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Abstract

The deep Preiss theorem states that a Lipschitz function on a nonempty open subset of an Asplund space
is densely Fréchet differentiable. However, the simpler Fabian–Preiss lemma implies that it is Fréchet
intermediately differentiable on a dense subset and that for a large class of Lipschitz functions this dense
subset is residual. Results are presented for Asplund generated spaces.
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A real-valued function ψ on a nonempty open subset G of a Banach space X is
locally Lipschitz if for each x ∈ G there exist K (x) > 0 and δ(x) > 0 such that

|ψ(y)− ψ(z)| ≤ K‖y − z‖ for all y, z ∈ B(x; δ).

Recall that ψ is Gâteaux differentiable at x ∈ G if there exists a continuous linear
functional ψ ′(x) on X such that

ψ ′(x)(h)= lim
λ→0

ψ(x + λh)− ψ(x)

λ
for each h ∈ X;

furthermore, ψ is Fréchet differentiable at x if given ε > 0 there exists δ(ε) > 0 such
that

|ψ(x + h)− ψ(x)− ψ ′(x)(h)| ≤ ε‖h‖ for all h ∈ X, ‖h‖< δ.

A Banach space X is an Asplund space if every continuous convex function on a
nonempty open convex subset of X is Fréchet differentiable at the points of a residual
subset of its domain. Preiss [8] proved the remarkable result that on an Asplund space
every locally Lipschitz function on a nonempty open subset is Fréchet differentiable
at the points of a dense subset of its domain. The proof is technical even in its later
rewritten version presented with Lindenstrauss [5].
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Giles and Sciffer [3] introduced a weaker form of Fréchet differentiability with
the aim of exploring density properties in an elementary way. A locally Lipschitz
function ψ on a nonempty open subset G of a Banach space X is said to be Fréchet
intermediately differentiable at x ∈ G if there exists a continuous linear functional ξ
on X and given ε > 0 there exists 0< δ(ε) < ε such that∣∣∣∣ψ(x + λh)− ψ(x)

λ
− ξ(h)

∣∣∣∣< ε for all
δ

2
< λ < δ and h ∈ X, ‖h‖ = 1.

Clearly a continuous convex function φ on a nonempty open convex subset G is
Fréchet differentiable at x ∈ G if and only if it is Fréchet intermediately differentiable
at x . However, even for a Lipschitz function on the real line Fréchet intermediate
differentiability does not necessarily imply Fréchet differentiability, [3, p. 358].

Without relying on the Preiss theorem, we aim to show that every locally
Lipschitz function on a nonempty open subset of an Asplund space is densely Fréchet
intermediately differentiable.

We recall that even on the real line there are Lipschitz functions where the set of
points of differentiability is not residual. Nevertheless, using the Preiss theorem, Giles
and Sciffer [3, p. 355] proved that a significant class of locally Lipschitz functions
on an Asplund space are residually Fréchet intermediately differentiable. However,
Fabian et al. [1, p. 701] have recently shown that this result can be proved without the
Preiss theorem. For completeness of our study we include their proof.

We present our results in a slightly more general setting. A Banach space X is an
Asplund generated space if there exist an Asplund space Y and a continuous linear
mapping T : Y → X such that X = T (Y ). Since T has dense range then the conjugate
mapping T ∗ : X∗→ Y ∗ is one-to-one. So ‖ · ‖′ : X∗→R defined by ‖ξ‖′ = ‖T ∗ξ‖ is
a norm on X∗.

Given a nonempty bounded subset E of the dual X∗ of a Banach space X , for e ∈ X
and α > 0, a nonempty subset of the form

S`(E, e, α)≡ {ξ ∈ E | ξ(e) > sup E(e)− α}

is called a weak∗ slice of E .
We rely on the following property of Asplund generated spaces which is an

extension of that for Asplund spaces, [6, p. 83].

LEMMA 1 [3, p. 359]. An Asplund generated space X = T (Y ) has the property that
every weak∗ slice of a nonempty bounded subset E of X∗ determined by T y for some
y ∈ Y contains a weak∗ slice determined by T y′ for some y′ ∈ Y with arbitrarily small
‖ · ‖

′-diameter.

PROOF. Consider S`(E, T y, α) a weak∗ slice in X∗ determined by T y where y ∈ Y
and α > 0. Now S`(E, T y, α)= (T ∗)

−1
S`(T ∗E, y, α). Since Y is Asplund, given
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ε > 0 there exist y′ ∈ Y and α′ > 0 such that S`(T ∗E, y, α)⊇ S`(T ∗E, y′, α′) with
diameter less than ε. Now

S`(E, T y, α)= (T ∗)
−1

S`(T ∗E, y, α)⊇ (T ∗)
−1

S`(T ∗E, y′, α′)= S`(E, T y′, α′).

