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Abstract. We study the ergodic properties of horospheres on rank 1 manifolds with
non-positive curvature. We prove that the horospheres are equidistributed under the action
of the geodesic flow towards the Bowen–Margulis measure, on a large class of manifolds.
In the case of surfaces, we define a parametrization of the horocyclic flow on the set of
horocycles containing a rank 1 vector that is recurrent under the action of the geodesic
flow. We prove that the horocyclic flow in restriction to this set is uniquely ergodic. The
results are valid for large classes of manifolds, including the compact ones.
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1. Introduction
Horocyclic flows associated to a geodesic flow have been extensively studied on compact
surfaces with constant negative curvature [10], and later on compact surfaces with
variable negative curvature [15, 16]. They are uniquely ergodic and mixing, and they have
zero topological entropy, among other properties. More generally, on negatively curved
compact manifolds of any dimension, the Bowen–Margulis measure is the unique measure
invariant under the unstable foliation, and all the horospheres are equidistributed towards
this measure [20]. In this paper, we have two goals: first, we produce a result on the
equidistribution of horospheres for rank 1 manifolds with non-positive curvature; and
second, for the case of surfaces, we prove the unique ergodicity of the horocyclic flow
restricted to a well-chosen subset of rank 1 vectors.

Babillot gave a simple proof of the mixing property of the geodesic flow and showed
the equidistribution of horospheres under the action of this flow towards certain product
measures for manifolds with negative curvature [1]. For the Bowen–Margulis measure, the
equidistribution of horospheres can be stated as follows.
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FIGURE 1. A surface with a flat cylinder.

THEOREM. [1, Theorem 3] Let M be a non-elementary complete connected Riemannian
manifold with negative curvature bounded away from 0. Assume that the geodesic flow
gt on the unitary tangent bundle T 1M of M is topologically mixing on the set of
non-wandering vectors, and that the Bowen–Margulis measure μ is finite. Then, for every
unstable horosphere H ⊂ T 1M , every open subset U of H containing a non-wandering
vector is equidistributed under the action of the geodesic flow; that is, for every bounded
and uniformly continuous function f on T 1M , we have

1
μH (U)

∫
U

f ◦ gt dμH −−−−→
t→+∞

1
μ(T 1M)

∫
T 1M

f dμ,

where {μH }H are the conditional measures of the Bowen–Margulis measure μ along the
unstable foliation.

We refer the reader to [18] for the so-called Patterson–Sullivan construction of the
Bowen–Margulis measure in negative curvature. Several criteria for the finiteness of this
measure are given in [19].

The Bowen–Margulis measure can be generalized to non-positively curved rank 1
manifolds. G. Knieper constructed this measure in [12], following the method pioneered
by Patterson and Sullivan [17, 21], and proved that it is the unique measure of maximal
entropy when the manifold is compact. In this paper we explain an optimal way to
generalize the equidistribution of horospheres towards Bowen–Margulis for non-positively
curved rank 1 manifolds, following the approach of Babillot.

In the equidistribution theorem, we consider the averages of a function with respect to a
measure μH , which we will define in §2.2, associated to the horocycle H. On a negatively
curved manifold, if U is an open subset of H containing a non-wandering vector, the
μH -measure of U is positive, so it makes perfect sense to average a function over U.
However, on manifolds of non-positive curvature, not every open subset of a horocycle
containing a non-wandering vector has positive measure. As an example, we take a non-flat
surface containing a flat cylinder (Figure 1). All the vertical vectors with base point in a
longitudinal segment of the cylinder are in the same unstable horocycle. The set U formed
by these vectors has zero μH -measure, which is clear from its construction, although each
vector of U is periodic and, in particular, non-wandering.

Theorem A shows that, under a certain hypothesis, an open subset U of a horosphere
H is equidistributed in time, as soon as U has positive μH -measure. We emphasize that
rank 1 compact manifolds with non-positive curvature satisfy the hypothesis, so there is
equidistribution.
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THEOREM A. Let M be a non-positively curved non-elementary complete connected
Riemannian manifold with a closed rank 1 geodesic. Assume that the geodesic flow gt on
the unitary tangent bundle T 1M of M is topologically mixing on the set of non-wandering
vectors, and that the Bowen–Margulis measure μ is finite. Then, for every horosphere
H ⊂ T 1M containing a non-wandering vector, every open subset U of H of finite but
positive μH -measure is equidistributed under the action of the geodesic flow; that is, for
every bounded and uniformly continuous function f on T 1M , we have

1
μH (U)

∫
U

f ◦ gt dμH −−−−→
t→+∞

1
μ(T 1M)

∫
T 1M

f dμ.

In the case of a piece of horocycle U with zero μH -measure, it might be reasonable
to wonder if there is equidistribution with respect to another measure giving a positive
value to U, for instance, the Lesbesgue measure, which is very natural. The example of
the surface with a flat cylinder shows that this is also not possible, because the geodesic
flow acts periodically on the piece of horocycle U; then, for a well-chosen function f, the
averages of f ◦ gt on U could oscillate endlessly.

In the second part of this paper we study the case of surfaces, which is easier to deal with
as the horospheres can be parametrized by a flow. The dynamical properties of horocyclic
flows are well understood in some situations. For instance, on a negatively curved compact
surface, the Bowen–Margulis measure is the unique probability measure invariant under
the horocyclic flow [15]. For geometrically finite manifolds, there is a classification of the
Radon measures invariant under the horocyclic flow [20, Corollary 6.5].

We follow Marcus’s method, based on the definition of a parametrization of the
horocyclic flow by the measures on the horocycles. Unfortunately, it is not possible
to define an analogous parametrization on the whole space for rank 1 surfaces with
non-positive curvature, due to the presence of flat regions. We avoid this difficulty, by
restricting our system to the set � of vectors whose horocycle contains a rank 1 vector
recurrent under the geodesic flow. Under the hypothesis of the theorem, this set has full
Bowen–Margulis measure and is Gδ-dense in the unitary tangent bundle. Thanks to the
equidistribution of the horocycles of Theorem A and a part of the strategy followed by
Coudène in [4], we prove the unique ergodicity of the horocyclic flow on � for manifolds
that satisfy the duality condition, which means that the non-wandering set of the geodesic
flow is the whole unitary tangent bundle. Rank 1 compact surfaces with non-positive
curvature are included.

THEOREM B. Let M be an orientable rank 1 complete connected Riemannian surface with
non-positive curvature satisfying the duality condition. Assume that the Bowen–Margulis
measure μ is finite. Then every finite Borel measure on � invariant under the horocyclic
flow hs is a constant multiple of the Bowen–Margulis measure μ|� restricted to �.

In this paper we only work with expanding horospheres and expanding horocyclic flows,
but all the results have an analogy in the contracting setting.

