to 

show that IP(Q), 1 < p < + ° ° , are simply invariant. Let % be any non-
vanishing multiplicative function analytic on R such that Qx is single-valued. 
For any / £ P(Q), 

f(t)/Q(t,a) = h(t,a) e &(R), 
so that 

mQ&cd-'x&a)-* = i(U)xfca)-1 € #*(r). 

If follows that ip(Ç) = (QX)HP(T). On the other hand, we see, by Theorem 1, 
t h a t i ^ ( r ) = [A(R)]P fori < p < + oo. For 1 < p < + oo , 

[A0(R)ip(Q)]P = (Cx)Mo(i?)P(r)], = (6x)W(r) < (çx)#»(r). 

Hence P(Q) is simply invariant. The closedness of IP(Q) is obvious, lip = + oo , 
then we get a similar conclusion by replacing the norm-closure by the weak* 
closure. 

Finally, since each closed (or weakly* closed, if p = + oo ) invariant subspace 
of LP(T) is either doubly or simply invariant, the theorem is established. 

5. Invariant subspaces of C(T) and M(T). We shall study closed invariant 
subspaces of the space C(T) of continuous functions on T as well as weakly* 
closed invariant subspaces of the space M( V) of Radon measures on T. 

Definition 4. A uniformly closed subspace B of C(T) is called doubly (simply) 
invariant if [A0(R)B]œ

 = B ( [ i o W ^ L < B), where [ ]œ denotes the uniform 
closure. 

A weakly* closed subspace N of M(T) is called doubly (simply) invariant if 
[A0(R) iV]* = iV ([ioffliV]* < N), where [ ]* denotes the weak* closure in 
M(Y). 

For the circle group X, invariant subspaces of C(X) and M(X) have been 
studied in (2) in detail. It turns out that a similar argument works in our general 
case, once we know the structure of the invariant subspaces of LP(T), especially 
for p = 1, + oo . 

Let K be a subset of T and let Z(K) be the subspace of functions in C(T) 
that vanish on K. Furthermore, M(K) denotes the subspace of M(T) consisting 
of all Radon measures supported on K. Then we have 
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THEOREM 3. Let B be a uniformly closed subspace of C{ Y). Then: 
(a) B is doubly invariant if and only ifB= Z(K) for some subset K of I\ 
(b) If B is simply invariant, then B = Iœ(Q) H Z(K), where Qis an i-function 

and Kisa compact set in Y of measure zero. 
(c) If B = Iœ(Q) r\ Z(K) for some i-f unction Q and some compact set K C Y 

and if B is non-trivial, then B is simply invariant. 

THEOREM 4. Let N be a weakly* closed subspace of M{ Y). Then: 
(a) N is doubly invariant if and only if N = M(K) for some compact subset K 

ofT. 
(b) If N is simply invariant, then N = I1(P)œ* + M(K), where P is an 

i-f unction and K is a compact set in Y of measure zero. 

We wish to present a combined proof of Theorems 3 and 4, as we already did 
in (2). Let B be a closed invariant subspace of C(Y) and N = B±. Then N 
is weakly* closed and invariant. It is clear that every weakly* closed invariant 
subspace of M( Y) can be obtained in this way. 

Let K be the set of the common zeros of the functions in B. Then K is closed. 
Let M be any Radon measure on Y that is orthogonal to B and let ju = Fco* + v 
be the Lebesgue decomposition of n with respect to co*, where F 6 L1(Y). 
Since B is invariant, we have )<t>fdn = 0 for any <j> G A(R) and / Ç B. By 
Theorem 1, f dix = hoi* for some h G H1 (Y). So we get fF = h and fv = 0. 
Thus v is supported on K and of course orthogonal to B. Consequently Fœ* 
is also orthogonal to B and hence we have shown that 

N = B
± = (Nr\L1(Y)œ*) + M(K). 

We define a subspace 31 of L^Y) by N C\ L^Y)^* = 5Rco*. Then it is easy to 
see that Sft is a closed invariant subspace of L 1 ( r ) . By Theorem 2, we have 
either ÏÏI = CS

f L*(Y) for some measurable set S' or 31 = I1(P) for some 
i-function P. Now we divide our argument into three parts. 

(i) Suppose first that 31 = CS' Ll(Y) and therefore 

N = Cs> LHr)co* + M(K). 

Then m(Sf — K) = 0. Suppose, on the contrary, that m(S' — K) > 0. Then 
there exists a compact subset K' of Sr — K such that m(K') > 0. I t follows 
from the definition of K that there exists a function/ Ç B such that 

JVl/l <2m > 0. 

