Can. J. Math., Vol. XXXI, No. 2, 1979, pp. 337-340

A SEMILINEAR DIRICHLET PROBLEM

ALFONSO CASTRO

Introduction and notations. Let Ω be a bounded region in \mathbb{R}^n . In this note we discuss the existence of weak solutions (see [4, Section 2]) of the Dirichlet problem

(I)
$$\triangle u(x) + g(x, u(x)) + f(x, u(x), \nabla u(x)) = 0$$
 $x \in \Omega$
 $u(x) = 0$ $x \in \partial \Omega$

where \triangle is the Laplacian operator, $g: \Omega \times \mathbb{R} \to \mathbb{R}$ and $f: \Omega \times \mathbb{R}^{n+1} \to \mathbb{R}$ are functions satisfying the Caratheodory condition (see [2, Section 3]), and ∇ is the gradient operator.

We let $\lambda_1 < \lambda_2 \leq \ldots \leq \lambda_m \leq \ldots$ denote the sequence of numbers for which the problem

(II) $\Delta u(x) + \lambda u(x) = 0 \quad x \in \Omega$ $u(x) = 0 \quad x \in \Omega$

has nontrivial weak solutions.

The main result of this paper is:

Suppose the following two hypotheses hold. (1.1) The function g(x, u) admits a derivative with respect to $u, \partial g/\partial u : \Omega \times \mathbf{R} \to \mathbf{R}$, which satisfies the Caratheodory condition; furthermore, there exist $\alpha, \alpha_1 \in \mathbf{R}$ and a positive integer N such that

$$\lambda_N < \alpha \leq \partial g / \partial u(x, u) \leq \alpha_1 < \lambda_{N+1}$$
 for all $(x, u) \in \Omega \times \mathbf{R}$

(1.2) There exist a constant $\beta > 0$ and a function $c(x) \in L_2(\Omega)$ such that

$$|f(x, u, y)|^2 \leq c(x) + \beta^2 ||y||^2$$

for all $(x, u, y) \in \Omega \times \mathbb{R} \times \mathbb{R}^n$, where || || denotes the usual norm in \mathbb{R}^n . If

(1.3) $\beta < (\min \{1 - \alpha_1/\lambda_{N+1}, \alpha/\lambda_N - 1\})/\sqrt{\lambda_1}$

then (I) has a weak solution.

As a corollary of our main result we obtain bounds for the eigenvalues on $(\lambda_N, \lambda_{N+1})$ of a class of non-selfadjoint problems of the form:

(III)
$$\Delta u(x) + \langle (a_1(x), \dots, a_n(x)), \nabla u(x) \rangle + \lambda u(x) = 0 \quad x \in \Omega$$

 $u(x) = 0 \quad x \in \partial \Omega$

where \langle , \rangle denotes the usual inner product in \mathbb{R}^n and $a_1, \ldots, a_n \in L_{\infty}(\Omega)$.

Received November 3, 1977 and in revised form March 22, 1978. This research was done while the author was a Lefschetz researcher at Centro de Investigacion del IPN.

ALFONSO CASTRO

In [2, Theorem 1] and [4, Theorem 3.1] the problem (I) is considered and the existence of weak solutions is proved when f(x, u, y) = o(||y||) as $||y|| \to +\infty$. In [3, Theorem 3.4] the problem (I) is studied when $\Omega \subset \mathbf{R}$ and f and g are permitted to depend on the second order derivatives. The results of [3] yield inequalities of the form (1.3) when $\alpha_1 < \lambda_1$. We denote in this paper by H^1 the Sobolev space $H_0^{1,2}(\Omega)$ (see [1, p. 45]). We take as inner product in H^1 the bilinear form defined by

$$\langle u, v \rangle_{1} = \int_{\Omega} \langle \nabla u(\xi), \nabla v(\xi) \rangle d\xi$$

We denote by || || the norm on H^1 and by $|| ||_0$ the norm on $L_2(\Omega)$. We let X denote the closed subspace of H^1 spanned by the eigenfunctions of (II) corresponding to eigenvalues λ_k with $\lambda_k \leq \lambda_N$. We use the symbol \int to mean *integral* over Ω .

