EXTENSION OPERATORS FOR SOBOLEV SPACES COMMUTING WITH A GIVEN TRANSFORM

by VIKTOR BURENKOV, BERT-WOLFGANG SCHULZE and NIKOLAI N. TARKHANOV ${ }^{\dagger}$

(Received 4 December, 1996)

Abstract

We consider a real-valued function $r=M(t)$ on the real axis, such that $M(t)<0$ for $t<0$. Under appropriate assumptions on M, the pull-back operator M^{*} gives rise to a transform of Sobolev spaces $W^{s, p}(-\infty, 0)$ that restricts to a transform of $W^{s, p}(-\infty, \infty)$. We construct a bounded linear extension operator $W^{s, p}(-\infty, 0) \rightarrow$ $W^{s, p}(-\infty, \infty)$, commuting with this transform.

1. Motivation. As described in Schulze [5], Sobolev embedding theorems may be treated in the framework of pseudodifferential operators with operator-valued symbols whose definition is based on the 'twisted" homogeneity.

In particular, consider the strongly continuous group action $\left(\kappa_{\lambda}\right)_{\lambda \in(0, \infty)}$ on a space $L=H^{s}\left(R_{-}\right), s \in R$, given by $\kappa_{\lambda} u(t)=\lambda^{1 / 2} u(\lambda t)$. Obviously, κ_{λ} acts continuously also on $V=H^{s}(R)$. It is easy to verify that

$$
\begin{gathered}
W^{s}\left(R^{q}, H^{s}\left(R_{-}\right)\right)=H^{s}\left(R_{-}^{q+1}\right) \\
W^{s}\left(R^{q}, H^{s}(R)\right)=H^{s}\left(R^{q+1}\right),
\end{gathered}
$$

where $W^{s}\left(R^{q}, L\right)$ is defined to be the completion of $C_{\text {comp }}^{\infty}\left(R^{q}, L\right)$ with respect to the norm $\|u\|=\left(\int_{R^{q}}\langle\eta\rangle^{2 s}\left\|\kappa_{\langle\eta\rangle}^{-1} F_{y \mapsto \eta} u\right\|_{L}^{2} d \eta\right)^{\frac{1}{2}}, F$ being the Fourier transform. Each continuous linear extension operator $T: H^{s}\left(R_{-}\right) \rightarrow H^{s}(R)$ commuting with κ_{λ} gives rise to a constant opera-tor-valued symbol $a(y, n)$ in $\mathcal{S}_{c l}^{0}\left(T^{*}\left(R^{q}\right), \mathcal{L}(L \rightarrow V)\right)$ simply by $a(y, \eta)=T$. The symbol space in question is defined on the base of the group action κ_{λ}, so that $a(y, \eta)$ satisfies

$$
\left\|\kappa_{(\eta\rangle}^{-1} D_{y}^{\alpha} D_{\eta}^{\beta} a(y, \eta) \kappa_{(\eta)}\right\|_{\mathcal{L}(L \rightarrow V)} \leq c\langle\eta\rangle^{-|\beta|}
$$

for all multi-indices α and β, uniformly in y on compact subsets of R^{q} and $\eta \in R^{q}$. Then, the corresponding pseudodifferential operator op $(a) u=F_{\eta \rightarrow y}^{-1} a(y, \eta) F_{y \rightarrow \eta} u$ extends to a continuous mapping of $W^{s}\left(R^{q}, L\right) \rightarrow W^{s}\left(R^{q}, V\right)$. Moreover, it is an extension operator of $H^{s}\left(R_{-}{ }^{q+1}\right) \rightarrow H^{s}\left(R^{q+1}\right)$, for if $R: H^{s}(R) \rightarrow H^{s}\left(R_{-}\right)$is the restriction mapping, then $\operatorname{op}(R)$ is the restriction operator of $H^{s}\left(R^{q+1}\right) \rightarrow H^{s}\left(R_{-}{ }^{q+1}\right)$ and

$$
\begin{aligned}
\mathrm{op}(R) \mathrm{op}(a) & =\mathrm{op}(R T) \\
& =1
\end{aligned}
$$

on $H^{s}\left(R_{-}{ }^{q+1}\right)$. This operator-valued boundary symbol is of particular interest in Boutet de Monvel's algebra. (See [5, Subsection 4.2.2].)
${ }^{\dagger}$ The research of this author was supported by the Deutsche Forschungsgemeinschaft.
Glasgow Math. J. 40 (1998) 291-296.