2. Measures on the horocycles and equidistribution
2.1. Notation. Let M be a complete connected Riemannian manifold of non-positive
curvature and denote by gt : T 1M → T 1M the geodesic flow on the unitary tangent
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bundle T 1M of M. Recall that the rank of a vector v in T 1M , denoted by rank v, is the
dimension of the parallel Jacobi fields along the geodesic tangent to v. There is always a
parallel Jacobi field in the tangent direction of the geodesic, so the rank must be between 1
and the dimension of M. We say that the manifold M is of rank 1 if it contains at least one
vector of rank 1. Let us start with some standard definitions and recall the most important
facts about rank 1 manifolds.

Most of the reasoning unfolds on the universal cover M̃ of M. We consider the
Riemannian distance d on M̃ and the distance d1 associated to the Sasaki metric on T 1M̃ .
A geodesic ray is, by definition, a map σ : [0, +∞) → M̃ that minimizes length. Two
geodesic rays σ1, σ2 are asymptotic if the distance d(σ1(t), σ2(t)) is uniformly bounded
for all t ≥ 0. The boundary at infinity ∂M̃ is the set of asymptotic classes of rays. We refer
the reader to [2, 3] for a better understanding of this construction.

The Busemann cocycle at ξ in ∂M̃ between x and y in M̃ is defined as

βξ (x, y) = lim
t→+∞ d(x, σ(t)) − d(y, σ(t)),

where σ is any ray in the class ξ . If v is a vector in T 1M̃ , the points at infinity v− and v+
in ∂M̃ are respectively the asymptotic classes of the negative and positive rays tangent to
v. We can define the (unstable) horosphere of v as the set

Hu(v) = {w ∈ T 1M̃ | w− = v−, βv−(π(v), π(w)) = 0},
where π : T 1M̃ → M̃ is the projection to the base. The point v− in ∂M̃ is called the
center of the horosphere Hu(v). Horospheres are C1 submanifolds of T 1M̃ of dimension
dim M − 1.

We also use the notation ∂2M̃ = (∂M̃ × ∂M̃) \ 	, where 	 is the diagonal of ∂M̃ ×
∂M̃ , and define the map

P : T 1M̃ −→ ∂2M̃ × R

v �−→ (v−, v+, βv−(x0, π(v)).

It is known that this map is a homeomorphism when the curvature is negatively pinched,
but both the injectivity and the surjectivity may fail in the context of non-positively curved
rank 1 manifolds. Nevertheless, restricted to rank 1 vectors, P is still a homeomorphism
onto its image [2].

In the sequel, we identify M with the quotient of M̃ by some discrete subgroup of
isometries 
, which is isomorphic to the fundamental group of M. The limit set �(
) is
the set of accumulation points of an orbit 
x0, x0 ∈ M̃ , in M̃ ∪ ∂M̃ . It does not depend
on the choice of x0 and it is contained in the boundary at infinity ∂M̃ . We also define
the non-wandering set � to be the set {v ∈ T 1M̃ | v−, v+ ∈ �(
)}. The name of this set
comes from the fact that its projection to T 1M is the topological non-wandering set of the
geodesic flow. In order to have some complexity in the geodesic flow, we require that 


(or M) is non-elementary, which means that the limit set �(
) is infinite.
A δ-dimensional conformal density, δ ≥ 0, is a family of finite Borel measures {μx}x∈M̃

on ∂M̃ supported by the limit set �(
) and such that any two measures μx , μy , where
x, y ∈ M̃ , are equivalent and satisfy the relation (dμy/dμx)(ξ) = exp (−δβξ (y, x)).
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In addition, we say that such a family of measures is 
-invariant if γ∗μx = μγx

for all γ ∈ 
, x ∈ M̃ . The Patterson construction provides examples of invariant
δ(
)-dimensional conformal densities, where δ(
) is the critical exponent of 
 (see
[11], for example). Henceforth, we will fix a point x0 ∈ M̃ and denote by μx0 an element
of an invariant δ-dimensional conformal density.

2.2. Definition of the Bowen–Margulis measure. We now define a product measure on
the unitary tangent bundle of M̃ , which will pass to the quotient T 1M , as Knieper did in
[12] for a compact manifold. Consider the set of geodesic endpoints E(M̃) := {(v−, v+) ∈
∂2M̃ | v ∈ T 1M̃}. For every (ξ , η) ∈ E(M̃), the set π(P −1({(ξ , η)} × R)) is non-empty,
and it has been shown to be a flat totally geodesic submanifold of M̃ [9]. In fact, it is either
a single geodesic or a flat totally geodesic submanifold of dimension at least 2. No matter
what form the submanifold π(P −1({(ξ , η)} × R)) takes, we denote by Vol its induced
volume measure.

Firstly, we define a measure μ̄ on E(M̃), which we extend to ∂2M̃ , by its density

dμ̄(ξ , η) = eδ(βξ (x0,pξ ,η)+βη(x0,pξ ,η))dμx0(ξ) dμx0(η),

where pξ ,η is any point in π(P −1({(ξ , η)} × R)). The definition does not depend on the
choices of pξ ,η, and μ̄ is invariant under the diagonal action of 
 on ∂2M̃ . Now, the
measure μ on T 1M̃ associated to μx0 gives the value

μ(A) =
∫

∂2M̃
Vol(π(P −1({(ξ , η)} × R) ∩ A)) dμ̄(ξ , η) (1)

to a Borel subset A ⊂ T 1M̃ . It is clear that this measure is both 
- and gt -invariant.
The gt -invariant measure obtained on the quotient T 1M will also be denoted by μ, for
simplicity of notation.

In the sequel, we assume that M contains a closed rank 1 geodesic. Many authors have
studied the ergodic properties of this measure in this setting. Link and Picaud gave a
version of the Hopf–Tsuji–Sullivan dichotomy (see [13, 14]). In this paper we will always
be in the conservative case of the dichotomy: 
 is of divergence type, the radial limit set has
full μx0 -measure and the system (T 1M , gt , μ) is conservative and ergodic. Furthermore, in
this case there is a unique conformal density μx0 and its dimension is the critical exponent
δ = δ(
) of 
, this measure μx0 has no point masses, and the measure class of μx0 is
ergodic under the action of 
. We refer to μ as the Bowen–Margulis measure. Whenever
M is compact, it turns out that the Bowen–Margulis measure μ is the unique measure of
maximal entropy up to a multiplicative constant as proved by Knieper in [12].

