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Abstract

We compute the number of points over finite fields of the character stack associated to a compact
surface group and a reductive group with connected centre. We find that the answer is a polynomial on
residue classes (PORC). The key ingredients in the proof are Lusztig’s Jordan decomposition of complex
characters of finite reductive groups and Deriziotis’s results on their genus numbers. As a consequence of
our main theorem, we obtain an expression for the E-polynomial of the character stack.
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1. Introduction

Let Γ be the fundamental group of a Riemann surface and G a reductive group. The
character stack associated to (Γ, G) is the quotient stack

X := [Hom(Γ, G)/G]. (1-1)

This space and its cousins (the character variety, moduli of stable Higgs bundles and
moduli of flat connections) play a central role in diverse areas of mathematics such
as nonabelian Hodge theory [Sim91, Sim94] and the geometric Langlands programme
[BD97, BZN18].

The study of the topology and geometry of these spaces has been a subject of active
research for decades. In their ground-breaking work [HRV08], Hausel and Villegas
counted points on the character stack associated to the once-punctured surface group
and G = GLn, where the loop around the puncture is mapped to a primitive root of
unity. This gave rise to much further progress in understanding the arithmetic geometry
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of character stacks; see [Bal22, BH17, dCHM12, HLRV11, Let15, LRV20, Mel20,
Mer15].

Almost all the previous work in this area concerns the case when G = GLn,
SLn, or PGLn. The only exception we know of is Cambò’s unpublished thesis
[Cam17]. Note that from the point of view of Langlands correspondence, it is crucial
to understand character stacks of all reductive groups, for the Langlands central
conjecture, functoriality, concerns relationship between automorphic functions (or
sheaves) of different reductive groups.

The purpose of this paper is to study the arithmetic geometry of the character
stack associated to a compact surface group and an arbitrary reductive group G
with connected centre. This represents the first step in generalizing the programme
of Hausel, Letellier and Villegas [HLRV11, HRV08, Let15, LRV20] from type A to
arbitrary type in a uniform manner.

1.1. Main result. To state our main result, we need a definition regarding counting
problems whose solutions are polynomial on residue classes (PORC); see [Hig60].

Let Y be a map from finite fields to finite groupoids. For instance, Y can be a scheme
or a stack of finite type over Z. We write |Y(Fq)| for the groupoid cardinality of Y(Fq),
and we have

|Y(Fq)| :=
∑

y∈Y(Fq)

1
|Aut(y)| .

DEFINITION 1.1. We say Y is PORC count if there exist an integer d, called the
modulus, and polynomials ‖Y‖0, . . . , ‖Y‖d−1 ∈ C[t] such that

|Y(Fq)| = ‖Y‖i(q) for all q ≡ i mod d.

For instance, SpecZ[x]/(x2 + 1) is PORC count with modulus 4 and counting
polynomials ‖X‖0 = ‖X‖2 = 1, ‖X‖1 = 2, and ‖X‖3 = 0.

Now let Γg be the fundamental group of a compact Riemann surface of genus g ≥ 1,
G a connected (split) reductive group over Z, G∨ the (Langlands) dual group, and X
the character stack associated to (Γg, G) as in (1-1).

THEOREM 1.2. If G has connected centre, then X is PORC count with the modulus
d(G∨) and counting polynomials ‖X‖0, . . . ‖X‖d(G∨)−1 defined in, respectively, Defini-
tions 2.1 and 5.1.

This theorem refines [LS05, Theorem 1.2], which gave an asymptotic for |X(Fq)|.
The expression we obtain for the counting polynomials is explicit in so far as the genus
numbers are explicit, see Section 3.

1.1.1. Outline of proof. Let us outline the proof of the theorem. First, using Lang’s
theorem, it is easy (see [Beh93, 2.5.1]) to show that

|X(Fq)| = |Hom(Γg, G(Fq))/G(Fq)|.
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Thus, our goal is to count the number of homomorphisms Γg → G(Fq), that is, the
number of solutions to the equation [x1, y1] · · · [xg, yg] = 1 in the finite group G(Fq).

Next, a theorem going back to Frobenius (see [HRV08, Section 2.3]) states that

|Hom(Γg, G(Fq))/G(Fq)| =
∑

χ∈Irr(G(Fq))

( |G(Fq)|
χ(1)

)2g−2
. (1-2)

Here Irr(G(Fq)) denotes the set of irreducible complex characters of G(Fq). Thus,
computing |X(Fq)| is a problem in complex representation theory of finite reductive
groups.

According to Lusztig’s Jordan decomposition [Lus84], there is a bijection between
Irr(G(Fq)) and the set of pairs ([s], ρ) consisting of conjugacy classes [s] of semisimple
elements in the dual group G∨(Fq) and irreducible unipotent characters ρ of the
centralizer G∨s (Fq). The parameterization and degrees of unipotent representations
were also determined by Lusztig [Lus84]. Hence, it remains to understand centralizers
of semisimple elements of G∨(Fq).

The final ingredient in the proof is results of Carter and Deriziotis on centralizers
of semisimple elements and genus numbers [Car78, Der85]. The notion of ‘genus’ is
a reductive generalization of Green’s notion of ‘type’. The latter is ubiquitous in point
counts on character varieties in type A [HLRV11, HRV08, Let15, LRV20, Mer15]. The
term ‘genus number’ refers to the number of conjugacy classes of semisimple elements
whose centralizer is in the same conjugacy class. The fact [Der85] that genus numbers
of reductive groups (with connected centre) are PORC is the reason why character
stacks are PORC count.

1.1.2. Remarks

(i) It is well known that for every χ ∈ Irr(G(Fq)), the quotient |G(Fq)|/χ(1) is a
polynomial in q; see [GM20, Remark 2.3.27]. Theorem 1.2 is, however, not
trivial because the sum in (1-2) is over a set which depends on q.

(ii) Consider the representation ζ-function of G(Fq) defined by

ζG(Fq)(s) :=
∑

χ∈Irr(G(Fq))

χ(1)−s.

Then Frobenius’s theorem (1-2) can be reformulated as

|Hom(Γg, G(Fq))/G(Fq)| = ζG(Fq)(2g − 2)|G(Fq)|2g−2.

Our approach gives an explicit expression for ζG(Fq)(s) for any s; see Section
5.1.1.

(iii) Note that d(GLn) = 1. Thus, the GLn-character stack is polynomial count (see
below).

