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DIFFERENTIATION OF SOME
FUNCTIONALS OF RISK PROCESSES,
AND OPTIMAL RESERVE ALLOCATION

STÉPHANE LOISEL,∗ Université Lyon 1

Abstract

For general risk processes, we introduce and study the expected time-integrated negative
part of the process on a fixed time interval. Differentiation theorems are stated and proved.
They make it possible to derive the expected value of this risk measure, and to link it
with the average total time below 0, studied by Dos Reis, and the probability of ruin. We
carry out differentiation of other functionals of one-dimensional and multidimensional
risk processes with respect to the initial reserve level. Applications to ruin theory, and
to the determination of the optimal allocation of the global initial reserve that minimizes
one of these risk measures, illustrate the variety of fields of application and the benefits
deriving from an efficient and effective use of such tools.
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1. Introduction

Consider the one-dimensional risk process Rt = u + Xt , representing the surplus of an
insurance company at time t , with initial reserve u and with Xt = ct − St , where c > 0 is
the premium income rate and St is, in the most classical case, a compound Poisson process
(although we do not limit ourselves to the Poisson case here). For such processes, many risk
measures have been considered (see, for example, Gerber (1988), Dufresne and Gerber (1988),
and Picard (1994)): the time to ruin Tu = inf{t > 0 : u+Xt < 0}; the severity of ruin u+XTu ;
the pair (Tu, u+XTu); the time in the red (that is, below 0) T ′

u − Tu from the time of first ruin
to the time of first recovery, where T ′

u = inf{t > Tu : u+ Xt = 0}; the maximal ruin severity
inf t>0(u+Xt); the aggregate severity of ruin until recovery J (u) = ∫ T ′

u

Tu
|u+Xt | dt ; etc. Dos

Reis (1993) studied the total time in the red τ(u) = ∫ ∞
0 1{u+Xt<0} dt , using results of Gerber

(1988).
These random variables are all drawn from infinite-time ruin theory, or involve the behaviour

of the risk process between ruin times and recovery times. It seems interesting to consider risk
measures based on some fixed time interval [0, T ] (T may be infinite). One of the simplest
penalty functions might be the expected value of the time-aggregated negative part of the risk
process:

E(IT ) := E

(∫ T

0
1{Rt<0} |Rt | dt

)
.
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380 S. LOISEL

Note that the probability P(IT = 0) is the probability of nonruin within finite time T . IT may
be seen as the penalty the company will have to pay due to its insolvency until the time horizon
T . From an economic point of view, it seems more consistent to consider

Ig,h(u) =
∫ T

0
(1{u+Xt≥0} g(|u+Xt |)− 1{u+Xt≤0} h(|u+Xt |)) dt,

with 0 ≤ g ≤ h, where g corresponds to a reward function for positive reserves and h is a
penalty function in case of insolvency. To be consistent with the theory of utility functions, g
should be increasing and concave, and h should be increasing and convex in the classical case.
In addition, g ≤ h because the cost of ruin is usually higher than the reward at the corresponding
wealth level.

These risk measures may be differentiated with respect to the initial reserve u, which makes it
possible to compute them quite easily as integrals of other functions of u, such as the probability
of ruin or the total time in the red. Moreover, they have the advantage that the integral over t
and the mathematical expectation may be permuted, thanks to Fubini’s theorem.

Statements and proofs of our differentiation theorems can be found in Sections 2 and 3. In
Section 4, we present examples of applications to one-dimensional risk measures; in particular,
a closed-form formula is derived for E(I∞) in the Poisson-exponential case.

We can also use these concepts to construct risk measures for multidimensional risk pro-
cesses, modelling different lines of business of an insurance company (car insurance, health
insurance, etc.). In this framework, determining the global initial reserve needed for the global
expected penalty to be sufficiently small requires finding the optimal allocation of this reserve.
Differentiation of one-dimensional risk measures is useful for this purpose. These issues are
discussed in Section 5.

2. Differentiation theorems

Let (�,F ,P) be a probability space. In what follows, for T ∈ [0,∞], we will denote the
time in the red until time T by

τ(u, T ) =
∫ T

0
1{u+Xt<0} dt.

In most cases, T will be fixed and we will use the notation τ(u) instead of τ(u, T ). In this
section, we assume that T < ∞.

