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Abstract. We consider a real-valued function r = M(¢) on the real axis, such that
M(r) < 0 for t < 0. Under appropriate assumptions on M, the pull-back operator M* gives
rise to a transform of Sobolev spaces WS?(—o0,0) that restricts to a transform of
W?®P(—00,00). We construct a bounded linear extension operator W*P(—o0,0) —
WP(—o0, 00), commuting with this transform.

1. Motivation. As described in Schulze [5], Sobolev embedding theorems may be treated
in the framework of pseudodifferential operators with operator-valued symbols whose defi-
nition is based on the ‘twisted”’ homogeneity.

In particular, consider the strongly continuous group action (ki),eo) On @ Space
L= HS(R.), s € R, given by i,u(t) = 1'2u(r1). Obviously, k; acts continuously also on
V = H°(R). It is easy to verify that

WH(RY, H'(R-)) = H*(R_*"),
We(R?, H'(R)) = H(R™™),

where W*(R1Y, L) is defined to be the completion of C° (RY, L) with respect to the norm

comp
Il :-(fR,,(n)25||x<j]§Fy._,,7u|lidn)%, F being the Fourier transform. Each continuous linear
extension operator T : H*(R_) — H°(R) commuting with «; gives rise to a constant opera-
tor-valued symbol a(y,n) in S4(T*(R?), L(L — V)) simply by a(y,n) = T. The symbol
space in question is defined on the base of the group action «;, so that a(y, n) satisfies

gy D% DEa(y, m) kil czmpy < clm ™,

for all multi-indices @ and 8, uniformly in y on compact subsets of R? and n € R?. Then, the

corresponding pseudodifferential operator op (a)u = F;Lya(y, n¥Fyqu extends to a con-

tinuous mapping of W*¥(RY, L) — W*(RY, V). Moreover, it is an extension operator of
HS(R_Yy > HS(R*Y), for if R : H*(R) — H*(R_) is the restriction mapping, then op(R)
is the restriction operator of H(R9*') —» HS(R_%*') and

op(R)op(a) = op(RT)
=1

on HS(R_%"). This operator-valued boundary symbol is of particular interest in Boutet de
Monvel’s algebra. (See [5, Subsection 4.2.2].)
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With this as our starting point, we are looking in this paper for a bounded extension
operator of H%(R ) - H*(R) commuting with a general transform of these spaces.

2. Statement of the main result. For seZ,,1 <p<oo and —o0c <a < b <00, let
WP(q, b) stand for the Sobolev space of all functions f' € L?(a, b) having weak derivatives
9 of order s on (a, b), such that

WS Nweoasy = Loy + 1 OllLasy < 0.

It is well-known (see Nikol’skii [3], Babich [1]) that there exists a bounded linear exten-
sion operator

T: W (—00,0) > WP (—00, 00) 2.1

(.e. (Tf) () =f(¢)if t < 0). It can be constructed in the following way: for t > 0,
(TS =D o f(=Bj1), 22
j=1

where B; are arbitrary distinct positive numbers and o; are defined by

Yoy =1 ((=01,..s=1).
Jj=1

(This construction was first used in Hestenes [2].)
Denote by « a dilation transform of the type

/YD =4f(), 1€ (-00,00),

where 4 and A are positive numbers. Then the extension operator T defined by (2.2) com-
mutes with «:

Tk=«T. 2.3)

(Note that in the left side « is considered as an operator acting from W*P(—00,0) to
W*P(—o0, 0), while in the right side it is considered as an operator acting from W*?(—c0, 00)
to WP (—00, 00).)

Below we consider a more general transform « defined by

kf)()=Af(M(1)),  x € (-00,00), 2.4)

where A is a positive number and M a function satisfying appropriate conditions. We con-
struct a bounded linear extension operator commuting with this transform.
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THEOREM 2.1. Suppose s € Z,.,1 < p < o0, and « is a transform defined by (2.4), where
A > 0 and M satisfies the following conditions:

(1) M € C;, (00, 00) and all derivatives MW i=1, .. s, are bounded;

(2) M is odd;

By M(t) > 0, for all t € (0, 00);

(4) there exists ¢ > 0 such that M’(t) > c for t € (—00, 00), moreover M'(0) # 1;

)y M"(0)=... = ME-D(0) = 0.
Then, there exists a bounded linear extension operator (2.1) satisfying (2.3).

Proof. 1°. For f € WSP(—o0, 0), we set f (1) = f(—t) and

(TYO =) aif)) (>0,
Jj=I

where o, j = 1, ..., 5, are defined by

iajAj(M’(O))ij=(—1)i (i=0,1,...,5s—1). 3.1
Jj=1

We note that, since M'(0) # 1, the determinant of this system with respect to the variables
a; A/, being a Van-der-Mond determinant, is not equal to 0.
Put

M) = M( - (M) ).

