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Pareto optimum by independent trials

D.J. Gates and J.A. Rickard

We consider a method by which players in a continuous ^-person

game can arrive at a Pareto optimal solution by a trial process.

The process has a number of novel features. Firstly, it is

assumed that the players do not know the payoff functions.

Secondly, the players are assumed to act quite independently. In

spite of this lack of information and lack of cooperation, the

players eventually arrive at what is usually regarded as a

cooperative solution. The process is a model of the accounting

procedures used by firms, and the results predict approach to an

equilibrium state of a market model. Proofs are given only in

outline here.

1. The trial process

We consider an N—person continuous game in which the strategy of

player i {i = 1, .. ., N) is to choose a value of the real number a. .

The combination (a , a , ..., a..) of strategies of the N players is

denoted by a . The payoff to player i for such a combination is denoted

by J.(a) . It is supposed that the payoff functions are not known to the

players. However, each player naturally knows what payoff he receives

after a play of the game.

The players are to make 2 different moves a(t-l) and o{t) chosen

at random at times t - 1 and t . Each player ignores the moves of his

competitors. He tries to make an estimate of his own payoff as a function
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of his own strategy alone. That is he constructs an estimated payoff

function J.[a.\t) of his strategy O. at time t .

He does this as follows. He takes his payoffs J.[a(t-l)] and

J.[a(t)] resulting from the random moves, and calculates the marginal

payoffs, defined by

(1.1)

m.(t-l) = J.[a(t-l)]/oAt-l) ,
Is Is Is

mAt) = J.[a(t)]/aAt) .
u ly U

Then he constructs an estimated marginal payoff function rh.[a.\t) by
Is tr

drawing a straight line through the two points {a At-\), mAt-l)} ,
Is Is

{a.(£), m.(t)} . This yields
Is

bn.it)
(1 .2) m.{o.\t) = m.it) *

where

(1.3)

La.{t) = o.{t) - a . ( t - l ) ,
Is Is Is

bm.{t) = m.{t) - m.(t-l) .
ts Is Is

Next, he takes his estimated (total) payoff function to be

MAt)
= m.(t)a.

ha At)
Is

\a.2-a.a.(t)] .

The player has therefore formed a quadratic estimate of the dependence

of his payoff on his own strategy. Naturally, i t is usually a crude

estimate of the true payoff. However, i t appears to be the best that a

player can do, given only his moves o.(t-l) and oAt) and his resulting

p a y o f f s J.[a(t-1)] a n d J,[a{t)] .
If Is

Using the quadratic estimate ( l .U), the player chooses his new

strategy aAt+l) at time t + 1 to be simply the turning point of
Is

J .[a .\t) . That is, he chooses
Is Is
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(1.5) o.(t+l) =
Ao At)

°i{t) -A^{t)mi^ if Am At)

Consider the case Am At) = 0 . This means that the marginal payoff
If

of player i is the same for times £ - 1 and t . In this situation,

there is no reason for him to change his strategy. We therefore suppose

that

(1.6) a.(£+l) = a.(t) if Am At) = 0 .
Ir Is t-

For his next move the player uses the moves OAt) and a .(t+l) , and

the resulting payoffs J.[a(t)] and J.[a(t+l)] . This gives a formula

corresponding to (1.5) for a.(t+2) , and so on. This completely specifies
"Is

the trial process by which we suppose that the game is played.

A few points should be noted. Each player uses only his own data

(strategies and payoffs) so that the players are acting independently. The

choice (1.5) is naturally motivated by seeking the maximum of the estimated

payoff function J.[a.\t) . That is, each player would like to maximize

his current estimate of his payoff. Without suitable conditions, one

cannot guarantee that (1.5) gives a maximum rather than a minimum (see

[']). For simplicity here, we just take (1.5) and (1.6) as the definition

of the trial process.

The process we have described is a simplified model of an accounting

procedure which might be employed by firms competing in a market. Suppose

firm i produces an amount o. of goods in one business period, and sells

them all at a price m.{o) determined by the buyers. Its profit,

ignoring costs, is

(1.7) J.Aa) = O-w-(a) .

