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ON LOCALLY LIPSCHITZ VECTOR-VALUED

INVEX FUNCTIONS

N.D. YEN AND P.H. SACH

The four types of invexity for locally Lipschitz vector-valued functions recently
introduced by T. W. Reiland are studied in more detail. It is shown that the
class of restricted K-invex in the limit functions is too large to obtain desired
optimisation theorems and the other three classes are contained in the class of
functions which are invex 0 in the sense of our previous joint paper with B. D.
Craven and T. D. Phuong. We also prove that the extended image of a locally
Lipschitz vector-valued invex function is pseudoconvex in the sense of J. Borwein
at each of its points.

1. INTRODUCTION

Assume that X = Rn, Y = Rm, and K C Y is a closed convex cone. A real-valued

differentiable function / : X —* R is said to be invex at u G X if for each x G X there

exists T] = T)(x,u) such that

(1) /(*) ~ /(«) > f\*)ri,

where f'(u) is the Frechet derivative of / at u. We say that / is invex on X if it

is invex at every u G X. Every differentiable convex function defined on X is invex

on the whole space. The above generalisation of convexity is due to Hanson [7] who

showed that the converse Kuhn-Tucker optimality condition [8] and the duality theorem

of Wolfe [16] are still valid for programs with invex functions. According to Craven [4],

a differentiable vector-valued function / : X —• Y is said to be invex (with respect to

the given convex cone K) at u G X if for every x G X there exists rj such that

(2) f(x) - /(u) - f'(u)r, G K.

It is clear that (1) is a special case of (2) with Y = R and K = R+ (the nonnegative

half-line). Invexity of functions with respect to a cone has proved to be useful for

establishing sufficient optimality conditions and duality in vector optimisation. The
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260 N.D. Yen and P.H. Sach [2]

reader is referred to [6] for a recent development of this concept, its application to
vector optimisation, and for further references.

Many authors have been interested in weakening the differentiability requirement in
(1) and (2). Craven and Glover [5] studied quasidifferentiable invex functions. Reiland
[10], Tanaka [14], Tanaka, Fukushima and Ibaraki [15] considered the class of locally
Lipschitz real-valued invex functions. In [11] Reiland denned four types of invexity
for locally Lipschitz vector-valued functions and obtained some optimisation results
for problems with locally Lipschitz data. Recently, Sach and Craven [12, 13] have
introduced two classes of invex multifunctions called invex 1 and invex 2, where the
Aubin-Ekeland derivative of multifunctions [1] replaces the Frechet derivative in (1)
and (2). That approach unifies many of the known results concerning invexity. A new
development of the results on invexity for multifunctions is presented in [6] where invex
1 and invex 2 are proved to be the same and a larger class of invex multifunctions called
invex 0 multifunctions, together with its application, is examined.

The aim of this paper is to investigate in more detail the four types of invexity
introduced by Reiland in [11]. In Section 2 we apply the concepts of invexity for multi-
functions [6] to locally Lipschitz vector-valued functions in order to get a better diagram
of relationships between Reiland's four types of invexity. (A part of this diagram was
obtained by Reiland [11], Sach and Craven [12]). Namely, we show that the class of
functions which are restricted K-invex in the limit is too large to have a successful ex-
tention of theorems like the converse Kuhn-Tucker property [8], Wolfe's duality [16],
and Mond-Weir's duality [9]. Our diagram says that the other three Reiland's classes
of locally Lipschitz vector-valued functions are contained in the larger class of locally
Lipschitz vector-valued functions which are invex 0 in the sense of [6]. Therefore, a part
of Reiland's optimisation results [11] could be improved by using the corresponding re-
sults in [6] which were obtained for problems in a more general setting. Section 3 is
devoted to a useful geometric property resulting from invexity. According to Borwein
[2] a subset C C Y is said to be pseudoconvex at a (z C if C — a CZ ~cdT'c(a), where
T'c{a) stands for the Bouligand tangent cone to C at a and symbol ~coA denotes the
closure of the convex hull of A. We shall prove that if a locally Lipschitz vector-valued
function / : X —» Y is invex 0 on X with respect to the cone K C Y then its extended
image, that is, the set C := f(X) + K, is pseudoconvex at each point a € C.