Let H be the set of unstable horospheres in T 1M̃ and let 
 act on H. There is a simple
identification of H by its point at infinity and the value of the Busemann cocycle: the map

H −→ ∂M̃ × R

Hu(v) �−→ (v−, βv−(x0, π(v))
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is bijective. This allows us to define a 
-invariant measure μ̂ on the space of horospheres
H by the density

dμ̂(Hu(ξ , t)) = e−δtdμx0(ξ)dt ,

where Hu(ξ , t) is the unstable horosphere with coordinates (ξ , t) ∈ ∂M̃ × R.
We can now define a family {μH }H∈H of measures on each horosphere that has good

properties, analogous to the negative curvature case. For each horosphere H, we consider
the projection to the positive endpoint PH : H → ∂M̃ \ {ξ}, where ξ is the center of
H. Let us treat a point as a 0-manifold, for the sake of simplicity. For any vector v in
T 1M̃ , the set of base points of vectors on the horosphere Hu(v) that are also positively
asymptotic to v (that is, the set π(P −1

Hu(v)(v+))), is a totally geodesic submanifold of
π(P −1((v−, v+) × R)). We denote its volume measure by Vol, with the convention
that it is the delta measure when the submanifold consists of a single point. For each
η ∈ ∂M̃ \ {v−}, we choose w ∈ P −1

Hu(v)(η)) and write φv(η) = eδβη(x0,π(w)), which in fact
only depends on η, but not on w. The measure μHu(v) assigns the value

μHu(v)(A) =
∫

∂M̃\{v−}
Vol(π(P −1

Hu(v)(η) ∩ A))φv(η) dμx0(η)

to a subset A ⊂ Hu(v).
We list the main properties of these measures that follow from the definition.

(i) If w ∈ Hu(v), then μHu(v) = μHu(w). Hence, we can speak of a family {μH }H∈H
of measures on each horosphere.

(ii) They are 
-invariant; that is, for all γ in 
 and all H in H, we have γ∗μH = μγH .
(iii) They are exponentially expanded by the geodesic flow: μgtH = eδt (gt )∗μH .
(iv) The measure μ is the product of {μH }H∈H by μ̂: for all A ⊂ T 1M̃ ,

μ(A) =
∫
H

μH (A ∩ H) dμ̂(H). (2)

For our purposes, we assume that the Bowen–Margulis measure μ on the space
T 1M is finite, hence the geodesic flow is conservative, according to the Poincaré
recurrence theorem, and there is only one conformal density μx0 . Our goal is to find an
equidistribution result in the sense that the μH -averages of functions on a horosphere H
tend to the μ-averages on the whole space. The starting point is always the mixing property
of the geodesic flow with respect to the Bowen–Margulis measure μ. The next result says
that this property is equivalent to the topological mixing of the geodesic flow on �. We do
not know if this equivalence has been stated in this generality, although it can be expected
and the main part of the work is already published.

There is a third equivalent property related to the length of the closed geodesics,
analogous to what happens in negative curvature. We define the rank 1 length spectrum as
the set of lengths of rank 1 closed geodesics. We say that the rank 1 length spectrum is
non-arithmetic if the rank 1 length spectrum generates a dense subgroup of R.

THEOREM 2.1. Let M be a rank 1 non-positively curved non-elementary complete
connected Riemannian manifold. Assume that the Bowen–Margulis measure μ is finite.
Then the following assertions are equivalent.
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(i) The geodesic flow gt is topologically mixing on the non-wandering set �.
(ii) The geodesic flow gt is mixing with respect to the Bowen–Margulis measure μ.

(iii) The rank 1 length spectrum is non-arithmetic.

Proof. (ii) �⇒ (i) The mixing property with respect to a measure implies the topological
mixing on the support of the measure. In our case, the support of μ is the non-wandering
set �, so the implication is proved.

(i) �⇒ (iii) We reproduce the reasoning used in negative curvature [5]. Since the set of
rank 1 vectors is open [2], we can find a closed ball B of certain radius only containing
rank 1 vectors. Let ε > 0 be a given number. We apply the closing lemma for the rank
1 set [9, Proposition 4.5.15]: there exist constants T0 > 0 and δ > 0 such that, for every
v ∈ B and t ≥ T0 with d1(v, gt (v)) ≤ δ, there exists a periodic rank 1 vector v′ at distance
d1(v, v′) ≤ ε, where the period t ′ of v satisfies |t − t ′| < ε.

There exists a non-empty open subset U of � of diameter smaller than δ and such
that U ⊂ B. Since the geodesic flow on � is topologically mixing, there exists a number
T ≥ T0 such that, for all t ≥ T , we have U ∩ gt (U) �= ∅. In particular, there is a rank 1
vector v in B satisfying d1(v, gt (v)) ≤ δ. Hence, for each t ≥ T , there exists a periodic
rank 1 vector of period in [t − ε, t + ε]. Since ε is arbitrary, this proves that the rank 1
length spectrum is non-arithmetic.

(iii) �⇒ (ii) This implication may be the hardest, but it is essentially done in the proof of
[1], asserting that the geodesic flow is mixing with respect to μ on a compact manifold. All
the arguments work for a rank 1 manifold with finite Bowen–Margulis measure, but at the
end, instead of applying the compactness, we can use the assumption of non-arithmeticity
of the length spectrum.

To summarize, in all statements M is a non-elementary non-positively curved complete
connected manifold with a closed geodesic of rank 1 such that the geodesic flow is
topologically mixing on � and such that the Bowen–Margulis measure μ is finite.

2.3. Equidistribution of horocycles. We start with a local result showing that near rank 1
vectors there is equidistribution: for a function f : T 1M → R, the average on a horosphere
of its lift f̃ : T 1M̃ → R pushed by the geodesic flow converges to the average of f with
respect to the Bowen–Margulis measure.

PROPOSITION 2.2. Let M be a non-positively curved non-elementary complete connected
Riemannian manifold with a closed rank 1 geodesic. Assume that the geodesic flow gt on
T 1M is topologically mixing on � and that the Bowen–Margulis measure μ is finite. Then,
for every rank 1 vector v ∈ � ⊂ T 1M̃ , there exists an open subset U of Hu(v) containing
v which is equidistributed under the action of the geodesic flow; that is, for every bounded
and uniformly continuous function f on T 1M and every Borel neighborhood V ⊂ U of v,
we have

1
μHu(v)(V )

∫
V

f̃ ◦ gt dμHu(v) −−−−→
t→+∞

1
μ(T 1M)

∫
T 1M

f dμ.

Proof. We follow the same strategy as Babillot in [1], which involves approximating the
integral on a piece of horosphere by the integral of the same function on a box around that
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piece, and then use the mixing property of the geodesic flow with respect to μ. The added
difficulty is to find a box with a good system of coordinates, which is done by avoiding the
vectors of higher rank.

Let v be a rank 1 vector in � and denote its horosphere by H. From [2, Lemma III.3.1]
we know that there exist disjoint connected neighborhoods A1 and A2 of v− and v+,
respectively, in ∂M̃ such that: for every (ξ , η) ∈ A1 × A2 there exists a unique geodesic
from ξ to η, and it has rank 1. This allows us to consider a coordinate neighborhood of v
via the map P of the form A1 × A2 × R.