1.2. Consequences. We now discuss some of the corollaries of our main theorem.
Recall the following definition.
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DEFINITION 1.3. An algebraic stack Y of finite type over Fq is called polynomial count
if there exists a polynomial ‖Y‖ such that

|Y(Fqn )| = ‖Y‖(qn) for all n ∈ N.

For stacks, it is more natural to consider rational count objects [LRV20], but it turns
out that all the stacks we consider are actually polynomial count, so we restrict to this
case. By [LRV20, Theorem 2.8], if a quotient stack Y = [R/G], with G connected, is
polynomial count, then the E-series of Y is a well-defined polynomial and it equals
‖Y‖. In particular, one finds that the dimension, the number of irreducible components
of maximal dimension, and the Euler characteristic of Y equal, respectively, the
degree, the leading coefficient, and the value at 1 of the polynomial ‖Y‖. By the Euler
characteristic of the stack Y we mean the alternating sum of dimensions of compactly
supported cohomology groups Hi

c(Y
Fq

;Q�), when this sum makes sense.
Now let XFq := X ⊗Z Fq. As an immediate corollary of our main theorem, we obtain

the following result.

COROLLARY 1.4. Suppose q ≡ 1 mod d(G∨). Then XFq is polynomial count with
counting polynomial ‖X‖1. Thus, the E-series of X equals ‖X‖1.

If q is co-prime to d(G∨), then XFq becomes polynomial count after a finite base
change.

Let rank(G) denote the reductive rank of G. Analysing the leading term of the
polynomial ‖X‖1, we obtain the following corollary.

COROLLARY 1.5. Suppose q ≡ 1 mod d(G∨). Then

(i) If g = 1 then dim(XFq ) = rank(G) and XFq has a unique irreducible component of
maximal dimension.

(ii) If g > 1 then dim(XFq ) = (2g − 2) dim(G) + dim(Z(G∨)) and XFq has |π1([G, G])|
irreducible components of maximal dimension.

As observed in [LS05, Corollary 1.11], the result holds without any assumption on
q because the Lang–Weil estimate implies that only the asymptotics of |X(Fq)|matters.
Over the complex numbers, the above numerical invariants have also been understood
from other perspectives; see the Appendix for further discussions.

The Euler characteristic of XFq is more subtle and has not been considered in the
literature. In this direction, we have the following result.

COROLLARY 1.6. Suppose q ≡ 1 mod d(G∨).

(i) If g = 1 and G is a simple adjoint group of type G2, F4, E6, E7, E8, then χ(XFq )
equals 12, 56, 46, 237, 252, respectively.

(ii) If g > 1 and G is a simple adjoint group of type B2 or G2, then χ(XFq ) equals
28g−7 or 722g−2 + 82g−2 + 2 × 92g−2, respectively.

(iii) If g > 1 then the Euler characteristic of the component of the PGLn-character
stack associated to 1 is equal to ϕ(n)n2g−3, where ϕ is the Euler totient function.
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Note that when g = 1, |X(Fq)| equals the number of conjugacy classes of G(Fq).
Thus, assertion (i) can be verified by consulting tables of conjugacy classes of G(Fq).
Assertion (ii) can also be verified by consulting character tables of G(Fq) for groups of
small rank (see [Lue]) but we found it instructive to prove this using our approach; see
Section 6. Assertion (iii) should be compared with [HRV08, Corollary 1.1.1] which
states that the Euler characteristic of a component of PGLn-character stack labelled by
a primitive root of unity is μ(n)n2g−3.

1.3. Further directions. We expect the main theorem to hold for general reductive
groups. The main difficulty with reductive groups with disconnected centre is that
Lusztig’s Jordan decomposition and genus numbers are more complicated because
centralizers of semisimple elements in G∨ may be disconnected.

We also expect the theorem to hold for fundamental groups of nonorientable
surfaces. For G = GLn, this is proved in [LRV20]. The main issue for general types
is that the relationship between Frobenius–Schur indicators and the Lusztig–Jordan
decomposition is not well understood; see [TV20] for some results in this direction.

Finally, we expect the theorem to hold for fundamental groups of punctured
Riemann surfaces. In this case, a careful choice of conjugacy classes at the punctures
(generalizing the notion of generic from [HLRV11]) will ensure that the resulting
character stack and character variety are the same. This is the subject of work in
progress [KNP].

1.4. Structure of the text. In Section 2 we review standard concepts regarding root
datum and reductive groups over finite fields. In Section 3 we recall some results of
Carter and Deriziotis on centralizers of semsimple elements and genus numbers. In
Section 4 we review Lusztig’s Jordan decomposition of irreducible characters and
classification of unipotent representations. Theorem 1.2 and Corollary 1.5 are proved
in Section 5. In Section 6 we provide explicit formulas for the counting polynomials of
character stacks associated to simple groups of semisimple rank up to 2. In Section 7
we use Green’s classification of irreducible characters of GLn(Fq) to count points
on the character stack associated to GLn. Finally, in the Appendix, we discuss the
implications of our results for character stacks over C.

2. Reductive groups over finite fields

In this section we recall some basic notation and facts about structure of reductive
groups over finite fields; see [Car85, DM20, GM20]. But first, we define the notion of
the modulus of a root datum used in our main theorem.

2.1. Modulus. Let Ψ = (X, X∨,Φ,Φ∨) be a root datum. Here, X denotes the charac-
ters, X∨ cocharacters, Φ roots, and Φ∨ coroots.

DEFINITION 2.1. We define the modulus of Ψ, denoted by d(Ψ), to be the least
common multiple (lcm) of the sizes of torsion parts of the abelian groups X/〈Φ1〉,
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where Φ1 ranges over closed subsystems of Φ and 〈Φ1〉 denotes the subgroup of X
generated by Φ1.

Let G be a connected split reductive group with root datum Ψ. Then we define the
modulus of G by d(G) := d(Ψ). Note that the root datum (X, X∨,Φ1,Φ∨1 ) defines a
connected reductive subgroup G1 ⊆ G of maximal rank. The size of the torsion part of
X/〈Φ1〉 equals the number of connected components of the centre Z(G1). Thus,

d(G) = lcm|π0(Z(G1))|,

where G1 ranges over connected reductive subgroups of G of maximal rank. In
particular, we see that d(GLn) = 1.