Proofs. From now on we assume that (1.1) and (1.2) hold. Let $J: H^1 \times H^1 \rightarrow \mathbf{R}$ be defined by

$$J(y, u) = \int \{ ||\nabla u(\xi)||^2 / 2 - G(\xi, u(\xi)) - f(\xi, y(\xi), \nabla y(\xi))u(\xi) \} d\xi,$$

where $G: \Omega \times \mathbb{R} \to \mathbb{R}$ is a continuous function such that $\partial G/\partial u(x, u) = g(x, u)$ and G(x, 0) = 0. It is not difficult to see that for $y, u, v \in H^1$

(2.1)
$$\lim_{t \to \infty} (J(y, u + tv) - J(y, u))/t = \int \{ \langle \nabla u(\xi), \nabla v(\xi) \rangle - g(\xi, u(\xi))v(\xi) - f(\xi, y(\xi), \nabla y(\xi))v(\xi) \} d\xi.$$

Therefore, by Vainberg's lemma (see [6, p. 63]), if (1.1) holds, the right hand side of (2.1) defines a continuous linear functional on $v \in H^1$. Hence, for each $(y, u) \in H^1 \times H^1$ there exist $S(y, u) \in H^1$ such that

(2.2)
$$\lim_{t\to 0} J(y, u + tv) - J(y, u)/t = \langle u, v \rangle_1 + \langle S(y, u), v \rangle_1.$$

By (1.1), (1, 2) and Vainberg's Lemma (see [2, Proposition 4]) the functions $u(\xi) \to g(\xi, u(\xi))$ and $y(\xi) \to f(\xi, y(\xi), \nabla y(\xi))$ are continuous functions from H^1 into $L_2(\Omega)$. Since, by Rellich's principle, the inclusion of $L_2(\Omega)$ into the dual space of H^1 is compact, S(y, u) is a compact function.

From (1.1) and the results of [5, Section 7] it follows that

$$\Delta u(x) + g(x, u(x)) + f(x, y(x), \nabla y(x)) = 0 \quad x \in \Omega$$
$$u(x) = 0 \quad x \in \partial \Omega$$

has a unique weak solution for each $y \in H^1$. Therefore, for each $y \in H^1$ there exists a unique $\varphi(y) \in H^1$ such that

(2.3)
$$\langle \varphi(y) + S(y, \varphi(y)), v \rangle_1 = 0$$
 for all $v \in H^1$.

338

LEMMA 1. The function $\varphi: H^1 \to H^1$ defined by (2.3) is compact.

Proof. First we show that φ is continuous. From the discussion in [5, Section 7] we see that if $J_y : H^1 \to \mathbf{R}$ is defined by $J_y(u) = J(y, u)$ then J_y is of class C^2 . Let $DJ_y(u)$ be the Hessian of J_y at u. An elementary computation show that

$$\langle DJ_{v}(u)v,v\rangle_{1}=\int\{||\nabla v||^{2}-\partial g/\partial u\ (\xi,u(\xi))\ v^{2}(\xi)\}d\xi.$$

Following the arguments of [4, Section 7] we see that $DJ_y(u)$ is a nonsingular Fredholm operator.

Let $T: H^1 \times H^1 \to H^1$ be defined by T(y, u) = u + S(y, u). Hence T is continuously differentiable with respect to u and $\partial_u T(y, u) = DJ_Y(u)$. Thus, by (2.3), for any $y_0 \in H^1 T(y_0, \varphi(y_0)) = 0$. By the foregoing argument $\partial_u T(y_0, \varphi(y_0))$ is nonsingular. Therefore, by the implicit function theorem there exist a neighborhood V of y_0 and a continuous function $\psi : V \to H^1$ such that $T(y, \psi(y)) = 0$ for all $y \in V$. Consequently, by the uniqueness of $\varphi(y)$, we have $\varphi(y) = \psi(y)$ on V, and this proves that φ is continuous.

Now we prove that φ is bounded on bounded sets. For $y \in H^1$, let $\varphi_1(y)$ be the orthogonal projection of $\varphi(y)$ on X, and let $\varphi_2(y)$ be $\varphi(y) - \varphi_1(y)$. By (2.3) we have

$$0 = \langle \varphi(y) + S(y, \varphi(y)), \varphi_2(y) - \varphi_1(y) \rangle_1.$$

Hence,

$$(2.4) \quad 0 = ||\varphi_{2}(y)||_{1}^{2} - ||\varphi_{1}(y)||_{1}^{2} - \int g(\xi, \varphi(y)(\xi))(\varphi_{2}(y)(\xi) - \varphi_{1}(y)(\xi))d\xi - \int f(\xi, y(\xi), \nabla y(\xi))(\varphi_{2}(y)(\xi) - \varphi_{1}(y)(\xi))d\xi \geq ||\varphi_{2}(y)||_{1}^{2} - ||\varphi_{1}(y)||_{1}^{2} - \sqrt{\lambda_{1}}||g(\xi, 0)||_{0} \cdot ||\varphi(y)||_{1} - \alpha_{1}||\varphi_{2}(y)||_{0}^{2} + \alpha||\varphi_{1}(y)||_{0}^{2} - \left(\int f^{2}(\xi, y(\xi), \nabla y(\xi))d\xi\right)^{1/2} \cdot \sqrt{\lambda_{1}} \cdot ||\varphi(y)||_{1} \geq (1 - \alpha_{1}/\lambda_{N+1})||\varphi_{2}(y)||_{1}^{2} + (\alpha/\lambda_{N} - 1)||\varphi_{1}(y)||_{1}^{2} - \sqrt{\lambda_{1}}||g(\xi, 0)||_{0}||\varphi(y)||_{1} - \left(\int f^{2}(\xi, y(\xi), \nabla y(\xi))d\xi\right)^{1/2} \cdot \sqrt{\lambda_{1}} \cdot ||\varphi(y)||_{1}.$$

