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ABEL TRANSFORMATIONS INTO P 

BY 

J. A. F R I D Y 

ABSTRACT. Let t be a sequence in (0,1) that converges to 0, and 
define the Abel matrix At by ank = tn(l-tn)

k. The matrix At deter­
mines a sequence-to-sequence variant of the classical Abel summa-
bility method. The purpose of this paper is to study these transfor­
mations as l-l summability methods: e.g., At maps I1 into I1 if and 
only if t is in I1. The Abel matrices are shown to be stronger l-l 
methods than the Euler-Knopp means and the Nôrlund means. 
Indeed, if t is in I1 and £ xk has bounded partial sums, then Atx is in 
I1. Also, the Abel matrix is shown to be translative in an /-/ sense, 
and an /-/ Tauberian theorem is proved for At. 

1. Introduction. The well-known Abel summability method is a sequence-
to-function transformation which can be described as follows: if x is a complex 
number sequence such that 

lim (1 - r) X rk*fc = L, 

then x is Abel summable to L. This can be modified into a sequence-to-
sequence transformation by replacing the continuous parameter r with a 
sequence {l-£n}n=o that converges to 1 (cf. [3, Theorem 4]). Thus the 
sequence x is transformed into the sequence Atx whose nth term is given by 

oo 

(Atx) = tn X (l-tn)kxk. 
k=0 

In order to ensure that 1 - tn approaches 1 from the left (as in r —» 1"), we shall 
assume throughout that 0 < tn < 1 for all n and limn tn = 0. This transformation 
is determined by the matrix At whose nfcth term is given by 

ank = tn(l-tn)
k. 

The matrix At is called an Abel matrix. 
The summability matrix A is said to be an l-l method provided that Ax is in 

I1 whenever x is in I1. The summability field A - ^ / 1 ] is denoted by ZA. In [6] 
Knopp and Lorentz characterized /-/ matrices by the property 
supk Zn=o knkl<0°- Since the appearance of [6], there have been numerous 
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studies of general properties of I-I methods, but there are relatively few results 
about specific I-I methods. This shortage of examples of I-I methods has 
motivated the present study. 

The purpose of this paper is to study the above Abel matrices as I-I matrices. 
In the next section we determine when A t is an I-I matrix, and then examine 
the strength of this method by comparing its summability field ZAt with some 
general sequence spaces as well as the summability fields of the methods of 
Euler-Knopp and Nôrlund. In the third section we prove that At is translative 
in the I-I setting and also prove an I-I Tauberian theorem for the Abel 
matrices. 

2. The strength of the At method. If s is a subsequence of t, then the matrix 
As is obtained by deleting certain rows from At. Therefore, Asx will be a 
subsequence of Atx provided that x is in the domain of At. Thus the following 
observation is an immediate consequence of the definition. 

PROPOSITION 1. If s is a subsequence of t, then lAt ç ZAs. 

We can also observe that in the setting of ordinary convergence, As includes 
At whenever s is a subsequence of t. Similarly, every Abel matrix includes the 
classical Abel summability method. 

The sequence x is in the domain of At if and only if the series £ k (1 - tn)
kxk 

is convergent for each n. Since limn tn = 0, this is equivalent to the assertion 
that Xkxkzk is convergent for | z | < l . Therefore, we can state a simple 
description of the domain of At. 

PROPOSITION 2. The sequence x is in the domain of the Abel matrix At if and 
only if limk | x k | 1 / k < l . 

The first of the main results gives a simple way of determining if At is an I-I 
matrix. 

THEOREM 1. The Abel matrix At is an I-I matrix if and only if t is in I1. 

Proof. Since 0 < tn < 1, we have 

oo oo oo 

I kkl= I tn(i-o
k< £ tn, 

n = 0 n = 0 n=0 

for every fc. Thus if t is in I1, the Knopp-Lorentz Theorem guarantees that At 

is an I-I matrix. Conversely, if t is not in I1, then we consider the sum of the 
first column of At: 

Z KoH Z *n=0°, 
n = 0 n = 0 

which shows that At is not an I-I matrix. 
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The classical Abel summability method is a rather strong method, and the 
Abel matrices are similarly strong in the l-l setting. The next result gives an 
indication of how large ZAt must be. 