With this as our starting point, we are looking in this paper for a bounded extension operator of $H^{s}\left(R_{-}\right) \rightarrow H^{s}(R)$ commuting with a general transform of these spaces.
2. Statement of the main result. For $s \in Z_{+}, 1 \leq p \leq \infty$ and $-\infty \leq a<b \leq \infty$, let $W^{s, p}(a, b)$ stand for the Sobolev space of all functions $f \in L^{p}(a, b)$ having weak derivatives $f^{(s)}$ of order s on (a, b), such that

$$
\|f\|_{W^{s, p}(a, b)}=\|f\|_{L^{p}(a, b)}+\left\|f^{(s)}\right\|_{L^{p}(a, b)}<\infty .
$$

It is well-known (see Nikol'skii [3], Babich [1]) that there exists a bounded linear extension operator

$$
\begin{equation*}
T: W^{s, p}(-\infty, 0) \rightarrow W^{s, p}(-\infty, \infty) \tag{2.1}
\end{equation*}
$$

(i.e. $(T f)(t)=f(t)$ if $t<0)$. It can be constructed in the following way: for $t>0$,

$$
\begin{equation*}
(T f)(t)=\sum_{j=1}^{s} \alpha_{j} f\left(-\beta_{j} t\right) \tag{2.2}
\end{equation*}
$$

where β_{j} are arbitrary distinct positive numbers and α_{j} are defined by

$$
\sum_{j=1}^{s} \alpha_{j}\left(-\beta_{j}\right)^{i}=1 \quad(i=0,1, \ldots, s-1)
$$

(This construction was first used in Hestenes [2].)
Denote by κ a dilation transform of the type

$$
(\kappa f)(t)=A f(\lambda t), \quad t \in(-\infty, \infty)
$$

where A and λ are positive numbers. Then the extension operator T defined by (2.2) commutes with κ :

$$
\begin{equation*}
T \kappa=\kappa T \tag{2.3}
\end{equation*}
$$

(Note that in the left side κ is considered as an operator acting from $W^{s, p}(-\infty, 0)$ to $W^{s, p}(-\infty, 0)$, while in the right side it is considered as an operator acting from $W^{s, p}(-\infty, \infty)$ to $W^{s, p}(-\infty, \infty)$.)

Below we consider a more general transform κ defined by

$$
\begin{equation*}
(\kappa f)(t)=A f(M(t)), \quad x \in(-\infty, \infty) \tag{2.4}
\end{equation*}
$$

where A is a positive number and M a function satisfying appropriate conditions. We construct a bounded linear extension operator commuting with this transform.

Theorem 2.1. Suppose $s \in Z_{+}, 1 \leq p \leq \infty$, and κ is a transform defined by (2.4), where $A>0$ and M satisfies the following conditions:
(1) $M \in C_{l o c}^{s}(-\infty, \infty)$ and all derivatives $M^{(i)}, i=1, \ldots, s$, are bounded;
(2) M is odd;
(3) $M(t)>0$, for all $t \in(0, \infty)$;
(4) there exists $c>0$ such that $M^{\prime}(t)>c$ for $t \in(-\infty, \infty)$; moreover $M^{\prime}(0) \neq 1$;
(5) $M^{\prime \prime}(0)=\ldots=M^{(s-1)}(0)=0$.

Then, there exists a bounded linear extension operator (2.1) satisfying (2.3).
Proof. 1°. For $f \in W^{s, p}(-\infty, 0)$, we set $f_{-}(t)=f(-t)$ and

$$
(T f)(t)=\sum_{j=1}^{s} \alpha_{j}\left(\kappa^{j} f_{-}\right)(t) \quad(t>0)
$$

where $\alpha_{j}, j=1, \ldots, s$, are defined by

$$
\begin{equation*}
\sum_{j=1}^{s} \alpha_{j} A^{j}\left(M^{\prime}(0)\right)^{i j}=(-1)^{i} \quad(i=0,1, \ldots, s-1) \tag{3.1}
\end{equation*}
$$

We note that, since $M^{\prime}(0) \neq 1$, the determinant of this system with respect to the variables $\alpha_{j} A^{j}$, being a Van-der-Mond determinant, is not equal to 0 .

Put

$$
M_{j}(t)=\underbrace{M(\cdots(M}_{j}(t)) \cdots) .
$$

Then

$$
(T f)(t)=\sum_{j=1}^{s} \alpha_{j} A^{j} f\left(-M_{j}(t)\right) \quad(t>0)
$$