Theorem 1. Assume that T ∈ R
+. Let (Xt )t∈[0,T ) be a stochastic process with almost surely

time-integrable sample paths. For u ∈ R, denote by τ(u) the random variable corresponding
to the time spent below 0 by the process u+Xt between the fixed times 0 and T ,

τ(u) =
∫ T

0
1{u+Xt<0} dt;

let τ0(u) represent the time spent at 0 by the process u+Xt ,

τ0(u) =
∫ T

0
1{u+Xt=0} dt;

let IT (u) represent the negative part of the process u+Xt time-integrated between 0 and T ,

IT (u) =
∫ T

0
1{u+Xt<0} |u+Xt | dt;
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Figure 1: The shaded area represents IT (u) = ∫ T
0 1{u+Xt<0} |u+Xt | dt .

and let f (u) = E(IT (u)). If E(τ0(u)) = 0 then f is differentiable at u, with

f ′(u) = − E(τ (u)).

IT (u) is illustrated in Figure 1.

Proof. Fix u ∈ R and, for ε ≥ 0, set

τε(u) =
∫ T

0
1{|u+Xt |<ε} dt.

Here, τε(u) represents the time spent by the process u + Xt in the interval (−ε, ε) between
time 0 and time T .

For each sample path (considered as a function of time t),

t �→ 1{|u+Xt |<ε}

converges pointwise, from above, to

t �→ 1{u+Xt=0} .

Additionally, the integral of each of the indicator functions is bounded byT . From the monotone
convergence theorem, τε is decreasing with respect to ε and converges to τ0. From the monotone
convergence theorem (this time for the expectation), E(τε) ↓ E(τ0) as ε ↓ 0 because E(τε) ≤ T

for all ε ≥ 0. To complete the proof, we need the following lemma.

Lemma 1. For ε ∈ R,

|IT (u+ ε)− IT (u)+ ετ(u)| ≤ |ε|τε(u).
Proof. For ε > 0, we have {u+ ε +Xt < 0} ⊂ {u+Xt < 0}, whence

IT (u+ ε)− IT (u)

=
∫ T

0
(|u+ ε +Xt | − |u+Xt |) 1{u+Xt<0} dt −

∫ T

0
|u+ ε +Xt | 1{−ε<u+Xt<0} dt

= −ε
∫ T

0
1{u+Xt<0} dt −

∫ T

0
|u+ ε +Xt | 1{−ε<u+Xt<0} dt. (1)
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382 S. LOISEL

On the right-hand side of (1), the first term corresponds to −ετ(u), while the absolute value
under the integral of the second term is less than ε on the support of the indicator function it
multiplies. Hence,

|IT (u+ ε)− IT (u)+ ετ(u)| <
∫ T

0
ε 1{−ε<u+Xt<0} dt,

which proves the lemma for ε > 0. A symmetrical procedure proves the case in which ε ≤ 0.

Now, from Lemma 1,

| E(IT (u+ ε))− E(IT (u))+ ε E(τ (u))| ≤ |ε| E(τε(u))

and
E(IT (u+ ε)) = E(IT (u))− ε E(τ (u))+ εv(u, ε),

where
|v(u, ε)| ≤ E(τε(u)) → E(τ0(u)) = 0

as ε → 0, which proves that f is differentiable with respect to u, with f ′(u) = − E(τ (u)) for
u ∈ R.

Corollary 1. Using the notation of Theorem 1, let Xt = ct − St , where St is a jump process
such that St almost surely has a finite number of nonnegative jumps in every finite interval, and
such that Xt has a positive drift (that is, Xt → ∞ almost surely). Then, for u ∈ R, f defined
as above is differentiable in R, with f ′(u) = − E(τ (u)).

Proof. We need only show that

E(τ0(u)) =
∫ T

0
1{u+ct−St=0} dt = 0.

Note that Rt = u + ct − St is a process whose sample paths are almost surely increasing
between two consecutive jump times, and that the number of jumps is almost surely finite on
the time interval [0, T ]. Between two times at which the process is 0, there must be at least one
jump time. This implies that the number of visits of the process to 0 is almost surely finite, as
it is less than NT + 1, where NT is the number of jumps between 0 and T . Hence, E(τ0) = 0
and the result follows from Theorem 1.

Proposition 1. If N is a null subset of R
+ for the Lebesgue measure, then the condition

E(τ0) = 0 is satisfied by all processes for which the distribution ofRt has no atom (point mass)
at 0 for any t ∈ R

+ −N . Theorem 1 is also satisfied for this wide class of processes.