Let G be a simple simply connected group. Then one can show that d(G) equals the
lcm of coefficients of the highest root and the order of Z(G); see [Der85]. Thus, we
have:

Type An Bn Cn Dn E6 E7 E8 F4 G2

d(G) n + 1 2 2 4 6 12 60 12 6

Note that for types Bn, Cn, E6, G2 (respectively, Dn, E7, E8), d(G) is the product of
bad primes (respectively, twice the product of bad primes) of G. We refer the reader to
[SS70] for the definition of bad primes.

2.2. Reductive groups over finite fields. Let p be a prime, k an algebraic closure
of Fp, and Fq the subfield of k with q elements. We use bold letters such as X for
schemes, stacks, etc. over Fq and script letters such as X for their base change to k.
The (geometric) Frobenius F = FX : X →X is the map F0 ⊗ id, where F0 is the
endomorphism of X defined by raising the functions on X to the q th power.

Let G be a connected reductive group over Fq with a maximal quasisplit torus T. Let
Ψ = (X, X∨,Φ,Φ∨) denote the root datum of (G , T ). We now explain how to encode
the rational structure of G via the root datum. The Frobenius F : T → T induces a
homomorphism on characters

X → X, λ �→ λ ◦ F,

which we denote by the same letter. We then have an automorphism ϕ ∈ Aut(X) of
finite order such that

F(λ)(t) = λ(F(t)) = qϕ(λ)(t) for all t ∈ T .

In other words, F acts on X as the automorphism qϕ. The rational structure of G is
encoded in the automorphism F = qϕ. In particular, G is split if and only if ϕ is trivial.

2.3. Complete root datum. Let W be the Weyl group of Φ. For each α ∈ Φ, let
α∨ ∈ Φ∨ be the corresponding coroot. Define sα : X → X by

sα(x) := x − 〈x,α∨〉α for all x ∈ X.
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The map α �→ sα defines an embedding W ↪→ Aut(X) ⊆ GL(XR). Consider the coset

ϕW = {ϕ ◦ w |w ∈ W} ⊆ GL(XR).

DEFINITION 2.2. Following [GM20], we call Ψ̂ := (X, X∨,Φ,Φ∨,ϕW) the complete
root datum of G. Similarly, we call Φ̂ := (Φ,ϕW) the complete root system of G.

The advantage of the complete root datum and root system is that q does not appear
in their definition. Given a complete root datum Ψ̂, for every prime power q, we have a
unique, up to isomorphism, connected reductive group G over Fq whose complete root
datum is Ψ̂. We call G the realization of Ψ̂ over Fq.

2.3.1. Dual group. Let G∨ be the group over Fq dual to G. By definition, this
is the connected reductive group over Fq whose complete root datum is given by
(X∨, X,Φ∨,Φ,ϕ∨W), where ϕ∨ is the transpose of ϕ.

2.3.2. Frobenius action on W. The action of the Frobenius on G stabilizes T and
NG (T ). Thus, F acts on W = NG (T )/T . We denote the resulting automorphism of
W by σ. We call Ŵ := (W,σ) the complete Weyl group. Elements w1 and w2 in W are
said to be σ-conjugate if there exists w ∈ W such that ww1σ(w)−1 = w2. If G is split,
σ-conjugacy is just the usual conjugacy.

2.4. Finite reductive groups. Let G be a connected reductive group over Fq. The
finite group G(Fq) = G F is called a finite reductive group. Note that this definition
excludes Suzuki and Ree groups.

2.4.1. Order polynomial. Let

‖G‖(t) := t|Φ
+ | det(t·idX − ϕ−1)

∑
w∈Wσ

tl(w) ∈ Z[t].

Then |G(Fq)| = ‖G‖(q) [GM20, Remark 1.6.15]. Observe that this equality may not
hold if we replace q by qn. In other words, G may be not polynomial count. It is,
however, polynomial count if we assume that G is split, in which case, the counting
polynomial simplifies to

‖G‖(t) = t|Φ
+ |(t − 1)rank(X)

∑
w∈W

tl(w). (2-1)

3. Genus numbers are PORC

The aim of this section is to state a theorem of Deriziotis [Der85] which tells us
that genus numbers for finite reductive groups are PORC. We start by recalling the
definition of the genus of a semisimple element due to Carter [Car78].

3.1. Genus map. Let G be a connected reductive group over Fq and G(Fq)ss the set
of semisimple elements of G(Fq). For each x ∈ G(Fq)ss, let Gx denote its centralizer
in G. It is well known that Gx is a (possibly disconnected) maximal rank reductive
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subgroup of G. Thus, the root system of G◦x is a closed subsystem Φ1 ⊆ Φ. We now
explain how to encode the rational structure of G◦x in root-theoretic terms.

Let W1 ⊆ W be the Weyl group of Φ1 and NW(W1) the normalizer of W1 in W. Let
(W,σ) be the complete Weyl group of G. Note that the action of σ on W stabilizes W1.
Thus, σ acts on NW(W1)/W1 and we have the notion of σ-conjugacy for this group.
By a theorem of Carter [Car78, Section 2], the rational structure of G1 is encoded in a
σ-conjugacy class of NW(W1)/W1.

DEFINITION 3.1. Let Ξ(Φ̂) denote the set of pairs ξ = ([Φ1], [w]) consisting of a
W-orbit of a closed subsystem Φ1 ⊆ Φ and a σ-conjugacy class [w] ⊆ NW(W1)/W1.
We refer to ξ as a genus and call Ξ(Φ̂) the set of genera of Φ̂. If G is split, then the
complete root datum is just the same as the root datum, so we denote this set by Ξ(Φ).

Let G[ss](Fq) = Gss(Fq)/G(Fq) denote the set of semisimple conjugacy classes of
G(Fq). The above discussion implies that we have a canonical map, called the genus
map,

αG(Fq) : G[ss](Fq) −→ Ξ(Φ̂)

x �−→ [G◦x],

which sends a semisimple conjugacy class to its genus. The number of points of fibres
of this map is known as the genus number.

3.2. Genus numbers. Let Ψ̂ = (X, X∨,Φ,Φ∨,ϕW) be a complete root datum. For
each genus ξ ∈ Ξ(Φ̂), we define a map G[ss]

ξ from finite fields to sets as follows. Given

a finite field Fq, let G be the realization of Ψ̂ over Fq and set

G[ss]
ξ (Fq) := {x ∈ G[ss](Fq) |αG(Fq)(x) = ξ}.

Let d(Ψ) denote the modulus as in Definition 2.1.

THEOREM 3.2 [Der85]. If X∨/〈Φ∨〉 is free, then G[ss]
ξ is PORC count with modulus

d(Ψ).