We claim that the proposition is true with U = P −1
H (A2). Consider any neighborhood

V ⊂ U of v and write V+ := {w+ | w ∈ V } for its projection to the boundary at infinity
∂M̃ . Since v is non-wandering, its endpoints are in the limit set, and this guarantees that
V+ and V have positive measure. We notice that the integral on V of a function h of T 1M̃

can be written in coordinates as∫
V

h dμHu(v) =
∫

V+
h(v−, η, t0)e

δβη(x0,π(v−,η,t0)) dμx0(η),

where t0 has the value βv−(x0, π(v)), because the volume Vol is always 1 on rank 1 vectors.
This is because P −1({(v−, η, t0)} consists of just one vector when v is of rank 1. Otherwise,
the flat strip theorem [2, Corollary I.5.8(ii)] asserts that v bounds a flat totally geodesic
surface, which is not possible for a rank 1 vector.

Given ε > 0, we can find a small connected neighborhood B ⊂ A1 of v− and a number
r > 0 such that:
(i) for all ξ ∈ B, for all η ∈ V+, 1 − ε ≤ eδβη(π(v−,η,t0), π(ξ ,η,t0)) ≤ 1 + ε;

(ii) for all (ξ , η) ∈ B × V+, for all s ∈ [−r , r], for all t ≥ 0, |f̃ (v−, η, t0 + t) −
f̃ (ξ , η, t0 + t + s)| < ε.

Property (i) follows from the continuity of the map P on the coordinate neighborhood,
and the continuity of the projection π and of the Busemann function. We use the fact
that V+ is relatively compact to assert that the inequality holds uniformly in η ∈ V+. For
property (ii), we apply the uniform continuity of f̃ , and then we choose B and r so that the
points (v−, η, t0) and (ξ , η, t0 + s) are close enough for ξ ∈ B and s ∈ [−r , r], uniformly
in η ∈ V+. Since these points are in the same weak stable leaf, the distance between them
does not increase when they are pushed by the geodesic flow, which allows us to deduce
the above property for all t ≥ 0. Again the condition v ∈ � implies that v− ∈ �(
), which
ensures that B has positive measure.

These estimates allow one to compare the average of f̃ ◦ gt on the set V with respect
to μHu(v) and the average of the same function on the box of the form P −1(B × V+ ×
[t0, t0 + r]) with respect to the measure μ by means of the product structure of μ (equation
(1)). More precisely, for all non-negative t,

[∫
V

f̃ ◦ gt dμHu(v)

μHu(v)(V )
− ε

]
1 − ε

1 + ε
≤

∫
P −1(B×V+×[t0,t0+r]) f̃ ◦ gt dμ

μ(P −1(B × V+ × [t0, t0 + r]))

≤
[∫

V
f̃ ◦ gt dμHu(v)

μHu(v)(V )
+ ε

]
1 + ε

1 − ε
.
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Moreover, we may assume that the neighborhood P −1(B × A2 × [t0, t0 + r]) ⊂ T 1M̃

is homeomorphic to its projection on the unit tangent bundle of the manifold M. Then,
since the geodesic flow is mixing with respect to μ, the average of f̃ ◦ gt in P −1(B ×
V+ × [t0, t0 + r]) converges to (1/μ(T 1M))

∫
f dμ when t goes to infinity. We have thus

shown the equidistribution of U.

To deduce a global result, we need to understand what happens on vectors of rank
different from 1, and the next two lemmas will be crucial. The unstable manifold of v
in T 1M̃ is the set

Wu(v) = {w ∈ T 1M̃ | d1(gt (v), gt (w)) → 0, t → −∞}.
Wu(v) is a subset of the unstable horosphere Hu(v), but they are not necessarily equal in
non-positive curvature.

LEMMA 2.3. Let M be a rank 1 non-positively curved non-elementary complete connected
Riemannian manifold. If v is a rank 1 recurrent vector in T 1M̃ , then its unstable horosphere
coincides with its unstable manifold, Hu(v) = Wu(v), and it consists of rank 1 vectors
exclusively.

Proof. The fact that the unstable manifold and the horosphere coincide is already proved
in [12, Proposition 4.1]. Let w be in Wu(v) and r be its rank; we will see that r is 1. Since
v is negatively recurrent there exist a sequence tn → −∞ and isometries γn ∈ 
 such that
γn(gtn(v)) → v when n → ∞. Now we have

d1(v, γngtn(w)) ≤ d1(v, γngtn(v)) + d1(gtn(v), gtn(w)) −→ 0

and the rank of γngtn(w) is the same as the rank of w, r. Since v is a limit of vectors of
rank r and the rank function is upper semi-continuous, we deduce r ≤ rank v = 1.

LEMMA 2.4. Let M be a non-positively curved non-elementary complete connected
Riemannian manifold with a closed rank 1 geodesic. Assume that the Bowen–Margulis
measure μ is finite and that the geodesic flow gt on T 1M is ergodic with respect to the μ.
Then, for every horocycle H, the set of vectors in H of rank equal to or greater than 2 is
μH -negligible.

Proof. Let Rec1 ⊂ T 1M̃ be the set of rank 1 vectors which are recurrent under gt on the
quotient T 1M and let S ⊂ T 1M̃ be the set of vectors of rank 2 or higher. We claim that
the projections to the boundary of these two sets are disjoint, Rec1+ ∩ S+ = ∅. Otherwise,
there are vectors v ∈ Rec1 and w ∈ S such that v+ = w+. By Lemma 2.3, the unstable
horosphere of −v only contains vectors of rank 1. The geodesic associated to −w intersects
this horosphere Hu(−v) (Figure 2), so w should have rank 1, which is a contradiction.

Around a non-wandering rank 1 vector there is a neighborhood only consisting of rank 1
vectors, and this neighborhood has positive measure because it intersects the support of μ.
By hypothesis, the manifold M contains a closed rank 1 geodesic, which is an example of
a non-wandering rank 1 geodesic. The set of rank 1 vectors has positive measure, and it is
invariant under the geodesic flow. So the set of rank 1 vectors has full measure because of

https://doi.org/10.1017/etds.2021.124 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.124


Equidistribution of horospheres in non-positive curvature 469

FIGURE 2. Vectors v and w in the proof of Lemma 2.4.

FIGURE 3. The average of f on the image of an open subset U of a horosphere H by the geodesic flow gt with
respect to μH tends to the average of f with respect to μ.

the ergodicity of μ. In consequence, the set of rank 1 recurrent vectors Rec1 also has full
μ-measure in view of the Poincaré recurrence theorem. By the product structure of μ, we
see that Rec1+ has positive μx0 -measure. Finally, Rec1+ is a 
-invariant set, so we deduce
that Rec1+ has full μx0 -measure because 
 acts ergodically.