Proof. For T ∈ [0,∞], from Fubini’s theorem,

E(τ0(T )) ≤ E

(∫ ∞

0
1{Rt=0} dt

)
=

∫ ∞

0
P(Rt = 0) dt,

which provides the required result.

Theorem 2. Let g ∈ C1(R+,R+) be a convex or concave function such that g(0) = 0, where
C1(R+,R+) denotes the set of continuously differentiable functions from R

+ to R
+. Let Xt

be a stochastic process such that, for u ∈ R, t �→ 1{u+Xt<0} g(−(u + Xt)) is almost surely
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integrable with respect to t , and let Ig be the function, from R into the space of nonnegative
random variables, defined by

Ig(u) =
∫ T

0
1{u+Xt<0} g(−(u+Xt)) dt

for u ∈ R. Finally, let f (·) = E(Ig(·)).
For u ∈ R, if f (u) < ∞, E(Ig′(u)) < ∞, and E(τ0(u)) = 0, then f is differentiable at

point u, with

f ′(u) = − E

(∫ T

0
1{u+Xt<0} g′(|u+Xt |) dt

)
.

Proof. Fix u ∈ R. We have

Ig(u+ ε)− Ig(u)

ε
=

∫ T

0
1{u+Xt<0}

g(|u+ ε +Xt |)− g(|u+Xt |)
ε

dt

−
∫ T

0
1{−ε<u+Xt<0}

g(|u+ ε +Xt |)
ε

dt.

For t ∈ [0, T ], if g is convex then

1{u+Xt<0}
g(−(u+ ε +Xt))− g(−(u+Xt))

−ε ↑ 1{u+Xt<0} g′(−(u+Xt))

almost surely as ε ↓ 0, from the increase of the rate of increase of g, and if g is concave then

1{u+Xt<0}
g(−(u+ ε +Xt))− g(−(u+Xt))

−ε ↓ 1{u+Xt<0} g′(−(u+Xt))

almost surely as ε ↓ 0, from the increase of the rate of decrease of g. From the monotone
convergence theorem,

E

(
1{u+Xt<0}

g(−(u+ ε +Xt))− g(−(u+Xt))

ε

)
→ − E(1{u+Xt<0} g′(−(u+Xt)))

for t ∈ [0, T ], and, from Fubini’s theorem,

E

(∫ T

0
1{u+Xt<0}

g(−(u+ ε +Xt))− g(−(u+Xt))

ε
dt

)
→ − E(Ig′(u))

as ε ↓ 0. Hence,

|f (u+ ε)− f (u)+ ε E(Ig′(u))+ εw(u, ε)| ≤ E

(∫ T

0
1{−ε<u+Xt<0} g(−(u+ ε +Xt)) dt

)

with w(u, ε) → 0 as ε ↓ 0, and

|f (u+ ε)− f (u)+ ε E(Ig′(u))+ εw(u, ε)| ≤ Kε E(τε(u)),

where K = supx∈[0,ε] |g′(x)|. Now,

E(Ig(u+ ε)) = E(Ig(u))− ε E(Ig′(u))+ ε(v(u, ε)− w(u, ε)),
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where
|v(u, ε)| ≤ K E(τε(u)) → K E(τ0(u)) = 0

as ε ↓ 0, which proves that f is right-differentiable at u, with

f ′
r (u) = − E

(∫ T

0
1{u+Xt<0} g′(−(u+Xt)) dt

)
.

By similar reasoning, f can be shown to be left-differentiable, with f ′
l = f ′

r , which ends the
proof.

3. Differentiation of the average time in the red, and other generalizations

Recall that the time in the red is the time spent below 0 by the wealth process between time
0 and some fixed time horizon T :

τ(u) =
∫ T

0
1{u+Xt<0} dt.

Let us first suppose that T is finite.

Theorem 3. LetXt = ct−St , where St is a jump process satisfying the following hypothesis.

(H1) St has a finite expected number of nonnegative jumps in every finite interval and, for each
t , the distribution of St has no atom on (0,∞).

For example, St might be a compound Poisson process with a continuous jump size distribution.
Let T < ∞ and define h by h(u) = E(τ (u)) for u ∈ R. The function h is differentiable in
R

+∗ = (0,∞), with

h′(u) = −1

c
E(N0(u, T ))

for u > 0, where N0(u, T ) = card({t ∈ [0, T ] : u+ ct − St = 0}).
Proof. The number of jumps NT and, hence, N0(u, T ) are finite almost surely. Consider a

sample path (Xt (ω))0≤t≤T , for ω ∈ �. Let Rt = u+ Xt and denote by Ti the ith jump time.
Define

ε0(ω) = inf
n≤NT , RTn>0

RTn.