The freeness assumption implies that every realization G of Ψ̂ has simply connected
derived subgroup. A theorem of Steinberg then implies that centralizers of semisimple
elements of G are connected. As shown in [Der85], we have

deg‖G[ss]
ξ ‖i = rank G − rank〈Φ1〉. (3-1)

3.2.1. Example. Let G = GLn and ξ = (∅, [1]). The reductive subgroup of maximal
rank associated to ξ is the diagonal torus. Thus, G[ss]

ξ (Fq) is the set of regular diagonal
elements in G(Fq), up to permutation. Hence,

‖G[ss]
ξ ‖(t) =

(
t − 1

n

)
=

(t − 1)(t − 2) · · · (t − n)
n!

.

Note that ‖G[ss]
ξ ‖(q) = 0 for all q � n + 1. This is just the restatement of the fact that if

q � n + 1, there are no regular diagonal elements.
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The polynomials ‖G[ss]
ξ ‖i have been determined explicitly for all genera ξ of groups

of exceptional type or type A, and for many genera of groups of type B, C, or D.
However, as far as we understand, this problem has not been fully solved; see [Fle97]
for further details.

4. Representations of finite reductive groups

Let G be a connected reductive group over Fq. In this section we recall deep results
of Lusztig on the structure of complex representations of G(Fq).

4.1. Unipotent representations. Let Irru(G(Fq)) denote the set of (irreducible)
complex unipotent characters.

THEOREM 4.1 [Lus84, Lus93]. There exists a finite set U(Ŵ), depending only on Ŵ,
together with a function

Deg : U(Ŵ) −→ Z[|W |−1][t]
ρ �−→ Deg(ρ),

such that the following holds. We have a bijection

U(Ŵ)←→ Irru(G(Fq))

such that Deg(ρ)(q) is the degree of the unipotent character of G(Fq) associated to ρ.

4.1.1. Remarks

(i) The pair (U(Ŵ), Deg) has been determined explicitly by Lusztig in all types; see
the Appendix of [Lus84].

(ii) If (W,σ) = (Sn, id), then U(W) equals Pn, the set of partitions of n. Moreover,
if λ = (λ1, . . . , λm) is a partition of n with λ1 � λ2 � · · · � λm and ρλ(q) is the
corresponding unipotent representation of G(Fq), then

Deg ρλ(q) =
(q − 1)|G(Fq)|p′

∏
1�i<j�m(qαj − qαi )

q(m−1
2 )+(m−2

2 )+···∏m
i=1

∏αi
k=1(qk − 1)

,

where αi := λi + (i − 1) and |G(Fq)|p′ denotes the prime-to-p part of |G(Fq)|.
(iii) One knows that the polynomial Deg(ρ) divides the order polynomial ‖G‖; see

[GM20, Remark 2.3.27]. Thus, ‖G‖/Deg(ρ) is a polynomial in Z[t].

4.2. Jordan decomposition of characters. Let G∨ denote the dual group of G
over Fq. Below, the subscript p′ (respectively, p) denotes the prime-to-p part (respec-
tively, the p part).

THEOREM 4.2 (Lusztig’s Jordan decomposition [Lus84, Theorem 4.23]). Suppose G
has connected centre. Then we have a bijection

Irr(G(Fq))←→
⊔

[x]∈G∨,[ss](Fq)

Irru(G∨x (Fq)).
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Moreover, if χ ∈ Irr(G(Fq)) is matched with ρ ∈ Irru(G∨x (Fq)), then

χ(1) = ρ(1)[G∨(Fq) : G∨x (Fq)]p′ .

Let r(x) := |Φ+| − |Φ+x |. Then we have the following lemma.

LEMMA 4.3. In the above theorem, the relationship between degrees of χ and ρ can
be reformulated as follows:

|G(Fq)|
χ(1)

= qr(x) |G
∨
x (Fq)|
ρ(1)

.

PROOF. Indeed, by (2-1), [G∨(Fq) : G∨x (Fq)]p = qr(x). Thus, we have that χ(1)qr(x) =

ρ(1)|G∨(Fq)|/|G∨x(Fq)|. The result now follows from the fact that |G(Fq)|= |G∨(Fq)|. �

5. Proofs of main results

5.1. Counting points. In this subsection we prove Theorem 1.2. Recall that G is a
connected split reductive group over Z.

(1) As mentioned in Section 1.1.1, Frobenius’s theorem implies

|X(Fq)| =
∑

χ∈Irr(G(Fq))

( |G(Fq)|
χ(1)

)2g−2
.

(2) As G has connected centre, Lusztig’s Jordan decomposition (Theorem 4.2)
implies

|X(Fq)| =
∑

[x]∈G∨(Fq)ss/G∨(Fq)

∑
ρ∈Irru(G∨x (Fq))

qr(x)(2g−2)
( |G∨x (Fq)|
ρ(1)

)2g−2
.

(3) Lusztig’s classification of unipotent representations (Theorem 4.1) then gives

|X(Fq)| =
∑

[x]∈G∨(Fq)ss/G(Fq)

qr(x)(2g−2)
∑
ρ∈U(Ŵx)

( ‖G∨x ‖
Degx(ρ)

)2g−2
(q).

Here Degx denotes the degree function associated to the (possibly nonsplit)
connected reductive group G∨x ; see Theorem 4.1.

(4) Using the notion of genus (Section 3) for G∨, we can rewrite the above sum as

|X(Fq)| =
∑
ξ∈Ξ(Φ∨)

∑
[x]∈G∨ξ (Fq)

qr(x)(2g−2)
∑
ρ∈U(Ŵx)

( ‖G∨x ‖
Degx(ρ)

)2g−2
(q).

(5) Observe that r(x), ‖G∨x ‖, U(Ŵx), and Degx(ρ) depend only on the genus ξ of
the semisimple class [x]. Thus, we may denote these by r(ξ), ‖G∨ξ ‖, U(Ŵξ), and
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Degξ( ρ). Hence, we can rewrite the above sum as

|X(Fq)| =
∑
ξ∈Ξ(Φ∨)

qr(ξ)(2g−2)
∑
ρ∈U(Ŵξ)

( ‖G∨ξ ‖
Degξ(ρ)

)2g−2
(q)

∑
[x]∈G∨ξ (Fq)

1.