J

Then

(THO =Y 0 Alf(~M;®) > 0)

j=1

As, by condition (3), M (£) > 0 for ¢ > 0, the value (T'f)(¢) is well-defined.
2.° Suppose f € WP(—c0, 0). In order to prove that Tf e W*P(—o0, 00) it is enough to
prove that T/ e W*?(0, co) and

(THP0+) =fD0O-) (=0,1,..,1-1), (3.2)

where / ©(0-) and (Tf) (0 +) are boundary values of /) and (Tf) ©) respectively. (See for
instance Nikol’skii [4], Triebel [6].)

3.° Since f € WSP(—00,0), it is equivalent to a function F defined on (—oo, 0], such that
the ordinary derivatives F®, i=1, ..., s — 1, exist on (—o0, 0] and F¢~V is absolutely con-
tinuous on [a, 0] for each a < 0. Moreover, £ ?(0-) = F@(0) for i=1,...,s — 1. We note
also that the ordinary derivative F® exists almost everywhere on (—oo0, 0) and is equivalent
to the weak derivative f ). (See for example Nikol’skii [4].)
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It follows that T'f, defined on (0, 00), is equivalent to TF, defined on [0, 00), the ordinary
derivatives (TF)@, i=1, ..., s — 1, exist on [0, c0) and (TF)®~" is absolutely continuous on
[0, ] for each b > 0. The latter is due to the fact that the functions M; are absolutely con-
tinuous and monotonic. Consequently, the ordinary derivative (TF)®© exists almost every-
where on (0, c0), is equivalent to the weak derivative (7/)® and

1T Iwso.00) = | TFllogo,o0) + 1CTF ) Dl 0,000 33)
Moreover, condition (3.2) is equivalent to
(THYDO)=FD0) (=0,1,...1—1). (3.4)
4.° Our next observation is that, for i =1, ..., s and ¢ > 0, we have
(F(=M ;)W =(=1) FO(=M(1)) (M (M1 ()M (Mj_(0))--- M'(1))'
+ Z FO(—M() A1),
k=1
where A4;, are linear combinations of products of some natural powers of derivatives
MO(M, (1), where 0 <m < j—1and 1 </<i-k+ 1. This equality is valid everywhere on
[0, 00), if i < 5, and almost everywhere, if i = 5.

It is worth pointing out that every summand in 4;, contains as a factor at least one deri-
vative of M of order greater than 1. Consequently, we can assert, by conditions (2) and (5), that

(F(=M;(1))) Plizo = (=1)'(M'(0)) "FO(0),

foralli=0,1,...,s — 1. Hence it follows that

(7)) = (-1)’ (ZajAj(M'(O)) ”)FI(O), (3.5)
=1

fori=0,1,...,s—1.
Moreover, since the derivatives MV, ..., M'© are bounded, there exists a constant ¢; > 0
such that

(F(-M) Ol < a1 Y IFOM@), 120,
k=l

fori=1,..,s. Thus, ;
(TFY®) <) IF(-M@D), 120,
Jj=1
and .
(TAYOWI <) I IFO=M@), 120,

j=1 k=1

fori=1,..,s, the constant ¢, being independent of F.
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5.° By condition (4), there is a constant ¢3 > 0 with the property that
M () = c, t € (—00, 00),

for j=1, ..., 5. Consequently,

I1TF |l 1r(0,00)

IA

c2 3 IF (=M; ()] (0,000
Jj=1

2 dr P
= 0 j;(/j’o lF(r)lpW;‘l(_r))) (3.6)
< Czcgii | Fll p(-00,0)
=
= 4|l Fllpp(—o0,0).
where ¢4 = czc;’%s. Similarly,

s
ITFY 000y < €5 D N FPppoon) 3.7
k=1

with ¢s a constant independent of F.
Now we invoke a well-known result that

I FPllppco00) < (1l Fll o=so,0y + | FOll p(-c0.0)) 38

for all k£ < s, where the constant ¢4 depends only on s. (See Nikol’skii [4].) Thus, combining
(3.3), (3.6), (3.7) and (3.8) we obtain

TS W wsr0,00) < 7l f lwsr(—co.0, (3.9)

where ¢7 1s independent of f.

6.° According to (3.5) condition (3.4) and, hence, (3.2) is equivalent to (3.1). Thus, from
what has been said in item 2° it follows that T/ e W*P(—o0, 00). The estimate (3.9) now
shows that the operator T is bounded.

7.° Finally, equality (2.3) is equivalent to

§ S
Z apcd(cf). = Z o/t
= =

on (0, 0o). The latter equality is valid for, by condition (2),

(k)0 = (Af (M©)).
=Af(M(-1)
=Af(-M 1))
= (k) (),

which completes the proof.
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