As i£' Ç 5' , / cannot be orthogonal to CS
f L1(Y)œ*. This contradiction shows 

that w (5' - K) = 0. Therefore 

Hence N = Âf(iT) and consequently 5 = Z(K). In this case, both Z> and N 
are doubly invariant. 
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(ii) Suppose now that 5» = Il(P). Then N = Il(P)o>* + M(K) and 
B = ( i H V J ^ Z t Z ) . As shown in (ii) of the proof of Theorem 2, 

(P(P)œ*)- = 7œ((3) 

with Ç = P. Hence B = Jœ(<2) r\Z(K). In this case, m(i£) = 0, because a 
function in Iœ(Q) cannot vanish on a set of positive measure without vanishing 
identically. 

We want to show that both B and N are simply invariant. We take a non-
vanishing multiplicative function x continuous on R such that P\ is single-
valued. Then I1 (P) = (Px)H

1(T).So 

A0(R)N = Ao(R)(IHP)<** + M{K)) = (Px) A 0(R) &(?)<** + M(K) 

= (Px)4>oH*(T)a* + M(K), 

where <t>o is an element in A (R) with a simple zero at f 0 and non-vanishing 
elsewhere. Since 5 ^ {0}, I1(P)œ* is not wreakly* dense in M(Y) so that there 
exists a non-zero function / £ C(T) orthogonal to 71(P)co*. It follows from 
I HP) = (Px)HHT) and Theorem 1 that f(Px) G Hœ(T). Now we need the 
following special case of Bishop's theorem (1 ) : 

LEMMA 4. For any compact set K C r o/ measure zero, there is a non-zero 
function Ç 4̂ (i^) that vanishes identically on K. 

Since our set K satisfies the hypothesis of the lemma, there is such a function, 
which we denote by <j>\. We choose an integer / > 0 in such a way that 

/*i(Px)*o-'«* 

has a simple pole at f0. Let / 0 = f<j>i <t>o~l. Then it is immediate that f0 is 
orthogonal to A0(R)I1(P)co* but not to I1(P)œ*. A s / 0 vanishes identically on 
K, it is orthogonal to M (K). Since / 0 is a non-zero function, we have shown that 
^oC^O^is not weakly* dense in N, i.e. N is simply invariant. 

Now we have ^o - 1 N > N. Otherwise, N = <t>o Nana a fortiori A 0(R)N = N, 
which is a contradiction. Thus there exists a measure /x G iV such that 0o"~V ? AT". 
So 4>o~1n is orthogonal to A0(R)B but not to 5 . Hence A0(R)B is not uniformly 
dense in B. B is thus simply invariant. 

(iii) Combining (i) and (ii), we see that (a) and (b) of Theorems 3 and 4 are 
true. Finally Theorem 3, (c) is also true because a non-trivial subspace B of the 
form Iœ(Q) C\Z(K) cannot be equal to any Z(Ki) with compact K\. This 
completes the proof of the theorem. 

6. Non-triviality and uniqueness of the expressions for the invariant 
subspaces of C(T) and M(T). In (2) we saw that, in the circle group case, 
Iœ(Q) (^ Z(K) can be trivial and we gave a necessary and sufficient condition 
for non-triviality. Now we wish to generalize the results in (2). The following 
lemma is an immediate consequence of Lemma 4. 
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LEMMA 5. Let Q be an i-function and K a compact set C r of measure zero. 
ThenIœ(Q) C\ Z {K) is trivial if and only if Ie0 {Q) C\ C{Y) is trivial 

So, in what follows, we consider only the expression Iœ{Q) C\ C(Y). We have 
the following 

THEOREM 5. Let Q be an i-f unction. Then Ico(Q) r\ C(Y) is non-trivial if and 
only if Q has the following factorization into i-f unctions : 

(i) Q = QiQ*Qz, 

where Q\ is conjugate inner {i.e. Qi is an inner function in the sense of §2), Q2 

is single-valued and continuous except on a compact set of measure zero, and 

Q*(t, a) = |A0(/f a)\/h0(t, a) it Ç I\ a € jj) 

for an outer function A0 such that |A0| is continuous on Y. 

Proof. First suppose that Iœ(Q) H C(Y) is non-trivial and let g be any non­
zero function in it. By the definition of Iœ(Q), g/Q is induced from a function 
h in &œ(R). Let h = ^ ^ b e a factorization of h into its inner and outer factors 
hi and ho. We may assume without loss of generality that 

g(t) = Q(/,a)Aifoa)fto(*,a). 