Thus, if $m = \min \{1 - \alpha_1/\lambda_{N+1}, \alpha/\lambda_N - 1\}$ then we have

(2.5)
$$\sqrt{\lambda_1} ||g(\xi, 0)||_0 + \sqrt{\lambda_1} \left(\int f^2(\xi, y(\xi), \nabla y(\xi)) d\xi \right)^{1/2} \ge m ||\varphi(y)||_1.$$

Since, by (1.2), the Nemytski operator $y(\xi) \to f(\xi, y(\xi), \nabla y(\xi))$ maps bounded sets of H^1 into bounded sets of $L_2(\Omega)$ we infer from (2.5) that φ is bounded on bounded sets. Suppose $\{y_n\}$ is a bounded sequence in H^1 . Hence $\{S(y_n, \varphi(y_n)\}\)$ contains a convergent subsequence $\{S(y_{n_j}, \varphi(y_{n_j}))\}$. By (2.3), $-\varphi(y_{n_j}) = S(y_{n_j}, \varphi(y_{n_j}))$. Therefore, $\{\varphi(y_{n_j})\}\)$ is a convergent sequence. Consequently, φ is compact and the lemma is proved.

THEOREM 2. If (1.1), (1.2) and (1.3) hold then the problem (I) has a weak solution.

Proof. By (1.2), there exists $K \in \mathbf{R}$ such that

(2.6)
$$\left(\int f^2(\xi, y(\xi), \nabla y(\xi))d\xi\right) \leq K^2 ||c(x)||_0 + \beta^2 ||y||_1^2$$

for all $y \in H^1$. Combining (2.5) and (2.6) we have

$$(2.7) \quad m||\varphi(x)||_{1} \leq \sqrt{\lambda_{1}}||g(\xi,0)||_{0} + \sqrt{\lambda_{1}}K||c(x)||_{0}^{1/2} + \beta\sqrt{\lambda_{1}}||y||_{1}.$$

Therefore, by (1.3), if R > 0 is big enough then the function φ maps the ball of center 0 and radius R into itself. Consequently, by Schauder's fixed point theorem, φ must have a fixed point. Since any fixed point of φ is a weak solution of (I) the theorem is proved.

COROLLARY 3. If $(\int (a_1^2(\xi) + \ldots + a_n^2(\xi))d\xi)^{1/2} \leq \beta$ then the problem (III) does not have eigenvalues in the open interval

 $(\lambda_N(1 + \beta \sqrt{\lambda_1}), \lambda_{N+1}(1 - \beta \sqrt{\lambda_1})) = D.$

Proof. If $\lambda \in D$, then following the proof of Theorem 2 we see that for any $c(x) \in L_2(\Omega)$ the problem

$$\Delta u(x) + \langle (a_1(x), \ldots, a_n(x)), \nabla u(x) \rangle + \lambda u(x) = c(x) \quad x \in \Omega$$
$$u(x) = 0 \quad x \in \partial \Omega$$

has a weak solution. Therefore by the Fredholm alternative (see [2, Proposition 1]) λ cannot be an eigenvalue of (III).

References

- 1. R. Adams, Sobolev spaces, (Academic Press, 1975).
- 2. D. J. de Figueiredo, The Dirichet problem for non-linear elliptic equations: a Hilbert space approach, Lecture Notes in Math. 446, (Springer, 1974).
- 3. P. M. Fitzpatrick, Existence results for equations involving noncompact perturbations of Fredholm mappings with applications to differential equations (mimeographed copy).
- 4. E. Landesman and A. C. Lazer, Linear eigenvalue problems and a nonlinear boundary value problem, Pacific J. of Math., 33 (1970), 311-328.
- A. Lazer, E. Landesman and D. Meyers, On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence, J. Math. Anal. Appl., 53 (1975), 594-614.
- 6. M. Vainberg, Variational methods in the study of nonlinear operators, (Holden-Day, San Francisco, 1964).

Centro de Investigacion del IPN, México