(6) Recall the definition d = d(G∨) from Theorem 3.2. Assume that q ≡ i mod d,
where i ∈ {0, 1, . . . , d(G∨)}. Then Theorem 3.2 gives

|X(Fq)| =
∑
ξ∈Ξ(Φ∨)

qr(ξ)(2g−2)
∑
ρ∈U(Ŵξ)

( ‖G∨ξ ‖
Degξ(ρ)

)2g−2
(q)‖G∨,[ss]

ξ ‖i(q).

DEFINITION 5.1. For i ∈ {0, 1, . . . , d(G∨)}, define polynomials

‖X‖i =
∑
ξ∈Ξ(Φ∨)

tr(ξ)(2g−2)‖G∨,[ss]
ξ ‖i

∑
ρ∈U(Ŵξ)

( ‖G∨ξ ‖
Degξ(ρ)

)2g−2
∈ Q[t].

Note that each summand is polynomial with rational coefficients. The sum is over
objects which depend only on the complete root datum Ψ, that is, they are independent
of q. It follows that ‖X‖ ∈ Q[t]. The above discussion then shows that X is PORC count
with counting polynomials ‖X‖i. Thus, Theorem 1.2 is proved. �

5.1.1. Aside on representation ζ-function. For each i ∈ {0, 1, . . . , d(G∨) − 1} and
u ∈ C, let

ξi(u, t) :=
∑
ξ∈Ξ(Φ∨)

tr(ξ)u‖G∨,[ss]
ξ ‖i

∑
ρ∈U(Ŵξ)

( ‖G∨ξ ‖
Degξ(ρ)

)u
.

Then we have equality of complex functions

ζG(Fq)(s) = ξi(s, q) for all q ≡ i mod d(G∨).

5.2. Counting polynomials in the case g = 1. In this subsection we show that if
g = 1, then ‖X‖i has degree rank(X) and leading coefficient 1. This establishes
Corollary 1.5(i).

By the above discussion,

‖X‖i =
∑
ξ∈Ξ(Φ∨)

‖G∨,[ss]
ξ ‖i|U(Ŵξ)|.

In view of Equation (3-1), the degree of a summand is maximal if and only if Φ1 is
empty, that is, when ξ is the genus of a regular semisimple element. Thus, the degree
of |X(Fq)| equals rank(G).

Next, one can easily check that for genera (∅, [w]), the leading coefficient of
‖G∨,[ss]
ξ ‖i equals 1/|Ww|, where Ww denotes the centralizer of w in W. Thus, the leading

coefficient of ‖X‖i is
∑

1/|Ww|, where the sum runs over conjugacy classes of W. By
the orbit–stabilizer theorem, this sum equals 1. This establishes Corollary 1.5(i). �
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Here is an alternative (perhaps more intuitive) argument for this corollary. By
(1-2), |X(Fq)| is the counting polynomial for the number of conjugacy classes of
G(Fq). Now the leading term of the class number equals the leading term of the
polynomial counting semisimple elements. By a theorem of Steinberg, the latter
equals |Z(G(Fq))|qrank([G,G]). Thus, the leading coefficient is 1 and the degree is
dim(Z(G)) + rank([G, G]) = rank(G).

5.3. Counting polynomials in the case g > 1. In this subsection we show that if
g > 1, then the polynomial ‖X‖i has degree (2g − 2) dim G + dim Z(G∨) and leading
coefficient |π0(Z(G∨))|. This establishes Corollary 1.5(ii).

We claim that only ξ = ([Φ∨], 1) contributes to the leading term of ‖X‖i. Note
that a semisimple element has genus ([Φ∨], 1) if and only if it is central. Thus, the
claim implies that the leading term of ‖X‖i(q) is the same as the leading term of
|Z(G∨(Fq))||G∨(Fq)|2g−2, which would establish the desired result.

REMARK 5.2. Aside: The claim amounts to the statement that only one-dimensional
representations contribute to the leading term of (1-2). Thus, the leading term of
|X(Fq)| equals the leading term of |G(Fq)ab| · |G(Fq)|2g−2, where G(Fq)ab denotes the
abelianization of G(Fq).

For ease of notation, set n := 2g − 2. Let ξ = ([Φ1], [w]) ∈ Ξ(Φ∨) be a genus. Thus,
Φ1 denotes a closed subsystem of the dual root system Φ∨. Let

Pξ,n(t) = tn.r(ξ)‖G∨,[ss]
ξ ‖i

∑
ρ∈U(Ŵξ)

( ‖G∨ξ ‖
Degξ(ρ)

)n
.

Observe that

deg Pξ,n = n · r(ξ) + deg‖G∨,[ss]
ξ ‖i + n · dim(G∨ξ )

= n(|Φ+| − |Φ+1 |) + (rank(X) − rank〈Φ1〉) + n · dim(G∨ξ )

= n(|Φ+| − |Φ+1 | + dim(G∨ξ )) + (rank(X) − rank〈Φ1〉)
= n(|Φ+| − |Φ+1 | + 2|Φ+1 | + rank(X)) + (rank(X∨) − rank〈Φ1〉)
= n(|Φ+| + |Φ+1 | + rank(X)) + (rank(X∨) − rank〈Φ1〉).

Thus,

n dim(G) + dim(Z(G∨)) − deg Pξ,n = n(2|Φ+| + rank(X))

+ (rank(X∨) − rank〈Φ∨〉) − deg Pξ,n
= n(|Φ+| − |Φ+1 |) + rank〈Φ1〉 − rank〈Φ∨〉.

It is clear that the above quantity is 0 if Φ1 = Φ
∨, that is, if ξ is central. If ξ is

not central, that is, Φ1 is strictly smaller than Φ∨, then the above quantity is positive
because

n(|Φ+| − |Φ+1 |) > rank〈Φ∨〉 − rank〈Φ1〉.
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This follows from the fact that elements of (Φ∨)+ − Φ+1 span the vector space
(〈Φ∨〉/〈Φ1〉) ⊗ R and that n ≥ 2. This concludes the proof. �

6. Examples: PGL2, PGL3, SO5 and G2

In this section we give tables containing the genera ξ ∈ Ξ(Φ∨), the integer r(ξ),
the size of the centralizer |G∨ξ (Fq)|, the genus number |G∨,[ss]

ξ (Fq)|, and the unipotent
degrees of the centralizer, for simple adjoint groups G of rank up to 2. We assume
throughout that q ≡ 1 mod d(G∨). By the discussion of Section 5.1, the counting
polynomial ‖X‖1 of the associated character stacks can be determined using these
tables.

6.1. The case G = PGL2. In this case, G∨ = SL2 and d(G∨) = 2. So let us assume
q is odd. Then the genera for PGL2 are given in Table 1.