Therefore, S+ is negligible. The endpoints of higher rank vectors in Hu(v) are clearly
in S+ and, using the definition of the measure on the horosphere, we obtain μHu(v)(S ∩
Hu(v)) = 0.

We can finally prove Theorem A, which we have reformulated in terms of horospheres
on the universal cover M̃ . On the horospheres centered at the limit set, every open set with
positive and finite measure is equidistributed (Figure 3). Being positive is equivalent to
having a non-wandering rank 1 vector. In particular, all relatively compact neighborhoods
of non-wandering rank 1 vectors are equidistributed.

THEOREM 2.5. Let M be a non-positively curved non-elementary complete connected
Riemannian manifold with a closed rank 1 geodesic. Assume that the geodesic flow gt

on T 1M is topologically mixing on � and that the Bowen–Margulis measure μ is finite.
Then, for every horosphere H ⊂ T 1M̃ centered at �(
), every open subset U of H of finite
but positive μH -measure is equidistributed under the action of the geodesic flow; that is,
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for every bounded and uniformly continuous function f on T 1M , we have

1
μH (U)

∫
U

f̃ ◦ gt dμH −−−−→
t→+∞

1
μ(T 1M)

∫
T 1M

f dμ.

Proof. We first observe that the set U1 of rank 1 vectors in U is open in H, because the
set of rank 1 vectors is open in T 1M̃ [2]. By Lemma 2.4, the set U1 has full measure
in U, so the averages on the two sets are the same. Next, we use the fact that μH is a
Radon measure: given a number ε > 0, there exists a compact subset K ⊂ U1 such that
μH (U1 \ K) < ε.

Since � is closed, L = K ∩ � is again compact, and L has full measure in K, because
vectors outside of � are not in the support. We want to show that L is equidistributed.
Proposition 2.2 gives an equidistributed open neighborhood Uv of each vector v in L. The
set L can be covered by finitely many Uv because it is compact. We can cut these sets where
they intersect to obtain a family {Vi}1≤i≤n of equidistributed pairwise disjoint Borel sets
whose union contains L, thanks to the fact that the subsets of Uv are equidistributed too.

If we let λ := ∫
f dμ/μ(T 1M), the set V := V1 ∪ · · · ∪ Vn is equidistributed because

∫
V

f̃ ◦ gt dμH

μH (V )
=

∑n
i=1

∫
Vi

f̃ ◦ gt dμH

μH (V )
−−−−→
t→+∞

∑n
i=1 μH (Vi)λ

μH (V )
= λ.

On the other hand, we have μH (U \ V ) < ε, so∣∣∣∣ 1
μH (U)

∫
U

f̃ ◦ gt dμH − 1
μH (V )

∫
V

f̃ ◦ gt dμH

∣∣∣∣ ≤ 2ε‖f ‖∞
μH (U)

for all t ≥ 0. This proves that U is equidistributed as well.

3. Unique ergodicity of the horocyclic flow
3.1. Surfaces with non-positive curvature. In the second part of this paper we restrict
our attention to surfaces. Our goal is to define a flow that preserves the Bowen–Margulis
measure and whose orbits are horocycles. Then we would like to interpret the equidis-
tribution of horocycles in terms of the ergodic properties of this flow. The idea is to
define the parametrization of the flow by the measures on the horocycles as in the negative
curvature case [15]. However, the presence of flat pieces of horocycle makes it impossible
to define globally a continuous flow with this method. We have found a subset � of the
unitary tangent bundle which excludes the horocycles causing trouble, like that of Figure 1,
and which is topologically and metrically large. We will define a parametrization of the
horocyclic flow on � and prove that it is uniquely ergodic.

In this section, M is a non-positively curved non-elementary orientable surface with
a closed rank 1 geodesic and the Bowen–Margulis measure μ, constructed as before,
is assumed to be finite. We will further assume that M satisfies the duality condition,
which means that every vector of T 1M is non-wandering, or equivalently we assume
that �(
) = ∂M̃ . Under these hypotheses, the geodesic flow is topologically mixing [7,
Theorem 6.3], so it is also mixing with respect to the Bowen–Margulis measure. The
duality condition is satisfied if M has finite Riemannian volume, as an application of the
Poincaré recurrence theorem. We observe that a non-positively curved non-elementary
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FIGURE 4. Universal cover of the surface M with a region where the curvature vanishes (shaded region). We
represent an unstable horocycle with a flat piece.

rank 1 manifold satisfying the duality condition automatically contains a closed rank 1
geodesic.

Moreover, we know that any two distinct points on the boundary at infinity can be
connected by a geodesic. This follows from the fact that, for a non-flat surface M with the
duality condition, the universal cover M̃ satisfies the visibility axiom [8, Proposition 2.5].
Therefore, the map P is surjective.

We notice that an orientation of the boundary at infinity ∂M̃ induces an orientation to
each horocycle in H. One vector v ∈ T 1M̃ divides its horocycle Hu(v) into two connected
sets, one in the positively oriented direction, Hu+(v), and the other in the negatively
oriented direction, Hu−(v). The group of isometries 
 is orientation-preserving because M
is orientable. In consequence, horocycles on T 1M̃ descend to T 1M as oriented immersed
curves.

Horocycles are diffeomorphic to the real line. Let H be a horocycle of T 1M̃ . The
interval (v, w) ⊂ H between two vectors v, w ∈ H is the connected subset bounded by v
and w. The map PH : H → ∂M̃ \ {ξ}, where ξ is the center of H, which projects a vector to
its positive endpoint, is continuous and surjective. We also observe that PH (v) = PH (w),
with v �= w, implies, according to the flat strip theorem, that the curvature vanishes on
the strip π(∪t∈Rgt ((v, w))). Such an interval (v, w) will be called a flat piece of horocycle
(see Figure 4). It is clear that H does not contain any flat piece if and only if PH is injective,
in which case PH is also a homeomorphism.

3.2. Definition of the horocyclic flow on a certain subset of T 1M . Next, we define
a subset of the unitary tangent bundle T 1M̃ of M̃ and we study the properties of its
horocycles and their associated measures. Let �̃ ⊂ T 1M̃ denote the set of vectors whose
horocycle contains a rank 1 recurrent vector, that is to say,

�̃ =
⋃

v∈Rec1

Hu(v).
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This set is invariant under 
, under the geodesic flow and under the horocyclic foliation,
in the sense that �̃ contains a horocycle H as soon as it contains one vector of H. Our set
�̃ contains a Gδ-dense set, namely the set of rank 1 recurrent vectors Rec1. The latter is
the intersection of the set of rank 1 vectors, which is open and dense [2, Corollary III.3.8],
with the set of recurrent vectors, which is Gδ-dense when all the vectors of T 1M are
non-wandering. The set �̃ also has full μ-measure. By Lemma 2.3, all the vectors in �̃

have rank 1 and each horocycle H ⊂ �̃ coincides with the unstable manifold. This also
implies that the horocycles in �̃ do not contain any flat pieces of horocycle.