2. RELATIONSHIP BETWEEN VARIOUS TYPES OF INVEXITY

Let X, Y and K be given as in the Introduction. Consider a vector-valued function
/ : X —» Y. We say that / is locally Lipschitz at a point u G X if and only if there
exists a number / > 0 such that || f(x) - f(x') | |^ I \\ x - x' \\ for all x,x' in a
neighbourhood of u. Function / is said to be locally Lipschitz on a subset X% C X if it
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[3] Vector-valued invex functions 261

is locally Lipschitz at each point of X\. Denote by /< (t = 1,2, . . . ,m) the components
of / , that is / = ( / i f - i / m ) and each / j is a real-valued function defined on X.
Let us recall the concepts of generalised Jacobian and generalised gradient of a locally
Lipschitz function.

DEFINITION 1: [3] The generalised Jacobian of / at u, denoted by J / ( u ) , is the
convex hull of all limits of the form:

A= Urn / '(*<);

where Df is the set of all x where / '(z) exists.

Recall [3] that J/(w) is a compact convex subset of the space L(X,Y) of linear
operators from X to Y.

Given a real-valued function <p : X —• R which is assumed to be locally Lipschitz
at a point u G X we define, as in [3], the generalised directional derivative <p°(u;v) of
<p at u in the direction v G X by setting

<p°(u;v) = limsup t~l[<p{x + tv) — ip(x)].
t—O + j JS-.U

The generalised gradient [3] of <p at u is the following set

dip(u) = {rj G X : (ri,v) ^ ip"(u;v) for every v € X},

where (.,.) denotes the scalar product in X. It has been proved [3] that df(u) = J<p(u).

DEFINITON 2: [3, 11] The generalised gradient of f at u is the set

where dfi(.) is the generalised gradient of /; as defined above.

Every element

is interpreted as an operator from L(X,Y) by setting

for all x G X. (Here and in the sequel we make no distinction between a row-vector
and the corresponding column-vector.) It is known [3] that df{u) is also a convex
compact subset of L(X,Y). Moreover, J f{u) C df(u), and there exist examples for
which Jf(u) ^ df(u). For each vector w G X we define a function: fw(.) — (*")/(•))•
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We now turn to the definition of Reiland's four types of invexity.

DEFINITION 3: [11]

A. / is K-invex at u if for every x G X there exists t\ G X such that

(3) VA G df(u) f{x) - /(«) - Art e K.

B. / is K-invex in the limit at u if for every x G X there exists TJ £ X such
that

(4) f(x) - f(u) - f(u;V) & K,

where /•(«; 77) = (/?(«, i»),..., £ (« , i | ) ) .
C. / is restricted. K-invex at it if for every a; G .X" there exists TJ G X such

that

(5) WL e Jf(u) f(x) - /(«) -AVeK.

D. / is restricted K-invex in the limit at u if for every a; 6 X there exists
rj (E. X such that

(6) v™ e if" (in,/(*) - /(«)> ^ /: («; 77),
where iT~ = {w 6 Y : (w,y) < 0, far all y G K}.

As in [6] we set / ( . ) = / ( . ) + K and denote by X>^Ul/(tt))(.) the Aubin-Ekeland

derivative [1] of the set-valued map (multifunction) / at the point (u, / («) ) G grf :=

{(a:,i/) e X x F i i / e / ( * ) } • T h i s means that

where T c{w,/(w)) is the Clarke tangent cone to ^ r / at (« , / («) ) (see Definition 5 in

Section 3).

We can define invexity for locally Lipschitz vector-valued functions in two other
ways, as follows.

DEFINITION 4: [6]

E. / is invex 1 at u if for every x G X there exists r\ G X satisfying

(7) f(x) - /(«) G

F. / is invex 0 at u if for each x G X we have

(8) /(*)-/(«)• ~ ~
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[5] Vector-valued invex functions 263

where Df(u>f(u-fl(X) = U{-^/(»,/(u))(a;) : x G X} z^d the bar denotes the closure hull.

LEMMA 1. Tie function / is invex 1 at u if and only if : Vz G X3r\ G X
satisfying

(9) <w,/00- / («))>£(«;*) , Vw G K+ := -K-.

PROOF: Indeed, applying [12, Lemma 11] yields

(10) fl/<../<«»fa) = {y£Y:(w,y)> /»(«;i,) for aU w G K+}.