If N0(u, T ) = 0 then define

ε+ = inf({u+Xt, 0 ≤ t ≤ T } ∩ R
+)

and
ε− = − sup({u+Xt, 0 ≤ t ≤ T } ∩ R

−).
Here, ε− and ε+ are almost surely positive. If |ε| < inf{ε+, ε−} then τ(u−ε)− τ(u) = 0, and
the remainder of the proof remains valid. IfN0(u, T ) 
= 0 then denote by ti , 1 ≤ i ≤ N0(u, T ),
the time of the ith visit of Rt to 0, and by t ′i the time of the first jump of Rt after ti . The sample
paths of the process Rt are almost surely right-continuous, and the probability that RT = 0 is
zero. Therefore, we may consider

ε1(ω) = min
{

min
1≤i≤N0(u,T )

c(t ′i − ti ), c(T − tN0(u,T ))
}
.
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Then, for 0 < ε < min{ε0(ω), ε1(ω)},

{0 < u+ ct − St < ε} =
N0(u,T )⋃
i=1

{(
ti , ti + ε

c

)}

and, so,

τ(u− ε)− τ(u) =
∫ T

0
1{u−ε+ct−St<0} dt −

∫ T

0
1{u+ct−St<0} dt (2)

=
∫ T

0
1{0≤u+ct−St<ε} dt

=
N0(u,T )∑
k=1

ε

c
.

Hence,
τ(u− ε)− τ(u)

ε
→ 1

c
N0(u, T )

almost surely as ε → 0. Moreover, between two consecutive jumps of Rt , the difference
between the two integrals corresponding to those on the right-hand side of (2) is less than ε/c
in absolute value, whence ∫ Ti+1

Ti

1{0≤u+ct−St<ε} dt ≤ ε

c
.

So, for ε > 0 sufficiently small, and writing TNT+1 = T and T0 = 0, we have

τ(u− ε)− τ(u)

ε
=

NT∑
i=0

1

ε

∫ Ti+1

Ti

1{0≤u+ct−St<ε} dt

≤
NT∑
i=0

1

ε

ε

c

≤ 1

c
(NT + 1).

Hence, from the dominated convergence theorem,

E

(
τ(u− ε)− τ(u)

ε

)
→ 1

c
E(N0(u, T ))

as ε → 0. This proves that h is left-differentiable in R
+∗ , with

h′
l(u) = −1

c
E(N0(u, T ))

for u > 0.
By similar reasoning, h is right-differentiable in R

+∗ , with h′
l = h′

r. Hence, h is differentiable
in R

+∗ , with h′(u) = −(1/c)E(N0(u, T )) for u > 0.

Remark 1. This provides the second-order derivative of E(IT (·)), which appears to be positive.
Thus, E(IT (·)) is strictly convex, which will be very important for the minimization in Section 5.
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Remark 2. This second-order derivative corresponds, in the general case, to the expectation
of the local time LT (0) spent at 0 by the process u+Xt , up to time T:

LT (0) = lim
ε↓0

(
1

2ε

∫ T

0
1{|u+Xt |<ε} dt

)
.

Theorem 4. Let g and h be two convex or concave functions inC1(R+,R+), such that g(x) ≥
g(0) and h(x) ≥ h(0) for x ≥ 0. Let Xt be a stochastic process such that t �→ g(u+Xt) and
t �→ h(u+Xt) are almost surely integrable on [0, T ]. Let I+

g be the function, from R into the
space of nonnegative random variables, defined by

I+
g (u) =

∫ T

0
1{u+Xt≥0} g(u+Xt) dt

for u ≥ 0, and let f (·) = E(I+
g (·))− E(Ih(·)).

If, for u ∈ R,

E(I+
g (u)) < ∞, E(Ih(u)) < ∞, E(I+

g′ (u)) < ∞, E(Ih′(u)) < ∞,

and E(τ0(u)) = 0, then f is differentiable in R
+∗ , with

f ′(u) = E(I+
g′ (u))− E(Ih′(u))− (g(0)+ h(0))E(LT (0))

for u > 0.