Using the table, we find

|X(Fq)| = 2((q(q2 − 1))2g−2 + (q2 − 1)2g−2) +
q − 3

2
q2g−2(q − 1)2g−2

+
q − 1

2
q2g−2(q + 1)2g−2.

For instance, for g = 2, 3, 4 we obtain, respectively, the polynomials

2q6 + q5 − 4q4 + 3q3 − 4q2 + 2,

2q12 − 8q10 + q9 + 12q8 + 10q7 − 28q6 + 5q5 + 12q4 − 8q2 + 2,

2q18 − 12q16 + 30q14 + q13 − 40q12 + 21q11 − 12q10 + 35q9 − 12q8

+ 7q7 − 40q6 + 30q4 − 12q2 + 2.

6.2. The case G = PGL3. In this case, G∨ = SL3. Then d(G∨) = 3. So let us assume
q ≡ 1 mod 3. Then the genera are given in Table 2.

Using the table, we find:

|X(Fq)| = 3((q3(q3 − 1)(q2 − 1))2g−2 + (q2(q3 − 1)(q2 − 1))2g−2

+ (q2(q3 − 1)(q − 1))2g−2) + (q − 4)q4g−4((q(q2 − 1))2g−2 + (q2 − 1)2g−2)

+ q12g−12
(q2 − 5q + 10

6
((q − 1)2)2g−2 +

q(q − 1)
2

(q2 − 1)2g−2

+
q2 + q − 2

3
(q2 + q + 1)2g−2

)
.

For instance, for g = 2, 3 we obtain, respectively, the polynomials

3q16 − 6q14 − 5q13 + q12 + 13q11 + 17q10 − 33q9 + 23q8 − 29q7 + 8q6 + 15q5

+ 2q4 − 6q3 − 6q2 + 3
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TABLE 1. Genera for PGL2.

Ξ(Φ∨) r(ξ) |G∨ξ (Fq)| |G∨,[ss]
ξ (Fq)| Unipotent degrees

(A1, 1) 0 q(q2 − 1) 2 1, q
(∅, 1) 1 q − 1 q−3

2 1

(∅, w) 1 q + 1 q−1
2 1

TABLE 2. Genera for PGL3. Here w1 and w2 are simple generators for W.

Ξ(Φ∨) r(ξ) |G∨ξ (Fq)| |G∨,[ss]
ξ (Fq)| Unipotent degrees

(A2, 1) 0 q3(q3 − 1)(q2 − 1) 3 1, q(q + 1), q3

(A1, 1) 2 q(q2 − 1) q − 4 1, q
(∅, 1) 6 (q − 1)2 1

6 (q2 − 5q + 10) 1
(∅, w1) 6 q2 − 1 1

2 q(q − 1) 1
(∅, w2) 6 q2 + q + 1 1

3 (q2 + q − 2) 1

and

3q32 − 12q30 − 12q29 + 18q28 + 48q27 + 6q26 − 71q25 − 74q24 + 42q23 + 131q22

− 53q21 + 52q20 − 104q19 + 57q18 − 261q17 + 446q16 − 156q15 − 23q14 − 129q13

+ 62q12 − 34q11 + 114q10 + 41q9 − 70q8 − 72q7 + 6q6 + 48q5 + 18q4 − 12q3

− 12q2 + 3.

6.3. The case G = SO5. In this case, G∨ = Sp4 and d(G∨) = 2. So assume q is odd.
Table 3 gives the genera and the invariants required for writing an explicit description
for |X(Fq)|.

If g > 1, then in the polynomial |X(Fq)| there is a single term not divisible by q − 1,
namely,

2(2(q3(q3 + q2 + q + 1)(q + 1)))2g−2.

Thus, if we plug in q = 1 in |X(Fq)|, we obtain 28g−7.

6.4. The case G = G2. In this case, G∨ also equals G2. Then d(G∨) = 6. So assume
q ≡ 1 mod 6. The counting polynomial |X(Fq)| can be obtained using the genera listed
in Table 4.

If g > 1, then in the polynomial |X(Fq)| there are four terms not divisible by q − 1,
namely (

6
|G(Fq)|
qΦ2

1Φ6

)2g−2
+

(
2
|G(Fq)|
qΦ2

1Φ3

)2g−2
+

(
3
|G(Fq)|
qΦ2

1Φ
2
2

)2g−2
+

(
3
|G(Fq)|
qΦ2

1Φ
2
2

)2g−2
.
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TABLE 3. Genera for SO5. Here the two copies of A1 inside C2 give rise to nonconjugate centralizers, so
one of the copies is denoted by Ã1. The twisted A1 × A1 is a reductive subgroup of G∨ but does not arise
as a centralizer.

Ξ(Φ∨) r(ξ) |G∨ξ (Fq)| |G∨,[ss]
ξ (Fq)| Unipotent degrees

(B2, 1) 0 q4(q4 − 1)(q2 − 1) 2 1, q(q2+1)
2 , q(q+1)2

2 ,
q(q2+1)

2 , q(q−1)2

2 , q4

(A1 × A1, 1) 2 q2(q2 − 1)2 1 1, q, q, q2

(A1 × A1, w2w1w2) – – – –

(A1, 1) 3 q(q − 1)(q2 − 1) q − 3 1, q

(A1, w2w1w2) 3 q(q + 1)(q2 − 1) q − 1 1, q

(Ã1, 1) 3 q(q − 1)(q2 − 1) q−3
2 1, q

(Ã1, w1w2w1) 3 q(q + 1)(q2 − 1) q−1
2 1, q

(∅, 1) 4 (q − 1)2 1
8 (q − 3)(q − 5) 1

(∅,−1) 4 (q + 1)2 1
8 (q − 1)(q − 3) 1

(∅, [w1]) 4 q2 − 1 1
4 (q − 1)(q − 3) 1

(∅, [w2]) 4 q2 − 1 1
4 (q − 1)2 1

(∅, [w1w2]) 4 q2 + 1 1
4 (q2 − 1) 1

If we set q = 1 in the above polynomial, we obtain

(6 · 12)2g−2 +

(
2 · 12

3

)2g−2
+

(
3 · 12

4

)2g−2
+

(
3 · 12

4

)2g−2
= 722g−2 + 82g−2 + 2 · 92g−2.