Therefore, (9) is equivalent to (7), and the conclusion follows. D

REMARK 1. The formula (10) is useful for computing the image set D/(uj(u))(Jf),
and, therefore, to verify the invex 0 property described in (8).

REMARK 2. [6] If / is assumed to be a map of C1 —class (which consists of continuously
differentiable functions), then (7) and (8) become, respectively,

f(x)-f(u)ef'(u)r, + K

and f(x) - f(u) G f'(u)(X) + K.

These formulas show that invexity in the sense of Definition 4 is an extension of that
one proposed by Craven [4], which has been recalled in (2).

Our task is to describe relationships between the various types of invexity for locally
Lipschitz vector-valued functions given in Definition 3 and Definition 4. This work has
been done partially by Reiland [11] and Sach and Craven [12].

THEOREM 1. The relationships between the definitions of invexity (A)-(F) are
given fay tiie following diagram

(A) => (G)

(5) = • + {E) => (F)

Diagram 1
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If K+ C R™ then (A) «• (B) and Diagram 1 is simplified as follows :

(A) =*. (C) =>(E) =*> (F)

Diagram 2

PROOF: (.4) => (C) : Since Jf{u) C df{u), this implication is trivial.

(C) => (E) : Assume that / is restricted if-invex at u. Given any x £ X we
choose 7] £ X satisfying (5). We claim that this i\ satisfies (9). Indeed, for every
w 6 K+ applying (5) one gets

(11) (w,f(x)-f(u))^^:=sup{{w,Ar]) : A € //(«)}.

Fixing an arbitrary e > 0, by virtue of [3, Proposition 2.6.2] there exists a convex
neighbourhood U of u such that

(12) W £ U, Jf(u') C J/(«) + efli(x,r),

where B^x,Y) is the unit ball in L(X,Y). Using the mean-value theorem in [3,
Proposition 2.6.5], for all u',u" E U, vre obtain from (12) that

(The symbol co£J denotes the convex hull of E). Therefore,

= limsup
t—0+;«'-»i

u), M

Since e is arbitrarily chosen, we have f^,{u;rf) ^ /?. Now it is clear that (9) follows from

(11). We have thus proved the implication.

(E) => (D): Multiplying both sides of (6) by -1, we have the following inequality

<-«>, / (* ) - / (« ) )£ liminf t-'K-wJiu' + ir,) -/(«')>]•
t—»0+;i»'—»u

Hence, / is restricted K-invex in the limit at u if and only if for every x G X there
is r) £ X such that

(13) Vw£K+ ( » , / ( * ) - / ( « ) )£ liminf f ^ I K / K +*i|) -/(«')>]•
< 0 + '
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[7] Vector-valued invex functions 265

By Lemma 1, / is invex 1 at u if and only if for every x G X there exists rj 6 X

satisfying

(14) Vw G K+ (to, f(x) - / («) ) > lim sup t " 1 [(to, / ( « ' + 1,) - /(»')}].
t—»0+;t»'—»ti

It is a simple matter to obtain the desired implication from (13) and (14).
(A) =J> (B) : Let / be if-invex at u. Given x 6 X we pick rj G X satisfying (3).

If for each index i G {1, • • • ,m} we choose Vi G dfi{u) such that (vi,rj) = sup{(i/j,t;) :
vi € dfi(u)} = f?(u;ri), then ~A := (pl5- • • ,Vm) 6 df(u). Substituting 1 in (3) yields
(4) which means that / is If-invex in the limit at u.

(B) => (E) (Under the condition K+ C R™)• Assume that / is if-hivex in
the limit at u. Given x G X choose 7/ G X such that (4) holds. Then for any
•w = (wi , • • • , wm) G K+ w e h a v e

(15) = ^ i O i s u p { ( I / i ,

On the other hand, since w G K+ C R™ we have

Combining this and (15) gives

which proves that / is invex 1 at u.
(E) =>• (F) : This implication is obvious from Definition 4.

Now, suppose that K+ C K+. If we can show that (B) =» (A), then (A) & (B)
and Diagram 1 reduces to Diagram 2. To this end, we suppose that / is If-invex in the
limit at u, that is : Vz G X 3t} G X such that (4) holds. For each to = (wi, • • • ,wm) G
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K+ C R^,, from the (4) we can deduce that

(w,f(x) -/(«)-/•(«; v))
m

= {^,f(x) - f(u)) - ^tu,-sup[(i/,-,ij) : Vi G dfi(u)]

i(vi,ri) : "i 6 d/,-(u),t = 1,2,... ,m}

= inf [<«,/(*) - /(«) - ^ > : ,4 G 0/(«)] > 0.