Corollary 2. If, in addition to the hypotheses of Theorem 4, we assume that Xt = ct − St ,
where St satisfies hypothesis (H1) of Theorem 3, then f ′(u) may be rewritten, for u > 0, as

f ′(u) = E(I+
g′ (u))− E(Ih′(u))+ (g(0)+ h(0))E(N0(u, T ))

c
, (3)

where N0(u, T ) is as defined in Theorem 3.

Proof. The proof follows immediately from Theorem 4, after replacing the last term in (3)
using the proof of Theorem 3.

Proof of Theorem 4. We write

I+
g (u)− Ih(u) = −Ĩ(g−g(0))(−u)− I(h−h(0))(u)− h(0)τ (u)+ g(0)(T − τ(u)),

where Ĩg is obtained from Ig by changing Xt into −Xt . From the linearity of expectations and
differentiation, applying Theorem 2 to g − g(0), with −Xt in place of Xt , and to h − h(0),
with Xt unchanged, and using Theorem 3 completes the proof of Theorem 4.

Theorem 5. Theorem 1 remains valid withT = ∞ if, in addition to the assumptions made there,
the processXt converges almost surely to ∞ as t → ∞, and E(I∞) < ∞ and E(τ (u,∞)) < ∞
for u ≥ 0.

Proof. The proof relies on the same kind of reasoning as was used in the proof of Theorem 1.

Remark 3. These conditions of integrability are fulfilled if the time spent below 0 during a
single period of ruin is integrable.
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We denote by ψ(u) the probability of ruin in infinite time, with initial reserve u.

Theorem 6. Theorem 3 remains valid with T = ∞ if, in addition to the assumptions made
there,Xt has a positive drift and τ(u) is integrable for all u > 0. Furthermore, in the compound
Poisson case,

h′(u) = −1

c

1

1 − ψ(0)
ψ(u)

for u > 0.

Proof. For T ∈ [0,∞], recall the notation

τ(u, T ) =
∫ T

0
1{u+Xt<0} dt.

Note that (N0(u, n))n≥0 is a nondecreasing sequence of random variables that converges surely
to N0(u,∞), which is possibly infinite. We shall show that E(N0(u,∞)) < ∞.

As t → ∞, u+Xt → ∞ almost surely. Hence, almost surely,N0(u,∞) < ∞ and is equal
to the number of periods of ruin:

N0(u,∞) = card({t > 0 : u+ ct − St < 0 and u+ ct− − St− > 0}).
Indeed, after each period of ruin there is a recovery because Xt converges almost surely to ∞
as t goes to ∞, and the number of jumps that lead exactly to the value 0 is almost surely finite.
Furthermore, in the compound Poisson case, the number of periods of ruin has the distribution

P(N0(u,∞) = n) = ψ(u)ψ(0)n−1(1 − ψ(0))

for n ≥ 1, with P(N0(u,∞) = 0) = 1 − ψ(u). Hence, N0(u,∞) follows a zero-modified
geometric distribution, i.e. P(N0(u,∞) = 0) = 1 − ψ(u) and, for n > 0,

P(N0(u,∞) = n | N0(u,∞) > 0) = ψ(0)n−1(1 − ψ(0)).

Hence, N0(u,∞) is integrable and

E(N0(u,∞)) = ψ(u)
1

1 − ψ(0)
.

For all ω and for ε > 0, the function

(T , ω) �→ τ(u+ ε, T )− τ(u, T )

ε
ω

is increasing with respect to T , and the limit of its expectation, as ε ↓ 0, is −(1/c)E(N0(u, T )).
From the monotone convergence theorem,

E

(
lim
ε↓0

(
τ(u+ ε,∞)− τ(u,∞)

ε

))
= −1

c
E(N0(u,∞)).

Remark 4. In infinite time, the probability of ruin may be regarded (up to multiplication by a
constant) as the expectation of the local time spent by the process at 0.
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4. Applications in the one-dimensional case

Theorem 7. In the Poisson(λ)-Exp(1/µ) case, with positive safety loading ρ = (c − λµ)/λµ,
we have ψ(u) = (1 − µR)e−Ru, where R = (1/µ)(1 − λµ/c). Hence, for T = ∞,

E(τ (u)) = 1 − µR

cµR2 e−Ru

and

E(I∞(u)) = 1 − µR

cµR3 e−Ru.

Proof. The proof follows simply from integration of the well-known formula for ψ(u), as
the functions considered tend to 0 as u → ∞.