As, by condition (3), $M_{j}(t)>0$ for $t>0$, the value $(T f)(t)$ is well-defined.
2. ${ }^{\circ}$ Suppose $f \in W^{s, p}(-\infty, 0)$. In order to prove that $T f \in W^{s, p}(-\infty, \infty)$ it is enough to prove that $T f \in W^{s, p}(0, \infty)$ and

$$
\begin{equation*}
(T f)^{(i)}(0+)=f^{(i)}(0-) \quad(i=0,1, \ldots, l-1) \tag{3.2}
\end{equation*}
$$

where $f^{(i)}(0-)$ and $(T f)^{(i)}(0+)$ are boundary values of $f^{(i)}$ and $(T f)^{(i)}$ respectively. (See for instance Nikol'skii [4], Triebel [6].)
3. ${ }^{\circ}$ Since $f \in W^{s, p}(-\infty, 0)$, it is equivalent to a function F defined on $(-\infty, 0]$, such that the ordinary derivatives $F^{(i)}, i=1, \ldots, s-1$, exist on $(-\infty, 0]$ and $F^{(s-1)}$ is absolutely continuous on $[a, 0]$ for each $a<0$. Moreover, $f^{(i)}(0-)=F^{(i)}(0)$ for $i=1, \ldots, s-1$. We note also that the ordinary derivative $F^{(s)}$ exists almost everywhere on $(-\infty, 0)$ and is equivalent to the weak derivative $f^{(s)}$. (See for example Nikol'skii [4].)

It follows that $T f$, defined on $(0, \infty)$, is equivalent to $T F$, defined on $[0, \infty)$, the ordinary derivatives $(T F)^{(i)}, i=1, \ldots, s-1$, exist on $[0, \infty)$ and $(T F)^{(s-1)}$ is absolutely continuous on $[0, b]$ for each $b>0$. The latter is due to the fact that the functions M_{j} are absolutely continuous and monotonic. Consequently, the ordinary derivative (TF) ${ }^{(s)}$ exists almost everywhere on $(0, \infty)$, is equivalent to the weak derivative $(T f)^{(s)}$ and

$$
\begin{equation*}
\|T f\|_{W^{s, s}(0, \infty)}=\|T F\|_{L^{p}(0, \infty)}+\left\|(T F)^{(s)}\right\|_{L^{p}(0, \infty)} . \tag{3.3}
\end{equation*}
$$

Moreover, condition (3.2) is equivalent to

$$
\begin{equation*}
(T F)^{(i)}(0)=F^{(i)}(0) \quad(i=0,1, \ldots, l-1) \tag{3.4}
\end{equation*}
$$

4. ${ }^{\circ}$ Our next observation is that, for $i=1, \ldots, s$ and $t>0$, we have

$$
\begin{aligned}
\left(F\left(-M_{j}(t)\right)\right)^{(i)}= & (-1)^{i} F^{(i)}\left(-M_{j}(t)\right)\left(M^{\prime}\left(M_{j-1}(t)\right) M^{\prime}\left(M_{j-2}(t)\right) \cdots M^{\prime}(t)\right)^{i} \\
& +\sum_{k=1}^{i-1} F^{(k)}\left(-M_{j}(t)\right) A_{i, k}(t)
\end{aligned}
$$

where $A_{i, k}$ are linear combinations of products of some natural powers of derivatives $M^{(l)}\left(M_{m}(t)\right)$, where $0 \leq m \leq j-1$ and $1 \leq l \leq i-k+1$. This equality is valid everywhere on $[0, \infty)$, if $i<s$, and almost everywhere, if $i=s$.

It is worth pointing out that every summand in $A_{i, k}$ contains as a factor at least one derivative of M of order greater than 1 . Consequently, we can assert, by conditions (2) and (5), that

$$
\left.\left(F\left(-M_{j}(t)\right)\right)^{(i)}\right|_{t=0}=(-1)^{i}\left(M^{\prime}(0)\right)^{i j} F^{(i)}(0),
$$

for all $i=0,1, \ldots, s-1$. Hence it follows that

$$
\begin{equation*}
(T f)^{(i)}(0)=(-1)^{i}\left(\sum_{j=1}^{s} \alpha_{j} A^{j}\left(M^{\prime}(0)\right)^{i j}\right) F^{i}(0), \tag{3.5}
\end{equation*}
$$

for $i=0,1, \ldots, s-1$.
Moreover, since the derivatives $M^{(1)}, \ldots, M^{(s)}$ are bounded, there exists a constant $c_{1}>0$ such that

$$
\left|\left(F\left(-M_{j}(t)\right)\right)^{(i)}\right| \leq c_{1} \sum_{k=1}^{i}\left|F^{(k)}\left(-M_{j}(t)\right)\right|, \quad t \geq 0
$$

for $i=1, \ldots, s$. Thus,

$$
|(T F)(t)| \leq c_{2} \sum_{j=1}^{s}\left|F\left(-M_{j}(t)\right)\right|, \quad t \geq 0
$$