This implies that / is A"-invex at u. The proof is complete. D

REMARK 3. If Y — R, K — R+ and / is locally Lipschitz real-valued function, then
all the notions (A), (B), (C), (E), (F) coincide. Indeed, given any u G X, from the
definitions, Lemma 1, and the equality f°(u;T}) = max{(i/,»/) : u G df(u)}, it follows
that that the properties described by (A), (B), (C), and (E), are the same. It remains
to add [6] that a locally Lipschitz real-valued function / is invex 1 at u if and only if
it is invex 0 at u.

We are going to comment on the above diagrams by some examples. The following
example shows that the restricted Jf-invex in the limit property does not imply invex
0 and invex 1.

EXAMPLE 1. \(D) =*• (F); (D) * (E)] Let X = R2,Y = R,K = R+ and / : X -> Y
be given by f(x) = max[min(xi,-22),i2-Jii] for all x = (xi,x2) G X (see Clarke [5,
Example 2.5.2]). To simplify the formula for f(x) we divide the plane X = R2 into
four parts :

£>i - {x : x2 < - x i , x2 ^ 2xi},

D2 = {x : x2 ^ - z i , x2 ^ 2*!},

D3 — {x : x2~£ -asi, x2 > 2 - 1 xi} ,

Di = {x : x2 ^ -xi, x2 < 2~1xi};

and then note that : f(x) = x2—x\ for x G D\, /(x) = x\ for x G D2, f(x) = x2—X\

for x G Dz, /(x) = —x2 for x G X>4- Since df(x) = co{ lim f'((*)}, it is easy

to compute the generalised gradient of / at each point x G X. Especially,

0/(0) = co{(l,0), (0,-1), (-1,1)}.

Therefore, 0 G intdf(0) and there exists p > 0 such that pB C 5/(0), where ~B stands
for the unit ball in X. We infer that / is restricted K-invex in the limit at u = 0.
Indeed, condition (6) can be rewritten as : Vx G X 3TJ G X such that

(w,f(x) - /(0)) ^ - / ° (0; -ij), Vw
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[9] Vector-valued invex functions 267

This is equivalent to saying that: Vx £ X 3rj £ X such that:

(16) f(*)>-nO;-7,).

Given any x £ X we choose T) £ X such that

Taking account of the fact that pB C 0 / (0 ) , we have

- H O ; - i ? ) = - max•>, - '?>»eo/(o)

= - P \ \ V II •
Combining this with (17) gives (16) which proves restricted Jif-invexity in the limit of
/ at u = 0. Furthermore, we claim that / is not invex 0 at w = 0. Indeed, since / is
a locally Lipschitz real-valued function, according to a result in [6, Proposition 2.4] /
is invex 0 at u = 0 if and only if it is invex 1 at this point. So, to prove the claim it
suffices to find a point x £ X such that for some w £ K+ = R+ there exists no TJ £ X
satisfying

(is) (v>,f(*)-f{o))>K(O;v)-

Using the formula of / we can find x £ X such that / (x ) < 0 (for example, x could
be any point of the form x = (— T, — 2 T ) , T > 0, which lies on the common boundary
of D\ and £>2 )• On the other hand, the inclusion 0 G df{0) implies that if we take
w = 1 then f^,{0;r}) ^ 0 for all t] £ X. Therefore, (18) is not satisfied with any vector
Tj £ X. By this example we have shown that (£)) ̂  (F), and, hence, (D) =#• (E).

A careful analysis of the above counterexample allows us to construct another
simplier one serving the same purpose.

EXAMPLE 2. Let X = Y = R,K = R+, and / : X -* Y be defined by setting
f(x) = x2 — \x\, Vx £ X. It is clear that / is an even function having three zero points

0 , 1 , - 1 . For u = 0 we have df{u) = [—1,1]. Obviously, there exists x £ X such that
f{x) < 0. Arguing similarly as in Example 1 we conclude that / is restricted K-invex

in the limit at u but / is not invex 0 at this point. (It is worth noting that our function
is restricted K-invex in the limit at every point of X.)