This method provides a way of determining the average total time in the red from the integral
of the probability of ruin. Dos Reis (1993) derived this result for E(τ (u,∞)) by considering
the number of times ruin occurs, and using the distributions of the lengths of the first and
subsequent periods in the red, the latter of which were derived by Gerber (1988).

Remark 5. It is possible to derive E(I∞(u)) for gamma-distributed or phase-type-distributed
claim amounts, as we know the probability of ruin in these cases. (For brevity, we do not report
the results here.)

The parallel with the Brownian case is also interesting. The local time at x of a standard
Brownian motion Wt is defined by

Lt(x) = lim
ε↓0

1

4ε

∫ t

0
1{|Ws−x|<ε} ds.

This provides a density for the occupation time �t(B) of a Borel set B, between 0 and t :

�t(B) =
∫
B

2Lt(x) dx.

Theorem 8. (Lévy’s Brownian local-time representation theorem with downcrossings.) Let
Dt(ε) be the number of downcrossings of the interval [0, ε] by the process Ws , between 0 and
t . Then, 2Lt(0) = limε↓0 εDt(ε).

This well-known theorem can be viewed as a limiting case of Theorem 3.

5. Multidimensional risk measures and optimal allocation

For a one-dimensional risk process, one classical goal is to determine the minimal initial
reserve uε needed for the probability of ruin to be less than ε. In a multidimensional framework,
modelling the evolution of the different lines of business of an insurance company as a multirisk
process (u1 +X1

t , . . . , uK +XKt ) (where uk +Xkt corresponds to the wealth of the kth line of
business at time t), we might seek the global initial reserve uwhich ensures that the probability
of ruin ψ satisfies ψ(u1, . . . , uK) ≤ ε for the optimal allocation (u1, . . . , uK) such that

ψ(u1, . . . , uK) = inf
v1+···+vK=uψ(v1, . . . , vK),

with

ψ(u1, . . . , uK) = P(there exist a k ∈ [1,K] and a t > 0 such that uk +Xkt < 0).
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Instead of minimizing the probability of crossing certain barriers, it may be more interesting
to minimize the sum of the expected costs of ruin, until time T , of each line of business. This
may be represented by the expectation of the sum of integrals over time of the negative part of
the process. In both cases, finding the necessary global reserve requires determination of the
optimal allocation. In the previous sections, we have shown how to compute E(IT ) for one line
of business, and the linearity of the expectation makes it possible to compute the sum for K
dependent lines of business just as in the independent case; the structure of dependence between
lines of business has no impact on this risk measure. This may be considered to be a problem
of optimal allocation of resources under budget constraints, as in economics, the goal being to
maximize the utility function given by the sum of the − E(I iT ), where I iT , i = 1, . . . , K , is the
penalty paid by the company for the ith line of business.

5.1. Minimizing the penalty function

Recall that what has to be minimized is

A(u1, . . . , uK) =
K∑
k=1

E(I kT ),

where

E(I kT ) = E

(∫ T

0
|Rkt | 1{Rkt <0} dt

)

with Rkt = uk + Xkt under the constraint u1 + · · · + uK = u. Owing to the linearity of the
expectation, this is not affected by how the lines of business depend on one another. Denote
by vk(uk) the derivative of E(I kT ) with respect to uk . Using Lagrange multipliers, we can show
that if (u1, . . . , uK)minimizesA, then vk(uk) = v1(u1) for all 1 ≤ k ≤ K . Computing vk(uk),
we obtain

vk(uk) =
(

E

(∫ T

0
|Rkt | 1{Rkt <0} dt

))′
= − E(τ k) = −

∫ T

0
P(Rkt < 0) dt,

where τ k represents the time spent in the red, between time 0 and time T , by line of business k.
Theorem 1 justifies this statement. The sum of the average times spent under 0 is a decreasing
function of the uk , so A is strictly convex. On the compact space

S = {(u1, . . . , uK) ∈ (R+)K : u1 + · · · + uK = u},
A admits a unique minimum. Thus, the optimal allocation is as follows: there is a subset
J ⊂ [1,K] such that, for k /∈ J , we have uk = 0 and, for k, j ∈ J , we have E(τk) = E(τj ).
The interpretation is quite intuitive: the safest lines of business do not require any reserve, and
the others share the global reserve in such a way as to have equal average times in the red.