In the next lemma, which will be needed later, we prove a sort of continuity of the
measures on the horocycles contained in �̃.

LEMMA 3.1. The map

{(v, w) ∈ �̃ × �̃ | w ∈ Hu(v)} −→ R

(v, w) �−→ μHu(v)((v, w))

is continuous.

Proof. Let v and w be two points in �̃ sharing a horocycle. The function on a pair of points
(v′, w′) close to (v, w) can be written as the integral

μHu(v′)((v
′, w′)) =

∫
(v′+,w′+)

e
δβη(x0,π(P −1

Hu(v′)(η))) dμx0(η).

Given ε > 0, we can suppose that μx0((v
′+, w′+)�(v+, w+)) < ε. We estimate the Buse-

mann cocycles on Hu(v) and Hu(v′) as we did in the proof of Proposition 2.2: for all
η ∈ (v+, w+) we have

1 − ε ≤ e
δβη(π(P −1

Hu(v)
(η)), π(P −1

Hu(v′)(η))) ≤ 1 + ε,

provided that v′ is close to v. We also observe that exp(δβη(x0, π(P −1
Hu(v′)(η)))) is bounded

by a constant K for v′ in a neighborhood of v and η in a neighborhood of v+ or w+. With
these approximations we get the inequalities

(1 − ε)μHu(v)((v, w)) − Kε ≤ μHu(v′)((v
′, w′)) ≤ (1 + ε)μHu(v)((v, w)) + Kε,

which show the continuity at (v, w).

Let us remark that only the fact that all the vectors in the domain �̃ have rank 1 was used
in the previous proof. Next, we state and prove some properties of individual measures on
horocycles that will help later to define the parametrization.

LEMMA 3.2. Let H be a horocycle of T 1M̃ and v ∈ H :
(i) the measure μH has no point masses;

(ii) if H does not contain a flat piece, then μH is of full support in H;
(iii) the measure μH is finite on compact sets;
(iv) if v is in �̃, then the half-horospheres Hu+(v) and Hu−(v) have infinite measure.

Proof. (i) We know that μx0 has no point masses. If w ∈ H , then μx0({v+}) = 0 directly
implies that μH ({v}) = 0.
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(ii) If U ⊂ H is an open non-empty subset, PH (U) is also open and non-empty.
So μx0(PH (U)) > 0 because its support is �(
) = ∂M̃ . Then μH (U) = ∫

PH (U)
φv

dμx0 > 0.
(iii) If K ⊂ H is compact, PH (K) is also compact. The function φv is bounded on

PH (K). The volume part of the integral is bounded by the length of K. Then it is clear that
μH (K) is finite.

(iv) By (iii) it is clear that, for every w ∈ Hu(v), the measure of Hu+(v) is infinite if and
only if so is the measure of Hu+(w). So we can assume that v is in Rec1.

Let Bu(w, r) denote the open ball in Hu(w) of center w and radius r > 0. The balls
Bu(w, 1) have two boundary points aw, bw ∈ Hu(w) that depend continuously on w so
that Bu(w, 1) = (aw, bw). In view of Lemma 3.1, the function w �→ μHu(w)((aw, w)) is
continuous. The continuity at v implies that there exists a neighborhood U of v in �̃ such
that, for all w ∈ U ,

μHu(w)((aw, w)) ≥ 1
2μHu(v)((av , v)). (3)

The inequality is in fact valid on ∪γ∈
γU because the family of measures is 
-invariant.
Since v is recurrent, there are a sequence tk converging to −∞ and isometries γk ∈ 


such that the distance d1(gtk v, γkv) goes to 0. For k big enough, the vector gtk v is in γkU ,
so equation (3) remains true if we replace w by gtk v. Let ak , bk be the points in Hu(gtk v)

such that Bu(gtk v, 1) = (ak , bk). Using the fact that the measures on horocycles expand
exponentially, we obtain

μHu(v)((g−tk ak , v)) = e−tkμHu(gtk
v)((ak , gtk v)) ≥ 1

2e−tkμHu(v)((av , v)).

This shows that in one half-horocycle there are subsets of arbitrarily large measure. We
proceed analogously for the other half-horocycle, with bk instead of ak .

We can now define a suitable parametrization of the horocyclic flow on the set �̃.
Given v ∈ �̃, we consider the function mv : Hu+(v) → (0, +∞) defined by mv(w) :=
μHu(v)((v, w)). The map mv is well defined by properties (ii) and (iii) of Lemma 3.2,
is continuous by (i), strictly increasing (with the order given by the orientation) by (ii)
and surjective by (iv). Then mv is in fact a homeomorphism, because the domain and the
codomain of the function are topologically the real line. For s > 0, we set hs(v) = m−1

v (s),
so that the measure of the interval (v, hs(v)) is s. There is a similar map on the negative
half-horocycle Hu−(v) that allows us to define the flow hs(v) for negative time, and we also
set the obvious relation h0(v) = v.

It is clear that the flow satisfies the group law, hs1 ◦ hs2 = hs1+s2 , because of the
additivity of the measure and property (i). For the same reasons, the measure of
every interval I ⊂ Hu(v) (hence, every measurable set) is preserved, μHu(v)(hs(I )) =
μHu(v)(I ). Thanks to the product structure of the measure (equation (2)), we deduce that
hs preserves μ. The expanding property of the measures on horocycles is transformed into
the commutation relation gt ◦ hs = hseδt ◦ gt between the geodesic flow and the horocyclic
flow. Only the continuity of hs remains to be proved.
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LEMMA 3.3. The flow

R × �̃ −→ �̃

(s, v) �−→ hs(v)

is continuous.

Proof. Let s ∈ R and v ∈ �̃ and consider sequences sk → s and vk → v. We know that
the horocycles Hu(w) depend continuously on w, so for each k there exists a vector
wk ∈ Hu(vk) such that the sequence {wk}k converges to hs(v). By Lemma 3.1, we have
μHu(vk)((vk , wk)) → μHu(v)((v, hs(v))) = |s|. We deduce then that the measures of the
intervals (wk , hsk (vk)) tend to 0. If the distance between wk and hsk (vk) tends to 0 too,
then we obtain hsk (vk) → hs(v) so the flow is continuous at (s, v).