But also ‖ · ‖′-diam S`(E, T y′, α′)= diam S`(T ∗E, y′, α′) < ε. 2

The appropriate generalization of Fréchet intermediate differentiability is as
follows. A locally Lipschitz function ψ on a nonempty open subset G of an Asplund
generated space X = T (Y ) is said to be (T, Y )-Fréchet intermediately differentiable
at x ∈ G if there exists a continuous linear functional ξ on X and given ε > 0 there
exists 0< δ(ε) < ε such that∣∣∣∣ψ(x + λT y)− ψ(x)

λ
− ξ(T y)

∣∣∣∣< ε for all
δ

2
< λ < δ and y ∈ X, ‖y‖ = 1.

For the study of the differentiability of a locally Lipschitz function ψ on a nonempty
open subset G of a Banach space X an essential tool is the Clarke subdifferential of ψ
at x ∈ G, which is the nonempty weak∗ compact convex set

∂ψ(x)≡

{
ξ ∈ X∗ | ξ(y)≤ lim sup

λ→0+
z→x

ψ(z + λy)− ψ(z)

λ
for all y ∈ X

}
.

Our principal tool is the Fabian–Preiss lemma developed to establish residual
intermediate differentiability for Lipschitz functions on subspaces of Asplund
generated spaces [2]. Fabian et al. [1] showed that several differentiability properties
derived from the Preiss theorem could in fact be deduced from the simpler Fabian–
Preiss lemma.

LEMMA 2 [2, p. 375]. Consider a Lipschitz 1 function ψ on a nonempty open subset
G of an Asplund generated space X = T (Y ). If for e ∈ X and α > 0 the weak∗

slice S`(∂ψ(G), e, α) has ‖ · ‖′-diameter less than d > 0, then there exist x ∈ G,
ξ ∈ ∂ψ(x) ∩ S`(∂ψ(G), e, α) and δ > 0 such that

|ψ(x + λT y)− ψ(x)− ξ(λT y)| ≤ 3λd for 0< λ < δ and all y ∈ X, ‖y‖ = 1.

THEOREM 3. A locally Lipschitz function ψ on a nonempty open subset G of an
Asplund generated space X = T (Y ) is (T, Y )-Fréchet intermediately differentiable
at the points of a dense subset of G.

PROOF. We may assume that ψ is Lipschitz on G with Lipschitz constant 1. Consider
x0 ∈ G and 0< r0 < 1 such that B[x0; r0] ⊂ G. Since x = T (Y ) is Asplund generated
there exists a weak∗ slice S`(∂ψ(B(x0; r0)), T e0, α0) where e0 ∈ Y and α0 > 0 with
‖ · ‖

′-diameter less than 1. By the Fabian–Preiss lemma, there exist x1 ∈ B(x0; r0),
ξ ∈ ∂ψ(x1) ∩ S`(∂ψ(B(x0; r0)), T e0, α0) and 0< δ0 < 1 such that

|ψ(x1 + λT y)− ψ(x1)− ξ1(λT y)| ≤ 3λ for 0< λ < δ1 and all y ∈ Y, ‖y‖ = 1.
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Choose 0< r1 < δ1 and such that B(x1; r1)⊂ B(x0; r0). Since X = T (Y ) is Asplund
generated there exists a weak∗ slice

S`(∂ψ(B(x1; r1)), T e1, α1)⊂ S`(∂ψ(B(x0); r0), T e0, α0)

where e1 ∈ Y and α1 > 0 with ‖ · ‖′-diameter less than 1
2 .

At the nth stage of the induction we have for each k ∈ {1, 2, . . . , n}, xk ∈ B(x0; r0)

and ξk ∈ ∂ψ(xk) and there exists 0< δk < 1/k such that

|ψ(xk + λT y)− ψ(xk)− ξk(λT y)| ≤
3λ
k

for 0< λ < δk and all y ∈ Y, ‖y‖ = 1.