THEOREM 2. If At is an l-l matrix and the series Y,kxk has bounded partial 
sums, then x is in /At. 

Proof. In order to apply Abel's summation by parts technique, we define 
sk = Xjk=o Xj, s_! = 0, and rn = 1 - tn. Then 

X ( l - O k x k U Z (Sk-Sk-iHn 
k = 0 k=0 

Î Sk(T
k
n-T

k
n

 + 1) 
k=0 

= sup|sfc|. 
k 

Hence, 

|(A fx)n |<rnsup|sk | , 

so Atx is in Z1 whenever t is in I1. 

COROLLARY. If At is an l-l matrix, then lAt contains all sequences x such that 
X xk is conditionally convergent. 

We can give a further indication of the size of ZAt by showing that if At is an 
l-l matrix then ZAt contains an unbounded sequence. Consider the sequence x 
given by xk = (— l)k(fc +1). Differentiation of the power series Xk (~ z)k yields 

oo 

I (-l)k(fc + l )z k = (l + z)-2 , if | z | < l . 

Therefore 

(Atx)n = tn(2-tn)
 2 <r n . 

Hence, if At is an l-l matrix, then t is in I1, so x is in ZAt. 
The Euler-Knopp mean of order r (see [5, pp. 56-60]) is given by the matrix 

Er whose nkth entry is 

Er[n, fc] = 
© ( l - r ) n ~ k r k , if fc<n, 

[0, if k>n. 

In [2, Theorem 4] it was shown that Er is an l-l matrix if and only if 0 < r < 1. 
The next result compares the l-l strength of Er with that of At. 

THEOREM 3. If At is an l-l matrix, then lEr <= ZA // and only if r > 1/2. 
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Proof. The asserted inclusion is equivalent to the statement that AtE~l is an 
I-I matrix. In order to simplify typography, let s = 1/r and consider AtEs = 
AtE~x; the nkth entry is given by 

oo 

(*) (AtEs)[n,k]=tn X (l-tJ(L)(l-sy-ksk 

i = k 

= tnska-tnni-a-tn)(i-s)Tk-\ 
provided that | ( l - f n ) ( l - s ) | < l . This proviso is equivalent to 

1 + - < s < l + -
l - r n l - r n * 

Since l im n f n =0, we conclude that AtEs exists if and only if 0 < s < 2 , i.e., 
r > 1/2. Once it is guaranteed that AtEs exists, we prove that it is an l-l matrix 
by showing that the coefficient of tn in (*) is bounded; thus AtEs will satisfy the 
Knopp-Lorentz property. Consider the following: 

sk(l - tn)
k[l - (1 - O d " s)rk'x = f, ! ( 1 , " ° , J 7—7T-f 

LL + S ( 1 - L ) J L + s ( l - t 

<-

( l - r n ) J tn + s ( l - t n ) 

1 

rn + s ( l - r n ) 

because 0 < tn < 1 and s > 0. Hence, lEr ç ZAt if and only if r > 1/2. To show that 
ZEr T̂  lAt, we show the existence of a sequence x such that X *k is conditionally 
convergent and Yl=o l(Ax)klVk<0°- Then Theorem 2 ensures that Atx is in I1, 
and the Tauberian result in [4, Theorem 4] implies that Erx cannot be in I1 

since x is not in I1. We wish to have xk positive throughout a block Bt of 
consecutive terms and then alternate to negative values in the next block. Also, 
|(Ax)k| is constant throughout the ith block and Axk changes sign only at the 
"middle term" of the block, say k = m(i). Therefore in the ith block, |xk| 
increases from 0 to |xm(i)|, then decreases to 0. If the block contains 2lt terms, it 
follows that 

A | = I k l = I?|(Ax)m(0|. 
keBi 

Also, the middle of the ith block can be located by 

Now choose lt 

Then m(i)~i3 

and (Ax)k 

It 

and 

m(i) = 2 

satisfying 

~ | i 2 and 

Ih-l, 

|(Ax)k |~ 

A,=gi2)2 |(Ax,3|~Si 

-5 /3 
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Also, |(Ax)kk1/2|~k~~7/6, so £k= 1 |(Ax)k| %/fc<00 and £ x k is conditionally con­
vergent. 