Otherwise, we get a contradiction. To see this, suppose that, for some ε > 0 and
subsequence ki , the Riemannian distance d1(wki

, hski
(vki

)) is greater than ε. Then, since
wki

→ hs(v), for i big enough hski
(vki

) is at distance greater than ε/2 from hs(v).
But the sequence hski

(vki
) must accumulate at some point ζ in Hu(v) ∪ {v−}, outside

of a ball centered at hs(v). Again by the continuity of the measure, it follows that
μHu(v)((hs(v), ζ )) = 0, which is impossible because the interval is non-empty.

3.3. Unique ergodicity of the horocyclic flow on �. To study the ergodic properties of
the horocyclic flow we introduce the Birkhoff averages. Let f : T 1M → R be a Borel
function and f̃ : T 1M̃ → R its lift. For a number R > 0 and v in �̃, we define

MR(f )(v) := 1
R

∫ R

0
f̃ (hs(v)) ds.

A simple computation using the commutation relation between the geodesic and the
horocyclic flow shows that MR(f ◦ gt ) = MReδt (f ) ◦ gt .

Moreover, if we suppose that f is bounded and uniformly continuous, the equidistri-
bution under the action of the geodesic flow we showed in Theorem A implies that the
Birkhoff averages M1(f ◦ gt ) converge pointwise to

∫
f dμ/μ(T 1M) when the time t

goes to +∞. However, we need to understand the behavior of MR(f ) when R goes to
infinity, that is to say, the equidistribution of horocycles in length. To do this we will
use the relation M1(f ◦ gt ) = Meδt (f ) ◦ gt and some kind of uniform convergence of the
averages M1(f ◦ gt ) towards the average of f on the unitary tangent bundle of the manifold
M, which we will prove.

It is clear from the continuity of the measures on horocycles (Lemma 3.1) that the
function M1(f ◦ gt ) is continuous on �̃. We can prove the following improved result.

PROPOSITION 3.4. Let M be an orientable rank 1 complete connected Riemannian surface
with non-positive curvature satisfying the duality condition. Let f be a bounded and
uniformly continuous function on T 1M . Then the family of functions {M1(f ◦ gt )}t>0 is
equicontinuous at every vector of �̃.

Proof. Let v be a vector in �̃. The average of the horocyclic flow can be written
explicitly as
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M1(f ◦ gt )(w) =
∫

(w,h1(w))

f̃ ◦ gt dμHu(w)

=
∫

(w+,h1(w)+)

f̃ ◦ gt (P
−1
Hu(w)(η))e

δβη(x0, π(P −1
Hu(w)

(η))) dμx0(η). (4)

Fix ε > 0. We consider a relatively compact neighborhood U of v such that, for all
w ∈ U ,

μx0((v+, h1(v)+)�(w+, h1(w)+)) < ε.

Let C be a uniform bound of exp(δβη(x0, P −1
Hu(w)(η))) for w ∈ U and η in a compact

neighborhood of (v+, h1(v)+). When w approaches v, the set (w+, h1(w)+) will be
contained in this compact neighborhood. Then we can change the domain of integration in
equation (4) to (v+, h1(v)+) with an error of ε‖f ‖∞C at most.

By the uniform continuity of f̃ , there is a number r > 0 such that |f̃ (w) − f̃ (w′)| <

ε if d1(w, w′) < r . If w is close enough to v, for all η ∈ (v+, h1(v)+), P −1
Hu(w)(η) is at

distance less than r from P −1
Hu(v)(η). Applying the geodesic flow gt , t ≥ 0 to these two

vectors, their distance does not increase. Hence, when w is close to v,

for all t ≥ 0, for all η ∈ (v+, h1(v)+), |f̃ (gt (P
−1
Hu(w)(η))) − f̃ (gt (P

−1
Hu(v)(η)))| < ε.

This is essentially the same we did in property (ii) of the proof of Proposition 2.2.
If we consider a w close enough to v we can also control the difference between
exp(δβη(x0, P −1

Hu(w)(η))) and exp(δβη(x0, P −1
Hu(v)(η))). So the values of the functions at

w are close to the values at v uniformly in t when the two vectors are close. This shows that
{M1(f ◦ gt )}t>0 is equicontinuous at v.

We also observe that the function M1(f ◦ gt ) is bounded by the uniform norm ‖f ‖∞.
Both the set �̃ and the functions MR(f ) : �̃ → R are invariant under 
, so they descend
respectively to a set � ⊂ T 1M and some functions M̄R(f ) : � → R. We will apply the
Arzelà–Ascoli theorem on the space of continuous functions C(K) over a compact set
K ⊂ �. For every uniformly continuous and bounded function f : T 1M → R, the family
{M̄1(f ◦ gt )|K}t>0 ⊂ C(K) is equicontinuous and uniformly bounded, so it is a relatively
compact subset of C(K) in the uniform convergence topology. This is enough to prove
that M̄1(f ◦ gt )|K converges uniformly to

∫
f dμ/μ(T 1M) when t → +∞, or we get a

contradiction otherwise. Indeed, if we suppose that there is no uniform convergence, there
will exist a constant ε > 0, a sequence tn → +∞ and points wn in K such that∣∣∣∣M̄1(f ◦ gtn)(wn) −

∫
f dμ

μ(T 1M)

∣∣∣∣ ≥ ε. (5)

However, because of the sequential compactness of the closure of {M̄1(f ◦ gt )|K}t>0,
there exists a subsequence tnk

where M̄1(f ◦ gtnk
)|K converges uniformly to some

function ϕ in C(K). In particular, M̄1(f ◦ gtnk
)|K converges pointwise to ϕ, but also

to
∫

f dμ/μ(T 1M) as mentioned above (consequence of Theorem A), so ϕ is constant
and equal to

∫
f dμ/μ(T 1M). But M̄1(f ◦ gtnk

) converging to
∫

f dμ/μ(T 1M) in the
uniform norm contradicts equation (5). We have shown the following result.

https://doi.org/10.1017/etds.2021.124 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.124


476 S. Burniol Clotet

PROPOSITION 3.5. Let M be an orientable rank 1 complete connected Riemannian
surface with non-positive curvature satisfying the duality condition. Assume that the
Bowen–Margulis measure μ is finite. Let f be a bounded and uniformly continuous function
on T 1M . Then the functions M̄1(f ◦ gt ) : � → R converge uniformly on compact sets to
the constant

∫
f dμ/μ(T 1M) when the time t tends to +∞.

Finally, we state Theorem B again and prove it with the help of the Birkhoff averages.
Recall that � is the set of vectors whose horosphere contains a rank 1 recurrent vector, and
� has full μ-measure in T 1M .

THEOREM 3.6. Let M be an orientable rank 1 complete connected Riemannian
surface with non-positive curvature satisfying the duality condition. Assume that the
Bowen–Margulis measure μ is finite. Then every finite Borel measure on � invariant
under the horocyclic flow hs is a constant multiple of the Bowen–Margulis measure μ|�
restricted to �.