We have a nested sequence of balls where we have chosen 0< rk < δk/k and such that
B(xk; rk)⊂ B(xk−1; rk−1) and a nested sequence of weak∗ slices

S`(∂ψ(B(xk; rk)), T ek, αk)⊂ S`(∂ψ(B(xk−1; rk−1)), T ek−1, αk−1)

where ek ∈ Y and αk > 0 with ‖ · ‖′-diameter less than 1/(k + 1).
By the Fabian–Preiss lemma there exist xn+1 ∈ B(xn; rn),

ξn+1 ∈ ∂ψ(xn+1) ∩ S`(∂ψ(B(xn; rn)), T en, α0) and 0< δn+1 <
1

n + 1

such that

|ψ(xn+1 + λT y)− ψ(xn+1)− ξn+1(λT y)| ≤
3λ

n + 1

for 0< λ < δn+1 and all y ∈ Y, ‖y‖ = 1.
Choose 0< rn+1 < δn+1/(n + 1) and such that B(xn+1; rn+1)⊂ B(xn; rn). Since
X = T (Y ) is Asplund generated there exists a weak∗ slice

S`(∂ψ(B(xn+1; rn+1)), T en+1, αn+1)⊂ S`(∂ψ(B(xn; rn)), T en, αn)

where en+1 ∈ Y and αn+1 > 0 with ‖ · ‖′-diameter less than 1/(n + 2).
Now there exist x ∈ G and ξ ∈ X∗ where, for each n ∈N, ‖xn − x‖ ≤ rn < δn/n

and ‖ξ − ξn‖
′
≤ 1/(n + 1). So for λ > 0,∣∣∣∣ψ(x + λT y)− ψ(x)

λ
− ξ(T y)

∣∣∣∣
≤

2‖xn − x‖

λ
+

∣∣∣∣ψ(xn + λT y)− ψ(xn)

λ
− ξn(T y)

∣∣∣∣+ ‖ξn − ξ‖
′

≤ 2
δn

n

2
δn
+

3
n
+

1
n
=

8
n

when
δn

2
< λ < δn and all y ∈ Y, ‖y‖ = 1.

Then we conclude that every open subset G of X = T (Y ) contains a point x where ψ
is (T, Y )-Fréchet intermediately differentiable. 2
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While Theorem 3 establishes the density of Fréchet intermediate differentiability,
the proof suggests that we can show that certain Lipschitz functions are residually
Fréchet intermediately differentiable.

Given a locally Lipschitz function ψ on a nonempty open subset G of a Banach
space X , its subdifferential mapping x 7→ ∂ψ(x) is said to be quasi weak∗ hyperplane
lower semicontinuous at x0 ∈ G if for any weak∗ open half space W of X∗ where
∂ψ(x0) ∩W 6= ∅ there exists a nonempty open subset U of G such that x0 ∈U and
∂ψ(x) ∩W 6= ∅ for each x ∈U . A continuous convex function φ on a nonempty open
convex subset G of X always has its subdifferential mapping x 7→ ∂φ(x) quasi weak∗

hyperplane lower semicontinuous on G. However, not all Lipschitz functions have this
property, [3, p. 357].

THEOREM 4. A locally Lipschitz function ψ on a nonempty open subset G of
an Asplund generated space X = T (Y ) with subdifferential mapping x 7→ ∂ψ(x)
quasi weak∗ hyperplane lower semicontinuous on G is (T, Y )-Fréchet intermediately
differentiable at the points of a residual subset of G.

PROOF. We may assume that ψ is Lipschitz on G with Lipschitz constant 1 and
that the subdifferential mapping x 7→ ∂ψ(x) is bounded on G. We play a Banach–
Mazur game between two players A and B on G. A play is a decreasing sequence of
nonempty open subsets of G, U1 ⊃ V1 ⊃U2 ⊃ V2 ⊃ · · · chosen alternately by players
A and B with player A making the first move U1. We show that no matter how player A
moves, player B can move with a strategy to ensure that

⋂
∞

n=1 Vn 6= ∅ and consists of
points where ψ is (T, Y )-Fréchet intermediately differentiable. By the Banach–Mazur
Theorem [7, p. 69], this will imply that the set of points where ψ is (T, Y )-Fréchet
intermediately differentiable is residual in G.

Player A begins by choosing a nonempty open subset U1 of G. Since X = T (Y )
is an Asplund generated space there exists a weak∗ slice S`(∂ψ(U1), T e1, α1) where
e1 ∈ Y and α1 > 0 with ‖ · ‖′-diameter less than 1. By the Fabian–Preiss lemma there
exist x1 ∈U1, ξ1 ∈ ∂ψ(x1) ∩ S`(∂ψ(U1), T e1, α1) and 0< δ1 < 1 such that

|ψ(x1 + λT y)− ψ(x1)− ξ1(λT y)| ≤ 3λ for 0< λ < δ1 and all y ∈ Y, ‖y‖ = 1.

Since the subdifferential mapping x 7→ ∂ψ(x) is quasi weak∗ hyperplane lower
semicontinuous at x1, player B chooses 0< r1 < δ1 and V1 ⊂ B(x1; r1)⊂

B[x1; r1] ⊂U1 such that x1 ∈ V1 and ∂ψ(x) ∩ S`(∂ψ(U1), T e1, α1) 6= ∅ for each
x ∈ V1.