Using its production from two initial business periods and its resulting

profits, it could determine its new production for the next business period

by using (1.5), and continue in this manner. A more realistic version of

this process is considered in reference [/]. The process is in fact in the

same spirit as the accounting practices actually employed by firms (see

Weinberg [3]).
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2 . T h e e q u i l i b r i u m s t a t e

In this section we look for possible equilibrium solutions a of the

difference equations (1.5). These are defined by the condition that, if

a(t) is a solution of (1.5), then

(2.1) a{t) •* a as t -*• °° .

We give an outline of the method for determining such equilibrium solutions

(see [/] for details).

Hear the equilibrium, o(t) changes slowly, so that

<j(t) approximates Aa(t) or Aa(t+l) ,

m.(t) approximates Am.(t) .

Consequently (l.5) becomes

(2.2) 20.m. + a.m. + a.m. £ 0 .
^ ^ ^ v v ̂

S i n c e m.[o) d e p e n d s o n a l l t h e O . ' s , we h a v e
Is Is

N dm.
* f Ts *

( 2 . 3 ) m. = l T — a. .

% 3=1 3 J

Similarly,

(2.U) a .m. + a.m. = -T- [a.m.}

dJi

= IF

3 °3 °

S u b s t i t u t i n g ( 2 . 3 ) and (2 .U) i n ( 2 . 2 ) y i e l d s

3m. 3J".

. 9 a . -i j . 3 a . j ~

Since a is small, we neglect quadratic terms and obtain

(2.6) I 9^-cr. ~ 0 .

This possesses non-trivial solutions for a only if
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3,7
( 2 . 7 ) det -r— = 0 ;

• d o .

that is, the Jacobian of the payoff functions must vanish. The condition

defines a set of points in the iV-dimensional space of 0 . In general it

will be an (N-l)-dimensional surface (or a number of disconnected

surfaces). We deduce that the equilibrium solution a must be on this

surface.

For suitable payoff functions, (2.7) is equivalent to the statement

that 5 be a Pareto optimal strategy (see Shubik [2]).

The result can be explicitly demonstrated for the special case of the

game

(2.8) J^a) = cr.[a-&0T] ,

where

H

1=1

Economically, this corresponds to a market in which there is a common price

a - bo,-, for all firms. The price decreases linearly as total production

increases. Now (1.5) becomes

{a-bo (*)}
(2.9) o.(i+i) = h if AOy(t) * 0 .

Adding these equations gives

(2.10) aT(t+l) = J- if haT(t) + 0 .

Mow consider the Jacobian of (2.8). This is just the determinant of

the matrix with elements

(2.11) -boi + [a-ba^S^

which has the value

(2.12) [a-ba^ia-ZbOf) .

Referring to (2.10), we see that a (t+l) l ies on the surface where
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the Jacobian is zero. Consequently, the players arrive at a Pareto optimal

solution after the first application of the trial.

After the next trial there are two possibilities.

(i) If Oy(t) happens to lie on the Pareto optimal surface then

Aa (t+l) = 0 . It follows from (1.6) that

(2.13) a.(t+2) = a.(t+l) .

Consequently, after the first move to a (possibly new) point on the Pareto

optimal surface, the players remain at this latter point for all time.

(ii) In the more usual situation where o_(t) does not lie on the

Pareto optimal surface, we obtain at the second application of the trial

process (as in (2.10))

(2.1U) OT(t+2) = |j^ since Aay(t+l) + 0 .

It follows from (2.10) and (2.lU) that ha^it+2) = 0 . Hence from

(1.6) we have

(2.15) a.(t+3) = a.(t+2) .

In this case, the first trial results in a point on the Pareto optimal

surface; the second trial results in another point on the Pareto optimal

surface, and henceforth <J remains at this point.

Therefore, we have proved, in the special case (2.8), that the trial

process defined by (1.5) and (1.6) leads to an equilibrium strategy which

is Pareto optimal. Also, the equilibrium is reached surprisingly rapidly

in this case.
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