Proof. Firstly, let us prove that, for every bounded and uniformly continuous function
f : T 1M → R and for every vector v in �, there exists a sequence tn → +∞ such that
the Birkhoff integral M̄etn (f )(v) tends to λ := ∫

f dμ/μ(T 1M).
There is a recurrent vector w in the unstable horocycle of v, since v is in �. Let tn be

a sequence tending to +∞ such that g−tn (w) → w. Then obviously g−tn (v) also tends to
w. We consider the compact set K := {g−tn (v)}n≥0 ∪ {w} ⊂ �. By Proposition 3.5, the
functions M̄1(f ◦ gt ) converge uniformly on K to the global average λ of f. Therefore,
using the time-scale relation, we have

|M̄etn (f )(v) − λ| = |M̄1(f ◦ gtn)(g−tn (v)) − λ| ≤ sup
u∈K

|M̄1(f ◦ gtn)(u) − λ| n→+∞−−−−→ 0.

We can now prove that the restriction μ|� of μ to � is the unique measure on �

invariant under hs , up to a multiplicative constant. Suppose that ν is an ergodic hs-invariant
probability measure on �. By the Birkhoff ergodic theorem, for every bounded and
uniformly continuous function f : � → R, for ν-almost every v in �, we have

M̄R(f )(v) = 1
R

∫ R

0
f (hs(v)) ds

R→+∞−−−−−→
∫

�

f dν.

We take v one of the points of � where M̄R(f ) converges to
∫

f dν. We can extend f to a
bounded and uniformly continuous function f̂ on T 1M , because � is dense in T 1M . As
we have seen, there is a sequence Rn = etn where M̄R(f̂ )(v) = M̄R(f )(v) tends to λ as
well. So we obtain ∫

�

f dν = λ =
∫
T 1M f dμ

μ(T 1M)
=

∫
�

f dμ

μ(�)
,

because � has full μ-measure. We have concluded that ν is equal to the normalization
of μ|� .

3.4. Alternative proof of the unique ergodicity. We would like to point out another
way to prove Proposition 3.5, which does not require the equidistribution of horocycles
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(Theorem A). Instead, we use a version of the Arzelà–Ascoli theorem for the compact-open
topology, the ergodic theorem and the fact that there exists a dense horocycle in �.
Actually, we can prove that all the horocycles of � are dense.

LEMMA 3.7. Let M be a rank 1 non-positively curved complete connected Riemannian
surface with the duality condition. Then every horocycle H contained in � is dense in
T 1M .

Proof. This follows directly from two results of Eberlein. A non-positively curved
complete connected manifold that satisfies the visibility axiom and the duality condition,
like M, has a dense horocycle in T 1M [7, Theorem 5.2]. Next we apply [7, Theorem 5.5] to
M, which says that a horocycle Hu(v) in H is dense in T 1M if and only if v is not almost
minimizing. We say that v is almost minimizing if there exists a constant C > 0 such that,
for all t ≥ 0, we have d(π(v), π(gt (v))) ≥ t − C. If a horocycle H is contained in �, then
there is a recurrent vector in H and, in particular, this vector is not almost minimizing.
Thus, the horocycle H is dense in T 1M

We consider the space of continuous functions C(�) on the set � equipped, this
time, with the compact-open topology. Recall that, for functions on a metric space, the
convergence in the compact-open topology is equivalent to the uniform convergence on
compact subsets. The next fact will be used in the alternative proof of Proposition 3.5.

LEMMA 3.8. If a uniformly bounded sequence of functions fn in C(�) converges in the
compact-open topology to a function f ∈ C(�), then the sequence also converges to f in
the L2(�, μ|�)-norm.

Proof. Recall that a Polish space is a separable completely metrizable topological space.
The set of rank 1 recurrent vectors Rec1 ⊂ � is a Gδ subset of T 1M . Then Rec1 is a
Polish space, because Gδ-subsets of Polish spaces are Polish spaces and T 1M is Polish.

Finite Borel measures on a Polish space are Radon. For Rec1 and the restriction of μ

to Rec1, this means that, given any number ε > 0, there is a compact set K ⊂ Rec1 such
that μ(Rec1 \ K) < ε. In addition, the set Rec1 is of full measure in T 1M . We have∫

�

|fk − f |2 dμ ≤ 4C2ε +
∫

K

|fk − f |2 dμ,

where C is a bound of f and the sequence {fn}. The last term tends to 0 because of the
uniform convergence of fn to f on compact subsets.

Let f be a bounded and uniformly continuous function on T 1M . Applying the
Arzelà–Ascoli theorem for the compact-open topology [6, Theorem XII.6.4], since the
family of functions {M̄1(f ◦ gt )}t>0 is equicontinuous and uniformly bounded, we obtain
that it has a compact closure in C(�) with the compact-open topology. To complete the
proof of Proposition 3.5, we show that the only accumulation point of {M̄1(f ◦ gt )}t>0 in
the compact-open topology is the constant function

∫
f dμ/μ(T 1M).

Let ϕ in C(�) be the limit of a sequence M̄1(f ◦ gtk ) in the compact-open topology,
where tk → +∞. By Lemma 3.8, ϕ is the limit in L2(�, μ|�) of the same sequence.
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On the other hand, we apply the L2 ergodic theorem for the system (�, hs , μ|�) to the
function f ∈ L2(�, μ|�). This says that M̄t (f ) converges to an hs-invariant function f̄ in
the L2 norm, with the equality

∫
f̄ dμ = ∫

f dμ. Thanks to gt invariance of μ, we have
the inequality

‖ϕ − f̄ ◦ gtk‖2 ≤ ‖ϕ − M̄1(f ◦ gtk )‖2 + ‖f̄ − M̄etk (f )‖2,

which implies the L2-convergence of f̄ ◦ gtk to ϕ, because both terms on the right-hand
side tend to zero. The function f̄ is hs-invariant, so the f̄ ◦ gtk are also invariant because
the geodesic and the horocyclic flow commute. Then their limit, the continuous function ϕ

of �, is also invariant under hs .
In brief, the function ϕ is constant on the orbits of hs , and these orbits are dense by

Lemma 3.7. Since ϕ is continuous, we conclude that it is constant on �. In fact, the value
of the constant is

∫
f dμ/μ(T 1M), because we have
∫

ϕ dμ =
∫

f̄ ◦ gtk dμ =
∫

f̄ dμ =
∫

f dμ.

3.5. Final remark. Theorem B does not completely solve the problem of the horocyclic
flow in non-positive curvature, since it does not say what happens to the flow outside the
set �. For instance, we wonder if a horocyclic flow defined everywhere on a compact
non-positively curved surface is uniquely ergodic. We will study this question for the class
of compact manifolds without flat strips in a forthcoming paper.
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