EXAMPLE 3. With the notation in Example 2, consider the following minimisation
problem (P ) :

Minimise f(x)

subject to x £ X.
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Since we have 0 G df(0), then 0 is a Kuhn- Tucker stationary point of (P). As it

has been noted, / is restricted Jif-invex in the limit at 0. However, 0 is not a global

minimum point of (P). This example shows that minimisation problems with data

from the class of restricted K-invex in the limit functions may not satisfy the the

converse Kuhn-Tucker property which says that : Every Kuhn-Tucker stationary point

of the problem is a global minimum. Let us observe [6] that the converse Kuhn-Tucker

property holds for minimisation problems whose objective and constraint functions are

invex 0 in the sense of Definition 4. The Wolfe dual of (P) (see [10] and [11]) is the

following problem (D):

Maximise f(x)

subject to x eX,0 £ df{x).

It is quite easy to show that the weak duality relation does not hold between (P) and

(D).

EXAMPLE 4. [(B) ^ (E), for K being in general position]: Let X = R,Y =

R2,f(x) = (M.2"1*) for all x G X. Let K = {y = (yi,y2) €Y : y2 > yi > 0}. We

have K+ — {w = (a,/?) : 0 ^ -<*,P > 0}. Observe that / is Jf-invex in the limit at

u = 0. Indeed, condition (4) is now equivalent to the following :Vx G X 3?/ G X such

that

In turn this property can be rewritten as : Vz g X 3rf G X such that

It is obvious that the last condition is satisfied with rj = x. Now we have only to show

that / is not invex 1 at u. Suppose the contrary. Then for x = 1 there must exist

r) G X satisfying

Consequently, for W — (—1,1) G K+ we have (w,/(I)) ^ f^(^tV)- Since fw(x) =

- |*| + 2-1x) then f^(Q;t]) = fo| + 2 ~ V Therefore, - |1 | + 2"1 ^ M + 2 ^ . The

left-hand side of this inequality is less than 0, while the right-hand side is nonnegative,

a contradiction.

EXAMPLE 5. [6] [(F) *> (E)]. Let X = R,Y = R3,f(x) = (x,zs,0),u = 0,K = {y =
(a,/3,j)eR3 : ( 7 - 2 " 1 a ) 2 + / 3 2 < 4" 1 a 2 } . We have f'(u)(X) = {y = (a,0,0) :

a G R} • An easy computation shows that

K = {y = (a,/?,7) : 7 > 0} U {y = (a,/9>7) : 7 = ft = 0},

f'(u)(X) + K = {y = (a,/3)7) : 7 > 0}.
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[11] Vector-valued invex functions 269

Then we obtain that f'(u)(X) + K does not contain the set f(X) - / ( « ) , while
f'(u)(X) + K contains it. By Remark 2 one can see that / is invex 1 but not in-
vex Oat u .

REMARK 4. Note that the converse Kuhn-Tucker, the Wolfe duality and the Mond-
Weir duality have been obtained [6] for optimisation problems with invex 0 functions.
Then, using Diagram 1 we can deduce a part of Reiland's results in [11] from the results
in [6]. Since giving more details would require a lot of space we restrict ourselves to
this observation. Another meaning of Diagram 1 is that (A), (B), (C), and (E) could be
considered as sufficient conditions for the weaker invex property (F) (which we name by
invex 0). Of course, computation based on formulas (3)-(5) and information about the
sets J f(u) and df(u), in many cases, is much more easiser than that using generalised
directional derivatives and formulas (8),(10).

REMARK 5. If the condition K C K+ is violated, then we do not have that (A) O (U).

EXAMPLE 6. Let X = Y — R,f(x) = \x\ ,K = {x : x ^ 0} then / is K-invex in the

limit at 0, but not K-invex at 0.

Concerning Theorem 1 we have the following open question :

Question. Is it true that the implications [A) => (C) and (C) => (E) are not
reversable in the general case ?

3. CONVEXITY OF THE EXTENDED IMAGE OF INVEX FUNCTIONS

In this section, adopting all notations of Section 2 we discuss a convexity property
of the set f(X) + K when / is assumed to be invex 0 on X. Note that invex 0 is defined
for an arbitrary function, but in this section we restrict ourselves to continuous function
/ . Also, Theorem 2 below can be established for the set-valued case.