If we relax nonnegativity then, on {u1 + · · · + uK = u}, if (u1, . . . , uK) is an extremum
point for A, the average times spent under 0 by the K lines of business are equal to one
another. If (u1, . . . , uK) is a minimum for the sum of the times spent below 0 by each line
of business, then the average number of visits by line of business k is proportional to ck , the
corresponding premium income rate, and, at infinite time, the ruin probabilities are in fixed
proportions. However, the existence of a minimum is not guaranteed, because (u1, . . . , uK)

is no longer compact. The problem would be more tractable if we minimized the sum of the
average times in the red or minimized on the ck , because some factors penalize very negative
uk in these cases.
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5.2. Example

In the Poisson(λ)-Exp(1/µ) case, recall that

E(I∞(u)) = (1 − µR)

cµR3 e−Ru.

Consider a model with two lines of business, with the following parameters: µ1 = µ2 = 1,
c1 = c2 = 1, R2 = 0.4, and u = 10. We want to minimizeA(u1, u2) for 0 ≤ u1, u2 ≤ 10 such
that u1 + u2 = 10. A slight modification of the adjustment coefficient R1 makes the optimal
allocation vary strongly. When R1 = 0.5 > R2, (see Figure 2), line of business 1 is safer than
line 2, from comparison of the adjustment coefficients, and line 2 should receive a greater initial
reserve than line 1. The optimal allocation is about (u1 = 3.745 990 378, u2 = 6.254 009 622).
When R1 = 0.3 < R2 (see Figure 3), line of business 1 is riskier and, so, should receive a
greater initial reserve than line 2. The optimal allocation in this case is (u1 = 6.756 449 750,
u2 = 3.243 550 250). When R1 = 0.08 (see Figure 4), the optimal allocation is (u1 = 10,
u2 = 0). In this case, line of business 1 is much more risky than line of business 2, which
justifies the transfer of the entire global initial reserveu to line of business 1. For more properties
or examples of optimal reserve allocation, the interested reader can consult Loisel (2005).

0 2 4 6 8 10
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4

6

8

x

Figure 2: A graph of A(x, 10 − x) with R1 = 0.5. Line of business 2 should have greater initial reserve
than line 1.
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x
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15

20

25

Figure 3: A graph of A(x, 10 − x) with R1 = 0.3. Line of business 1 should have greater initial reserve
than line 2.
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Figure 4: A graph of A(x, 10 − x) with R1 = 0.08. Line of business 1 should receive the entire initial
reserve.

5.3. Further applications

The multidimensional risk measureA, which does not depend on the structure of dependence
between lines of business, is one example of what can be considered. Another possibility would
be to minimize the sum B = ∑K

k=1 E(τ ′
k(u)), where

E(τ ′
k(u)) = E

(∫ T

0
1{Rkt <0} 1{∑K

j=1 R
j
t >0} dt

)
.

Here, B takes dependence into account, and the following proposition shows what can be done.

Proposition 2. Let Xt = ct − St , where St satisfies hypothesis (H1) of Theorem 3, and define
B by B(u1, . . . , uK) = ∑K

k=1 E(τ ′
k(u)), for u ∈ R

K . Hence, B is differentiable on (R+∗ )K ,
with

∂B

∂uk
= − 1

ck
E(N0

k (u, T ))

for u1, . . . , uK > 0, where N0
k (u, T ) = card({t ∈ [0, T ] : Rkt = 0 and

∑K
j=1 R

j
t > 0}).

It is also possible to differentiate with respect to the ck instead of the uk .

Theorem 9. Using the notation of Theorem 1, consider the caseXt = ct−St , where St satisfies
hypothesis (H1) of Theorem 3, and define f̃ (c) = E(IT (c)). If E(τ0(c)) = 0 for all c then f̃ is
differentiable in R, with

f̃ ′(u) = −
∫ T

0
t P(u+ ct − St < 0) dt

for c ∈ R.

It is interesting to look for the optimal allocation of the global premium c = c1 + · · · + cK
because, if ck is small enough to make the safety loading negative, the process Rkt tends to
−∞. Quite often, optimizing with the ck will be easier than with the uk for this reason. These
examples illustrate how these differentiation results may be used.

The differentiation results developed here are quite general and may be useful in solving many
problems involving multirisk models. For a discussion about multidimensional risk measures,
optimal allocation procedures, and the effect of dependence between lines of business, the
interested reader can consult Loisel (2005).
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