7. The character stack of GLn and PGLn revisited

Let G = GLn and g be a positive integer. Let X be the character stack associated to
(Γg, G). In this section we give an explicit expression for the number of points of X
using the same method employed in [HRV08]. The main point is that we have a good
direct understanding of character degrees of G(Fq) without having to resort to Lusztig’s
Jordan decomposition. It would be interesting to prove directly that the polynomial
obtained in this section (see (7-2)) equals the one from Definition 5.1.

7.1. Conjugacy classes of GLn(Fq). Let I = I(q) denote the set of irreducible
polynomials over Fq, except that we exclude f (t) = t. Let P denote the set of partitions.
Let Pn(I) denote the set of maps Λ : I → P such that

|Λ| :=
∑
f∈I
|Λ( f )| deg( f ) = n.
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TABLE 4. Genera for G2. Here Φi is the i th cyclotomic polynomial; thus, Φ1 = q − 1,Φ2 = q + 1,Φ3 =

q2 + q + 1,Φ6 = q2 − q + 1.

Ξ(Φ∨) r(ξ) |G∨ξ (Fq)| |G∨,[ss]
ξ (Fq)| Unipotent degrees

(G2, 1) 0 q6(q6 − 1) 1 1, 1
6 qΦ2

2Φ3,

(q2 − 1) 1 1
6 qΦ2

1Φ6, 1
2 qΦ2

2Φ6,
1
3 qΦ3Φ6, 1

3 qΦ3Φ6,
1
2 qΦ2

1Φ3, 1
3 qΦ2

1Φ
2
2,

1
3 qΦ2

1Φ
2
2, q6

(A2, 1) 3 q3(q3 − 1)(q2 − 1) 1 1, q(q + 1), q3

(A1 × Ã1, 1) 4 q2(q2 − 1)2 1 1, q, q, q2

(A1, 1) 5 q(q − 1)2(q + 1) q−5
2 1, q

(A1, w1) 5 q(q − 1)(q + 1)2 q−1
2 1, q

(Ã1, 1) 5 q(q − 1)2(q + 1) q−3
2 1, q

(Ã1, w2(w1w2)2) 5 q(q − 1)(q + 1)2 q−1
2 1, q

(∅, 1) 6 (q − 1)2 q2−8q+19
12 1

(∅,−1) 6 (q + 1)2 q2−4q+3
12 1

(∅, [w1]) 6 q2 − 1 (q−1)2

4 1

(∅, [w2]) 6 q2 − 1 (q−1)2

4 1

(∅, [(w1w2)2]) 6 q2 + q + 1 q2+q−2
6 1

(∅, [w1w2]) 6 q2 − q + 1 q(q−1)
6 1

Then we have a bijection between Pn(I) and conjugacy classes of G(Fq). Let

P(I) =
⋃
n≥1

Pn(I).

7.1.1. Types. Let Id ⊂ I denote the subset of irreducible polynomials of degree d
over Fq. Given Λ ∈ P(I), we define

md,λ := #{ f ∈ Id |Λ( f ) = λ}.

The collection of integers (md,λ) is called the type of Λ and is denoted by τ = τ(Λ).

REMARK 7.1. One can show that Λ and Λ′ have the same type if and only if the
centralizers of the corresponding conjugacy classes in G(Fq) have the same genus.
Thus, we have a bijection between semisimple types and genera of G.
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The weight of a type τ is defined by

|τ| :=
∑

d|λ|md,λ = n.

Thus, the weight of an element Λ ∈ P(I) equals the weight of its type.

7.1.2. Genus number. Let Aτ(q) denote the number of Λ ∈ P(I(q)) of type τ.
(Equivalently, Aτ(q) is the genus number of τ.) Our aim is to give an explicit formula
for Aτ(q). Let

T(d) :=
∑
λ∈P

md,λ.

Let Id = Id(q) = |Id | denote the number of irreducible polynomials of degree d over q.
By a result attributed to Gauss, we have

Id(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
q − 1 if d = 1

1
d

∑
k|d
μ(k)qd/k otherwise.

LEMMA 7.2. Aτ(q) =
∏

d≥1(
∏T(d)−1

i=0 (Id(q) − i)/
∏
λ∈Pmd,λ!).

By convention, if T(d) = 0, then the product involving T(d) is defined to be 1. We
leave the above lemma as an exercise. As a corollary, we conclude that Aτ(q) is a
polynomial in q with rational coefficients.

7.2. Irreducible characters of GLn(Fq). We have seen that irreducible characters
of G(Fq) are in bijection with Pn(I). Let χΛ denote the irreducible character of G
corresponding to Λ ∈ Pn(I).

Define the normalized hook polynomial associated to the partition λ ∈ P by

Hλ(q) := q−〈λ,λ〉/2
∏

(1 − qh).

Here the product is taken over the boxes in the Young diagram of λ and h is the hook
length of the box. Moreover, 〈λ, λ〉 :=

∑
i(λ
′
i)

2 where the sum is taken over the parts in
the conjugate partition λ′.

Next, define the normalized hook polynomial of Λ ∈ Pn(I) by

HΛ(q) := (−1)nqn2/2
∏
f∈I

(HΛ(λ)(qdeg f )).

It is easy to see that HΛ is a monic polynomial in Z[q].
Let Λ′ be the map conjugate to Λ; that is, Λ′( f ) is the partition conjugate to Λ( f )

for all f ∈ I. Then, by a theorem of Green, we have

|G(Fq)|
χΛ(1)

= HΛ′(q).
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TABLE 5. The type, genera, multiplicities and normalised hook polynomials corresponding to representa-
tions of GL2(Fq).

Representations md,λ T(d) Aτ Hλ HΛ
Cuspidal m2,(1) = 1 1 (q2 − q)/2 q−1/2(1 − q) q2q−1(1 − q2)

Steinberg m1,(2) = 1 1 q − 1 q−1(1 − q)(1 − q2) q2q−1(1 − q2)(1 − q)

Determinant m1,(11) = 1 1 q − 1 q−2(1 − q2)(1 − q) q2q−2(1 − q2)(1 − q)

Principle series m1,(1) = 2 2 (q − 1)(q − 2)/2 q−1/2(1 − q) q2(q−1/2(1 − q))2

It is clear that the hook polynomial HΛ(q) depends only on the type of Λ; in fact,
we have

HΛ(q) = (−1)nqn2/2
∏
d,λ

(Hλ(qd))md,λ .

Given a type τ, we write Hτ(q) for the hook polynomial associated to τ.

7.3. Counting points on X. Let

‖X‖ :=
∑
τ∈Tn

Aτ(Hτ(t))2g−2 ∈ Q[t]. (7-1)

From the above discussions, one easily concludes the following result.