We first recall the definitions of Clarke's and Bouligand's tangent cones.

DEFINITION 5: [1, 3] Clarke's tangent cone Tc(a) to a subset C in a Banach
space Z at a point u G C is the set of all vectors v G Z such that for each sequence
{a.} C C,aj —» a, and each sequence {U} C R+,U —* 0, there exists a sequence
{vi} C Z,Vi —> v, such that o< + Uvi E C for each integer t .

DEFINITION 6: [1, 3] Bouligand's tangent cone T'c(a) to a subset C C Z at a
point a G C is the set of all vectors v £ Z such that there exist a sequence of vectors
{vi} C Z,Vi —> v and a sequence {<;} C R+,U —> 0 such that a + Uvi G C for each
integer i.

Obviously, Tc(a) C T'c{a). According to Borwein [2], a subset C C Z is said to
be pseudoconvex at a point a G C if and only if C — a C ~coT'c(a). It is dear that every
convex set is pseudoconvex at each of its points. The converse statement is false.
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EXAMPLE 7. Let Y = R2 a n d C = {y= (a,/?) 6 Y : a2 + /32 > 1}. It can be seen
that the nonconvex set C is pseudoconvex at each a £ C.

LEMMA 2 . [2] A closed subset in a reflexive Banach space is convex if and only
if it is pseudoconvex at all its points.

LEMMA 3 . [13, Lemma 5.1] Assume that f : X —* Y is a continuous vector-
valued function and K <zY is a closed convex cone. Then, for every u £ X and q £ K
we have

(19) T r 7 K /(»)) + {0} x cone[K - q] C T py<«, /(«) + q)

and

(20) JV(«./(«))(*) + cone[K - g] C ̂ /(.,/(«)+,)(x), Vx e X;

where f(.):=f(.) + K.

Note that the properties (19) and (20) are equivalent by definitions, and the inclu-
sion (20) was established in [13].

THEOREM 2 . Assume that f : X —» Y is a continuous vector-valued function
and that f is invex 0 (with respect to the cone K) at every u £ X. Then the extended
image C := f(X) + K of f is pseudoconvex at each point a £ C. In addition, if C is
closed then C is convex.

PROOF: Since / is invex 0 on A", then

(21) V« G X f{X) - /(«) C Df{UifM)(X).

By [12, Lemma 2] we have from (21) that

(22) f(X) + K- /(«) C !>/(.,,(„))(*).

By virtue of (20), for every q G K, Df(Uif{u))(X)-q C Df{Utf(u)+q)(X). Consequently,
(20) and (22) imply that

(23) f(X) + K- (/(«) + ,) c DfMM)(X) - q C £>/(»,/(»)+,)(*).

We claim that

(24) Df{uJ{u)+q){X) C 2£(/(«) + q).

Indeed, since the Bouligand tangent cone is closed, it suffices to show that

(25)
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Let v belong to the left side of (25). Then there is rj 6 X such that (rj,v) £
T
 T7(u,f(,u) + q)CT' 4u,f(u) + q). Hence, there exist a sequence {<;} C R+,U -* 0,

and a sequence {(»?»,'»*)}• C X x Y,(jii,Vi) —» (TJ,1"), such that

In other words, / (u ) + g + fifi G / (u + *iT/») for every integer t . Therefore, /(i t) + q +
tiVi 6 C for every integer i. This shows that v is an element of the right side of (25),
as desired. Combining (23) and (24) implies that C — a C T'Q{O) for each a £ C. This
implies that C is pseudoconvex at each a G C. If, in addition, C is closed, then C is
convex by Lemma 2. D

The following example shows that both C and C may be nonconvex while the
assumptions of Theorem 2 are valid.

EXAMPLE 8. Let X = R2,Y = R2,K = {y = (a,/3) : a = 0,0 ^ 0} , and f(x) =
(s i , —Xj + e I J ) for every x = (21,22) £ -^- Since / ' (« ) is surjective for every v, £ X,

then using Remark 2 we obtain that / is invex 0 at every u £ X. Thus the assumptions
of Theorem 2 are satisfied. It is clear that C - {y = (a,/3) E Y : 0 > - a 2 } and
C = {y = (a,/9) : 0 ^ ~ a 2 } a r e nonconvex subsets of Y.
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