The strength of the Abel matrices can also be demonstrated by comparing 
them with the Nôrlund matrices: 

n f ^ , if k<n, 
Np[n,k] = l Pn 

10, if fc>n, 

where p is a non-negative number sequence with p0>0. In [2, Theorem 2] it 
was proved that Np is an l-l matrix if and only if p is in Z1. Using techniques 
developed by J. DeFranza [1], one can show that if At and Np are l-l matrices, 
then lNp ç ZAt. The proof of this result will appear elsewhere with DeFranza's 
work. 

3. Translativity and Tauberian Theorems. Following the concept of trans-
lativity in ordinary summability, we say that the matrix A is /-translative 
provided that each of the sequences Tx and Sx is in ZA whenever x is ZA, where 
Tx = {xl9 x2, x3,...} and Sx = {0, x0, *i> • • •}• 

THEOREM 4. Every l-l Abel matrix is I-translative. 

Proof. Consider the calculation 

(ATx)n= t tn(l-tn)kxk+1 
k=0 

7 — - J Z tnil-tnYXi-tnXo] 

= T—-{(A tx)n-tnx0}. 

It is clear that the last expression represents a sequence in Z1 whenever t and 
Atx are in Z1. Therefore, ZAt ç ZAtT. Similarly, 

(AtSx)n = (l-tn)(Ax)n, 

which shows that ZA ç ZAtS. Hence, At is Z-translative. 
The final result is an l-l Tauberian theorem for the Abel matrices. The 

concept of an l-l Tauberian theorem was introduced in [4], where such results 
were proved for Euler-Knopp and Borel matrices. The original Tauberian 
theorem [7] can be stated (in matrix form) as follows: 

if x is a sequence such that Atx is convergent and 
{/(Ax)J}°°=0 is in c0, then x itself is convergent. 

We now prove that l-l analogue of this statement. 
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THEOREM 5. Let At be an l-l Abel matrix; if x is a sequence such that Atx and 
{/(Ax)J}"=0 are in I1, then x itself is in I1. 

Proof. In order to show that Atx-x is in I1 we write 

(Atx)n-xn= Z tn(l-tn)
k(xk-xn). 

k=0 

Letting ank = tn(l-tn)
k, we shall prove that 

Z Z ank\xk-xn\<™. 
n-0 k=0 

Proceeding by exactly the same steps as in the proof of Theorem 3 of [4], we 
deal with this sum in two parts: 

oo n - 1 

C = la Lt ank\Xk~ Xn\ 
n=0k=0 

and 

OO 0 0 

This leads to 

where 

D== Z Z ank ta-xj. 
n=0 k = n + l 

C ^ l K A x ^ l Q and D < £ KAx),-! D,-, 
i=o y=o 

00 j j OO 

Ç = E Z ank and D]•,= Z Z ank. 
n=j + l k=0 n=Qk=j + l 

By showing that Q = 0 ( / ) and Dj=0(j), we will prove that YT=o |(Ax);-l /<oo 
implies that Atx-x is in I1. These 0(/) assertions are easily verified since At is 
both l-l and regular; for 

and 

Q = Z Z an k<(/ + l)sup Z kk l = OG"), 
k=0 n=j + l k

 n = l 

Di= Z Z <*nk̂  Z SUP Z Kkl 
n=Ok=j + l n=0 n k=0 

= I 1 = / + 1 = 0(/). 
n=0 

Thus the proof is complete. 
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