and

$$
\left|(T F)^{(i)}(t)\right| \leq c_{2} \sum_{j=1}^{s} \sum_{k=1}^{i}\left|F^{(i)}\left(-M_{j}(t)\right)\right|, \quad t \geq 0
$$

for $i=1, \ldots, s$, the constant c_{2} being independent of F.
5. ${ }^{\circ}$ By condition (4), there is a constant $c_{3}>0$ with the property that

$$
M_{j}^{\prime}(t) \geq c_{3}, \quad t \in(-\infty, \infty)
$$

for $j=1, \ldots, s$. Consequently,

$$
\begin{align*}
\|T F\|_{L^{p}(0, \infty)} & \leq c_{2} \sum_{j=1}^{s}\left\|F\left(-M_{j}(t)\right)\right\|_{L^{p}(0, \infty)} \\
& =c_{2} \sum_{j=1}^{2}\left(\int_{-\infty}^{0}|F(r)|^{p} \frac{d r}{M_{j}^{\prime}\left(M_{j}^{-1}(r)\right)}\right)^{\frac{1}{p}} \tag{3.6}\\
& \leq c_{2} c_{3}^{-\frac{1}{p}} \sum_{j=1}^{s}\|F\|_{L^{p}(-\infty, 0)} \\
& =c_{4}\|F\|_{L^{p}(-\infty, 0)}
\end{align*}
$$

where $c_{4}=c_{2} c_{3}{ }^{-\frac{1}{p}}$ s. Similarly,

$$
\begin{equation*}
\left\|(T F)^{(s)}\right\|_{L^{P}(0, \infty)} \leq c_{5} \sum_{k=1}^{s}\left\|F^{(k)}\right\|_{L^{P(-\infty, 0)}} \tag{3.7}
\end{equation*}
$$

with c_{5} a constant independent of F.
Now we invoke a well-known result that

$$
\begin{equation*}
\left\|F^{(k)}\right\|_{L^{P}(-\infty, 0)} \leq c_{6}\left(\|F\|_{L^{p}(-\infty, 0)}+\left\|F^{(s)}\right\|_{L^{p}(-\infty, 0)}\right) \tag{3.8}
\end{equation*}
$$

for all $k \leq s$, where the constant c_{6} depends only on s. (See Nikol'skii [4].) Thus, combining (3.3), (3.6), (3.7) and (3.8) we obtain

$$
\begin{equation*}
\|T f\|_{W^{s, p}(0, \infty)} \leq c_{7}\|f\|_{W^{s} s p(-\infty, 0)} \tag{3.9}
\end{equation*}
$$

where c_{7} is independent of f.
6. ${ }^{\circ}$ According to (3.5) condition (3.4) and, hence, (3.2) is equivalent to (3.1). Thus, from what has been said in item 2° it follows that $T f \in W^{s, p}(-\infty, \infty)$. The estimate (3.9) now shows that the operator T is bounded.
$7 .{ }^{\circ}$ Finally, equality (2.3) is equivalent to

$$
\sum_{j=1}^{s} \alpha_{j} \kappa^{j}(\kappa f)_{-}=\sum_{j=1}^{s} \alpha_{j} \kappa^{j+1} f_{-}
$$

on $(0, \infty)$. The latter equality is valid for, by condition (2),

$$
\begin{aligned}
(\kappa f)_{-}(t) & =(A f(M(t)))_{-} \\
& =A f(M(-t)) \\
& =A f(-M(t)) \\
& =\left(\kappa f_{-}\right)(t),
\end{aligned}
$$

which completes the proof.

V. BURENKOV, B.-W. SCHULZE AND N. N. TARKHANOV REFERENCES

1. V. M. Babich, On the extension of functions, Uspekhi Mat. Nauk. 8 (2 (54)) (1953), 11-113.
2. M. R. Hestenes, Extensions of the range of a differentiable function, Duke Math. J. 8 (1941), 183-192.
3. S. M. Nikol'skii, On the solution of the polyharmonic equation by a variational method, Dokl. Akad. Nauk SSSR 88 (1953), 409-411 (Russian).
4. S. M. Nikol'skii, Approximation of functions of several variables and embedding theorems (Springer-Verlag, 1974).
5. B.-W. Schulze, Boundary value problems and singular pseudo-differential operators (J. Wiley, 1997)
6. H. Triebel, Theory of function spaces (Birkhäuser, 1983).

Viktor Burkenov
University of Wales Cardiff
23 Senghennydd Road
Cardiff CF2
Wales

Nikolai N. Tarkhanov
Institut für Mathematik
Universität Potsdam
Postfach 601553
14415 Potsdam
Germany

Bert-Wolfgang Schulze
Max-Planck AG "Analysis"
Universität Potsdam
Postfach 601553
14415 Potsdam
GERMANY