At the nth stage of play we assume that U1 ⊃ V1 ⊃U2 ⊃ V2 ⊃ · · · ⊃ Vn−1 and
player A chooses Un ⊂ Vn−1. Since X = T (Y ) is Asplund generated there exists a
weak∗ slice

S`(∂ψ(Un), T en, αn)⊂ S`(∂ψ(Un−1), T en−1, αn−1)

https://doi.org/10.1017/S0004972708001305 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708001305


314 J. R. Giles [6]

where en, en−1 ∈ Y and αn, αn−1 > 0 with ‖ · ‖′-diameter less than 1/n. By the
Fabian–Preiss lemma there exist xn ∈Un , ξn ∈ ∂ψ(xn) ∩ S`(∂ψ(xn), T en, αn) and
0< δn < 1/n such that

|ψ(xn + λT y)− ψ(xn)− ξn(λT y)| ≤
3λ
n

for all 0< λ < δn and all y ∈ Y, ‖y‖ = 1.

Since the subdifferential mapping x 7→ ∂ψ(x) is quasi weak∗ hyperplane lower
semicontinuous at xn , player B chooses 0< rn < δn/n and Vn ⊂ B(xn; rn)⊂

B[xn; rn] ⊂Un such that xn ∈ Vn and ∂ψ(x) ∩ S`(∂ψ(Un), T en, αn) 6= ∅ for each
x ∈ Vn .

Clearly the sequence {xn} is norm convergent to x ∈
⋂
∞

n=1 Vn =
⋂
∞

n=1 Vn and the
sequence {ξn} is ‖ · ‖′-convergent to ξ ∈ X∗ where

ξ ∈

∞⋂
n=1

S`(∂ψ(Un), T en, αn).

We show that ψ is Fréchet intermediately differentiable at x . Given n ∈N, we have
‖xn − x‖ ≤ rn < δn/n and ‖ξn − ξ‖ ≤ 1/n. For λ > 0,∣∣∣∣ψ(x + λT y)− ψ(x)

λ
− ξ(T y)

∣∣∣∣
≤

2‖xn − x‖

λ
+

∣∣∣∣ψ(xn + λT y)− ψ(xn)

λ
− ξn(T y)

∣∣∣∣+ ‖ξn − ξ‖
′

≤ 2
δn

n

2
δn
+

3
n
+

1
n
=

8
n

when
δn

2
< λ < δn and all y ∈ Y, ‖y‖ = 1.

It follows from the Banach–Mazur theorem that ψ is Fréchet intermediately
differentiable at the points of a residual subset of G. 2

In the study of the differentiability of Lipschitz functions, Fréchet intermediate
differentiability appears to be an interesting generalization of Fréchet differentiability.
However, there are serious restrictions on its usefulness, [3, p. 357]. A Lipschitz
function intermediately differentiable at a point does not necessarily have a unique
Fréchet intermediate subgradient at that point. Of course, if the function is also
Gâteaux differentiable at the point then its Fréchet intermediate derivative is unique;
but uniqueness of the Fréchet intermediate derivative does not necessarily imply that
the Lipschitz function is Gâteaux differentiable at the point. If the Lipschitz function is
Gâteaux differentiable at a point and Fréchet intermediately differentiable at the point
then it is not necessarily Fréchet differentiable at the point.

A major problem remaining is to determine whether the set of points of Fréchet
intermediate differentiability of a Lipschitz function on an Asplund space is residual
in general. Further to this problem we should note that there exists a Lipschitz
function on an Asplund space where the set of points where it is Fréchet intermediately
differentiable but not Fréchet differentiable is residual [3, p. 358].
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But we should also note the relation of Fréchet intermediate differentiability to a
weaker intermediate differentiability property.

A locally Lipschitz function ψ on a nonempty open subset G of a Banach space X
is said to be uniformly intermediately differentiable at x ∈ G if given n ∈N there exist
0< δn < 1/n and ξn ∈ X∗ such that∣∣∣∣ψ(x + λy)− ψ(x)

λ
− ξn(y)

∣∣∣∣< 1
n

for all
δn

2
< λ < δn and all y ∈ X, ‖y‖ = 1.

If X is an Asplund space and {ξn} is bounded then {ξn} has a subsequence {ξnk } which
is weak∗ convergent to ξ ∈ X∗. Then for any δnk/2< λ < δnk ,

ξ(y)= lim
k→∞

ψ(x + λk y)− ψ(x)

λk
for all y ∈ X, ‖y‖ = 1.