THEOREM 7.3. For every finite field Fq, we have |X(Fq)| = ‖X‖(q).

As an example, we consider the case G = GL2. The types of weight 2 and their
associated invariants are listed in Table 5. Thus, we find

|X(Fq)| = (q2 − q)
2

(q − q3)2g−2 + (q − 1)(q(1 − q)(1 − q2))2g−2

+ (q − 1)((1 − q2)(1 − q))2g−2 +
(q − 1)(q − 2)

2
(q(1 − q)2)2g−2.

For instance, for g = 2, 3 we obtain, respectively, the polynomials

q9 − 2q8 − 2q7 + 11q6 − 18q5 + 17q4 − 8q3 − q2 + 3q − 1

and

q17 − 5q16 + 6q15 + 11q14 − 34q13 + 29q12 − 34q11 + 124q10 − 230q9

+ 204q8 − 74q7 − q6 − 14q5 + 29q4 − 10q3 − 6q2 + 5q − 1.

7.4. The PGLn character stack. In this subsection we study the character stack
associated to (Γg, PGLn). For each n th root of unity ζ, consider

Xζ := (Gm)2g\Homζ(Γ, GLn)/PGLn,
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where

Homζ(Γ, GLn(C)) := {x1, . . . , xg, y1, . . . , yg ∈ GLn(C) | [x1, y1] · · · [xg, yg]ζ = 1}.

Then

X =
⊔
ζ∈μn

Xζ

is the decomposition of X into its connected components. For primitive roots of unity ζ,
the arithmetic geometry of Xζ was studied in [HRV08]. We consider the opposite case,
that is, when ζ = 1.

7.4.1. Counting points on X1. Let

‖X1‖ :=
1

(q − 1)2g−1

∑
τ∈Tn

Aτ(q)Hτ(q)2g−2 =
∑
τ∈Tn

Aτ
(q − 1)

(Hτ(q)
q − 1

)2g−2
.

Then Theorem 7.3 implies the following corollary.

COROLLARY 7.4. For every finite field Fq, we have |X1(Fq)| = ‖X1‖(q).

7.4.2. Proof of Corollary 1.6(iii). To obtain the Euler characteristic of X1, we
compute the value of ‖X1‖ at 1. Observe that Hτ(q) is divisible by exactly one factor of
(q − 1) if and only if the only nonzero md,λ in τ is mn,(1) = 1. In this case, Hτ = (1 − qn).
Thus, (Hτ(q)

q − 1

)
(1) = −n.

Moreover, we have Aτ = In(q); therefore,

Aτ
(q − 1)

(1) = I′n(1) =
1
n

∑
k|n
μ(k)

n
k
= φ(n)/n.

Here the last equality follows from the well-known relation between the Möbius and
Euler functions. We therefore obtain

‖X1‖(1) =
∑
τ∈Tn

( Aτ
(q − 1)

)
(1)

((Hτ(q)
q − 1

)
(1)

)2g−2
= φ(n) · n2g−3. �
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Appendix. Complex character stacks

In this appendix we discuss the implications of our main theorem for the complex
character stack XC := [Hom(Γg, GC)/GC]. To this end, we first recall a theorem of Katz
[HRV08, Theorem 6.1.2] on polynomial count schemes over C.

Let Y be a separated scheme or (algebraic) stack of finite type over C. A
spreading-out of Y is a pair (A, YA) consisting of a subring A ⊂ C, finitely generated as
a Z-algebra, a scheme YA over A and an identification YA ⊗A C � Y .

DEFINITION A.1. The stack Y/C is said to be polynomial count if there exist a
polynomial ‖Y‖ ∈ C[t] and a spreading-out (A, YA) such that for every homomorphism
A→ Fq, we have |YA(Fq)| = ‖Y‖(q).

If Y/C is a polynomial count scheme, then a theorem of Katz states that the
E-polynomial of Y (defined using its mixed Hodge structure) is given by

E(Y; x, y) = ‖Y‖(xy). (A-1)

Applying the above considerations to the situation of interest to us, Theorem 1.2
implies the following corollary.

COROLLARY A.2. The complex representation variety RC := Hom(Γg, GC) is polyno-
mial count with counting polynomial ‖R‖ := ‖X‖1 × ‖G‖. Thus,

E(RC; x, y) = ‖R‖(xy).

PROOF. Let d = d(G∨) and A := Z[1/d, ζd]. It is easy to see that we have a unital
algebra homomorphism A→ Fq if only if q ≡ 1 mod d; see [BH17, Lemma 3.1].
Now let us choose the spreading-out RA. Then Theorem 1.2 states that for every
homomorphism A→ Fq, we have |RA(Fq)| = (‖X‖1 × ‖G‖)(q). �

The analogue of Corollary 1.5 gives us the dimension and number of irreducible
components of highest dimension of RC. For G = GLn, these results were obtained in
[RBKC96], which also proved that RC is irreducible and rational. On the other hand,
for a general semisimple G, it was proved in [Li93] that π0(RC) = |π1([G, G])|.

Next, suppose Y is an algebraic stack of finite type over C. Thinking of Y as a
simplicial scheme (see the Appendix of [She17]), we have a mixed Hodge structure
on the cohomology of Y [Del74] and therefore an E-series E(Y; x, y). If Y = [Z/G] is
a quotient stack of a scheme by a connected algebraic group, then one can show that
E(Y) = E(Z)/E(G). Applying these considerations to the complex character stack XC,
our main theorem implies the following corollary.

COROLLARY A.3. The complex character stack is polynomial count with counting
polynomial ‖X‖1. Moreover, E(XC; x, y) = ‖X‖1(xy).

This corollary implies that the virtual Hodge numbers of XC (denoted by ep,q in
[HRV08, Appendix]) are balanced, that is, only those of (p, p)-type appear. This is in
agreement with the (a priori stronger) fact [She17] that the mixed Hodge structure of
XC is Tate, that is, that only (p, p) classes appear.
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The above discussion implies that Corollaries 1.5 and 1.6 remain valid in the
complex setting. On the other hand, the formulas for the dimension and number of
components of XC (or, more precisely, its coarse moduli space) can also be understood
via the nonabelian Hodge theory. Namely, we have a real analytic isomorphism
between the character variety and the moduli space of semistable G-Higgs bundles
on a compact Riemann surface of genus g. The formulas for dimension and number of
components have been known for a long time in the Higgs bundle setting.
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