Since |g(01 = \ho(t, a)\ and \hi(t, a)\ = la .e . ,wehave 

Q(f,a) = gWiifcoJiofta)"1 

= hi(t, a)exp(i arg g) \g(t) \h0(t, a)~\ 

By putting 

Qi(t,a) = ht(t,a), Q2(t) = exp(iargg(0) , 

and 
Qz{t,a) = \g(t)\/ho(t,a) = |A0(*,a)|/Ao(*,a), 

we get the desired factorization of Q into i-functions specified in the theorem. 
Conversely, suppose that an i-function Q has a factorization of the form (1). 

Then there exists an inner function hi such that Q\ = hi, Q2 is single-valued 
and discontinuous only on a set K of measure zero, and Q3 = |A2|/A2 for an 
outer function A2 with continuous modulus. Let A3 be a non-zero function in 
A(R) that vanishes on K and let g = |A2|<22A3. Since |A2| is continuous and 
A3 vanishes at all discontinuities of Q2, g is a continuous function on Y. It is 
easy to see that 

g/Q = g/(QiQ*Q*) = (|A«|G2 A8)/(Âi ^lA^Aa-1) = Ai A2 A3 6 $°°(2Î). 

Hence g Ç Iœ(Q) and therefore Iœ(Q) O C(T) is non-trivial, as was to be 
proved. 
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Since Iœ(Q) H C(T) is the orthogonal complement of I1(Q)œ* in C(T), we 
have the following 

COROLLARY. Let P be an i-f unction. Then I1(P)œ* is not weakly* dense in 
M{ r ) if and only if P has the following factorization into i-f unctions: 

P = P 1 P 2 P 3 , 

where P\ is an inner function, P 2 is single-valued and continuous except on a 
compact set of measure zero, and P 3 = \h0\/hofor an outer function h0 such that \h0\ 
is continuous on T. 

Now we wish to discuss uniqueness of the expressions for the invar iant sub-
spaces of C(T) and M(T). First of all, it is obvious t ha t the expression for the 
doubly invariant subspaces obtained in Theorem 3, (a) and Theorem 4, (a) 
is unique. I t is also easy to see tha t , in the expression N = I1(P)oi* + M(K) 
obtained in Theorem 4, (6), K is unique and P is unique up to equivalence and 
a constant factor of modulus one. Finally we get the following, which is less 
trivial. 

T H E O R E M 6. In the expression B = Iœ(Q) C\Z(K) of a simply invariant 
closed subspace B of C(Y) given by Theorem 3, (b), the i-f unction Q is determined 
uniquely by B up to equivalence and a constant factor of modulus one. 

Proof. The proof is nearly the same as t ha t of the corresponding theorem 
in (2) . As our domain R is in general multiply connected, we need a little 
further consideration. 

Let B be a closed simply invariant subspace of C(T) and suppose t ha t 
B = Iœ(Q) r\ Z(K) for an i-f unction Q and a compact set K of measure zero. 
Since Bx is simply invariant in M( Y), Theroem 4 says t ha t 

Bx = 71(Po)co* + M (Ko) 

for some i-function P 0 and a compact set Ko Ç r of measure zero. So 
B = r{Qo) r\Z(Ko) with Qo = P0. Since B C / œ ( Q ) , Bx 3 I^Q)*** and 
therefore Il(Po) ~3ll(Q). Thus Ie0 {Qo) Q I°°(Q). Thus there exists an inner 
function W such t ha t Q0(t, a) = Q(t, a)W(t, a) on T X ft. We wish to show 
t h a t Wis a cons tant function. 

LEMMA 6. W has no zero in R. 

Proof. Suppose the s ta tement is false. Let f 1 be a zero of W in R. T a k e a 
non-zero function f £ B = Ie0 (Q) C\ Z (K). Then there exists a function 
h Ç § œ ( P ) such t h a t f/Q = h. Since there is a function in A (R) t h a t has a 
simple zero a t f 1 and vanishes nowhere else on 5 , we may assume, by modifying 
/ if necessary, t h a t A(fi) ^ 0. Now since / 6 Iœ(Qo) H Z(K0), there is an 
&o € £ œ ( P ) such t h a t / /Ço s A0. So A0 = / / ( ? o =f/(QW) = h/W. T h u s 
h = ho W, which is impossible because W vanishes a t f 1 b u t & does not. Hence 
IF has no zero in R, as was to be proved. 
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As shown in §2, there exists a positive singular measure }JL on V such that 

**\™\--à !,*%?*•<» 
for f Ç R. Now we show 

LEMMA 7. Wis a constant function. 