Giles and Sciffer [4, p. 840] prove that on an Asplund space X, ψ is uniformly
intermediately differentiable at the points of a residual subset of G. The proof in
that paper used the Preiss theorem, but Fabian et al. [1, p. 700] proved it using the
Fabian–Preiss lemma.

It is clear that on a finite-dimensional space, ψ is Fréchet intermediately
differentiable if it is uniformly intermediately differentiable. So we have that on a
finite-dimensional space ψ is Fréchet intermediately differentiable at the points of a
residual subset of G. However, in general Fréchet intermediate differentiability and
uniform intermediate differentiability are not the same, as is shown by the following
example due to Scott Sciffer.

EXAMPLE. Consider the function f : [0,∞) 7→R defined by

f (x)=


0 for x < 1

2 ,

2x − 1 for 1
2 ≤ x ≤ 1,

2− x for 1< x ≤ 2,

0 for x > 2

and the function ρ : (0, 1] → `∗2 defined by

ρ(r)=
∞∑

n=1

f (2n−1r)e∗n .

Given n ∈N and 1/2n< r <1/2n−1, we obtain 1
2 < 2n−1r < 1 and 1< 2nr < 2,

and writing ρn for ρ restricted to (1/2n, 1/2n−1)

ρ(r)=
∞∑

n=1

ρn(r) where ρn(r)= (2nr − 1)e∗n + (2− 2nr)e∗n+1.
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Define ψ : `2→R by

ψ(x)=

{
ρ(‖x‖)(x) for x 6= 0,

0 for x = 0.

(i) Now ψ is Lipschitz since, for x =
∑
∞

k=1 αkek and y =
∑
∞

k=1 βkek ,

|ψ(x)− ψ(y)| = |ρ(‖x‖)(x)− ρ(‖y‖)(y)|

≤

∞∑
k=1

|αk − βk | ≤
√

2

√√√√ ∞∑
k=1

(αk − βk)2 =
√

2‖x − y‖.

(ii) Also ψ is Gâteaux differentiable at 0 since, for λ > 0,

ψ(0+ λy)− ψ(0)
λ

=
ψ(λy)

λ
= ρ(|λ|)(y) for ‖y‖ = 1,

so when 1/2n < λ < 1/2n−1 then

ρ(|λ|)(y)= βn(2nλ− 1)+ βn+1(2− 2nλ)

and as λ→ 0 then n→∞ and βn, βn+1→ 0; we have Gâteaux derivative 0.
(iii) We have ψ is uniformly intermediately differentiable at 0 since∣∣∣∣ψ(0+ λy)− ψ(0)

λ
− ρn(λ)(y)

∣∣∣∣= 0 for
1
2n < λ <

1

2n−1 and all y ∈ `2, ‖y‖ = 1.

(iv) But ψ is not Fréchet intermediately differentiable at 0, since although ρn
converges weak∗ to 0, we have

‖ρn(λ)‖ =
√
(2nλ− 1)2 + (2− 2nλ)2 ≥

1
√

2
for all n ∈N. 2

The proof strategy of Theorems 3 and 4 is based on the Fabian–Preiss lemma.
The strategy of Lindenstrauss and Preiss for proving dense Fréchet differentiability
of Lipschitz functions on an Asplund space is based on a similar but stronger property.

THEOREM 5 [5, p. 212]. Given a Lipschitz function ψ on a nonempty open subset G
of an Asplund space X, if there exists a sequence {xk} convergent to x in G where
for each j ∈N there are numbers ω j > 0 and δ j > 0 where ω j → 0 and ξ j ∈ ∂ψ(x j ),
and, for every k > j ,

|ψ(xk + h)− ψ(xk)− ξ j (h)| ≤ ω j‖h‖ for all h ∈ X, ‖h‖< δ j ,

then ψ is Fréchet differentiable at x.
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PROOF. For j1 and j2 we have ‖ξ j1 − ξ j2‖ ≤ ω j1 + ω j2 so {ξ j } is convergent to some
ξ ∈ X∗ and ‖ξ − ξ j‖ ≤ ω j . Then

|ψ(xk + h)− ψ(xk)− ξ(h)| ≤ 2ω j‖h‖ for all h ∈ X, ‖h‖< δ j and k > j.

Keeping j fixed and letting k→∞,

|ψ(x + h)− ψ(x)− ξ(h)| ≤ 2ω j‖h‖ for all h ∈ X, ‖h‖< δ j .

So ψ is Fréchet differentiable at x and ξ = ψ ′(x). 2

The technicality of their result lies in constructing a suitable sequence {xk} in G.
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