Proof. Suppose W is not constant. Then the measure /z defined above is non-
trivial. Since n is singular, there exists a compact set Kf C r of measure zero 
such that n{K') > 0. We define a singular inner function W' on i? by 

"«i»"(f)i--sX.^ i 2*« 
and also W" by W'W" = PF. It is easy to see that IF' is continuous on T 
except on Kf. 

Sincef? = Iœ(Qo) ^ Z(K0) is non-trivial, Theorem 5 says that Ço = Ç1Q2Ç3, 
where Qi is conjugate inner, Q2 is single-valued and continuous except on a 
compact set K" of measure zero, and Q% = \ho\/ho for an outer function /z0 

such that \ho\ is continuous on T. Let Qh and ft be the Blaschke and the singular 
factors of the inner function ft, respectively, as defined in §2. There is a positive 
singular measure v on V such that 

We define, as before, inner functions ft and ft' by 

and ft = ftft'. 
By Lemma 4, there exists a non-zero function hi ^ A (R) that vanishes on 

KKJ K' \J K". Let /z2 be the outer factor of hu which is determined uniquely 
up to a constant factor of modulus one. Since W', ft, and h2 do not vanish 
anywhere on R, log W + log ft — log h2 is a well-defined additive analytic 
function on R. As we remarked in §2, there exists an analytic function u on R 
such that (i) u is analytic on R, (ii) u never vanishes on R, and (iii) u has the 
same period as log W' + log ft — log h2. Put &3 = exp u. Since the period of 
log W' + log ft — log /z2 is pure imaginary, so are the periods of u. So A3 is a 
multiplicative function that is continuous on R. 

Finally we define a multiplicative function h± by hi = W"Qh Q"h^ h2 hz. 
Clearly h4 G $œ(R). We have 

ft*4 = Tf(2ô 4 = ( r r o (ë'Q"^ ftl^ol V1) ( r ' f t Q^O ̂  ^) 
= (f tMHTT'f t^/zs) = (Q2\ho\)(W'-iQ'~%2h). 

We know that Q2\h0\ is single-valued. It is clear from our construction that 
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W/~1Qf~1h2 hz has no non-trivial period and so this is also single-valued. Since 
hi vanishes at all singularities of other factors, Qh\ is single-valued and continu­
ous. Since Qh* vanishes on K C K0l it is in B. So Qh* £ Iœ(Qo) C\Z(K0). 
There exists a function hs G &œ(R) such that (Qhi)/Qo = h$. We have 
Qb Q"fa h2 h = W'h. This implies that W must divide Qb Q" and indeed W 
must divide the singular part Q". But this is impossible because the supports of 
measures corresponding to W and Q" are disjoint. Hence PFmust be a constant 
function. This proves Lemma 7 and thus Theorem 6 is established. 

7. Some special cases. We have mentioned already that our results 
extend Voichick's and Sarason's theorems. Now we wish to indicate briefly the 
proof of these theorems. 

(a) Closed ideals of A(R). Let / be any non-trivial closed ideal of A(R). 
Then J is a closed simply invariant subspace of C(T). By Theorem 3, 

/ = Iœ(Q)nZ(K) 

with an i-function Q and a compact set K C r of measure zero. Since 

Jx = IKQW + M(K), 

we see that the weak* closure [/]* of J i n L°°(r) is equal to I°°(Q). SinceHœ(T) 
is weakly* closed in LOT(r), we have Iœ(Q) QH°°(T). Hence Q G &œ(R), so Q 
is an inner function in the sense of Voichick (8). This proves Theorem 1 of 
Voichick (8). 

(b) Closed invariant subspaces of HP(T). Let I be any closed (weakly* closed, 
if p — •+ oo) invariant subspace of HP(T). Then / is either trivial or simply 
invariant. Suppose it is simply invariant. By Theorem 2, I — IP(Q) with an 
i-function Q. Since IP(Q) is now contained in HP(T), we again conclude that Q 
is an inner function. Theorem 2 of Voichick (8) is a special case (p = 2) of this 
fact, 

(c) Closed invariant subspaces of annulus operators. Let R be an annulus 
\z: r0 < \z\ < 1 j (r0 > 0) and let $Jl be any closed (weakly* closed, if p = + oo ) 
invariant subspace of LP(T) with respect to the annulus operator, i.e. the 
multiplication by z restricted to the boundary T of the annulus. If Wl is doubly 
invariant (in our sense), then 33Î = CSL

P(T) for some measurable subset 
S of T. So SD? consists of all I/-functions that vanish at every point where Cs 

vanishes. Of course, Cs is a member of 9W. 
Suppose now that 93? is simply invariant. Then, by Theorem 2, 9W = IP(Q) 

for some i-function Q. We know that Q satisfies the relation 

Q(t,a + 0) = caCpQ(t,0) 

for any a, j3 c 9 and t 6 T. Since R is an annulus, the integral homology group 
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g of 1-cycles of R is an infinite cyclic group, i.e. % is isomorphic to the additive 
group of integers. So our relation can be written in the form 

Q(t, n) = exp(-27râ»)Q(J, 0) 

for any integer n and / £ T, where K is a real number. We may assume that 
0 < K < 1. This implies that zKQ is single-valued and therefore zKQ G 9)î. Thus 
z*QH»(T) C 2». Take any / £ 9K = P(<2). Then f/Q is in §*(£) so that 
f/(*"(?) 6 ^ ( T ) . Hence/ G s*(MP(r). Consequently, 2R = I*(Q) = z«QHp(T). 
lip = 2, then zKH2(T) is essentially the same as iJK

2(T) of Sarason (4). 
We shall determine the exponent K. Take a non-zero / G 2)?. Then / = zKQfr 

with an A 6 i P ( T). So we have 

l o K . f . = /log IA| for H = 1, 
1 0 g m \ logr 0 + log|Al for |s| = r0. 

We choose / in such a way that h is analytic on the closed unit disk and never 
vanishes there (e.g. h = 1). Then log \h\ is harmonic on the unit disk and there­
fore we have 

/•27T s*2tr 

log\f(eie)\dd- log | / ( r o e") |d0 
t /o «Jo 

J
»27T y-»27T 

l o g | * ( e " ) | d f l - log\h(r0e
ie)\de-2TTK\ogro 

o «Jo 
= — 2™ log r0, 

which is exactly the Sarason formula for the exponent. This proves Theorems 1 
and 2 of Sarason (4), where p = 2. 

(d) Cyclic vectors in HP(T). An analytic function h £ HV{T) is called a çycfo'c 
sector if it generates the whole space HV(T). It is easy to see that A is cyclic if 
and only if h is outer in our sense, i.e. 

(2) log|*(f)| = - i Jr^Ûlog|*W|d*.. 

If i? is an annulus {z: r0 < |z| < 1}, r0 > 0, then it is known that 

G(f, 0 = - 8 log r + k log[r2 - 2rr0
s cos(6» - 0) + r0

26] 

+ £ log[(l - 2rr0
2'"a cos(0 - 0) + r V 0

4 ^ ' ) ( l - 2r-V0
2*+s cos(0 - 0) 

v=l 

+ r - V ' + 2 S ) ] + Ê logtd - 2rr„2-2+5 cos(0 - ê) + rW~*u) 

X (1 - 2r~Wv-8 cos(0 - tf) + r-Vo4"-")], 

where t = reie (r0 < r < 1) and f = r0
8eiâ (0 < ô < 1). Using this expression 

in (2) and then integrating both sides of (2) from 0 to 2ir with respect to#, we 

https://doi.org/10.4153/CJM-1966-027-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-027-1


FINITE RIEMANN SURFACES 255 

see that the Sarason formula for cyclic vectors (4, Theorem 4) is valid for all 
P> 1. 

(e) Maximality of the algebra A (R) in C(Y). Finally we shall show that A (R) 
is a maximal closed subalgebra of C(T). To see this, let B be any proper closed 
subalgebra of C(T) containing A. Then B is an invariant subspace of C(T) 
and indeed it is simply invariant. So B± = Il(P)œ* for some i-function P. 
Since B^A (R), we have, by Theorem 1, Bx C A (i?)x = H^T)^*. Therefore 
I^P) Ç £Ti(r). On the other hand, B is an algebra so that BB C B. It follows 
that BBX C B±,le.BI1(P) Ç J1 (P). This immediately implies that 

5 ç#œ(r). 
Hence J3 C i ï œ ( r ) Pi C(T) = ^ ( P ) , as was to be proved. This extends a 
theorem of Wermer (9). 
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