EXTENSION OPERATORS FOR SOBOLEV SPACES COMMUTING WITH A GIVEN TRANSFORM

by VIKTOR BURENKOV, BERT-WOLFGANG SCHULZE and NIKOLAI N. TARKHANOV[†]

(Received 4 December, 1996)

Abstract. We consider a real-valued function r = M(t) on the real axis, such that M(t) < 0 for t < 0. Under appropriate assumptions on M, the pull-back operator M^* gives rise to a transform of Sobolev spaces $W^{s,p}(-\infty, 0)$ that restricts to a transform of $W^{s,p}(-\infty, \infty)$. We construct a bounded linear extension operator $W^{s,p}(-\infty, 0) \rightarrow W^{s,p}(-\infty, \infty)$, commuting with this transform.

1. Motivation. As described in Schulze [5], Sobolev embedding theorems may be treated in the framework of pseudodifferential operators with operator-valued symbols whose definition is based on the 'twisted' homogeneity.

In particular, consider the strongly continuous group action $(\kappa_{\lambda})_{\lambda \in (0,\infty)}$ on a space $L = H^{s}(R_{-}), s \in R$, given by $\kappa_{\lambda}u(t) = \lambda^{1/2}u(\lambda t)$. Obviously, κ_{λ} acts continuously also on $V = H^{s}(R)$. It is easy to verify that

$$W^{s}(R^{q}, H^{s}(R_{-})) = H^{s}(R_{-}^{q+1}),$$

$$W^{s}(R^{q}, H^{s}(R)) = H^{s}(R^{q+1}),$$

where $W^{s}(R^{q}, L)$ is defined to be the completion of $C_{comp}^{\infty}(R^{q}, L)$ with respect to the norm $||u|| = (\int_{R^{q}} \langle \eta \rangle^{2s} ||\kappa_{(\eta)}^{-1} F_{y \mapsto \eta} u||_{L}^{2} d\eta)^{\frac{1}{2}}$, F being the Fourier transform. Each continuous linear extension operator $T: H^{s}(R_{-}) \to H^{s}(R)$ commuting with κ_{λ} gives rise to a constant operator-valued symbol a(y, n) in $S_{cl}^{0}(T^{*}(R^{q}), \mathcal{L}(L \to V))$ simply by $a(y, \eta) = T$. The symbol space in question is defined on the base of the group action κ_{λ} , so that $a(y, \eta)$ satisfies

$$\|\kappa_{\langle\eta\rangle}^{-1}D_{y}^{\alpha}D_{\eta}^{\beta}a(y,\eta)\kappa_{\langle\eta\rangle}\|_{\mathcal{L}(L\to V)} \leq c\langle\eta\rangle^{-|\beta|},$$

for all multi-indices α and β , uniformly in y on compact subsets of R^q and $\eta \in R^q$. Then, the corresponding pseudodifferential operator op $(a) u = F_{\eta \mapsto y}^{-1} a(y, \eta) F_{y \mapsto \eta} u$ extends to a continuous mapping of $W^s(R^q, L) \to W^s(R^q, V)$. Moreover, it is an extension operator of $H^s(R_{-q+1}) \to H^s(R^{q+1})$, for if $R : H^s(R) \to H^s(R_{-q+1})$ is the restriction mapping, then op(R) is the restriction operator of $H^s(R^{q+1}) \to H^s(R_{-q+1})$ and

$$op(R) op(a) = op(RT)$$

= 1

on $H^{s}(R_{-}^{q+1})$. This operator-valued boundary symbol is of particular interest in Boutet de Monvel's algebra. (See [5, Subsection 4.2.2].)

[†]The research of this author was supported by the Deutsche Forschungsgemeinschaft.

Glasgow Math. J. 40 (1998) 291-296.

292 V. BURENKOV, B.-W. SCHULZE AND N. N. TARKHANOV

With this as our starting point, we are looking in this paper for a bounded extension operator of $H^{s}(R_{\perp}) \rightarrow H^{s}(R)$ commuting with a general transform of these spaces.

2. Statement of the main result. For $s \in Z_+$, $1 \le p \le \infty$ and $-\infty \le a < b \le \infty$, let $W^{s,p}(a, b)$ stand for the Sobolev space of all functions $f \in L^p(a, b)$ having weak derivatives $f^{(s)}$ of order s on (a, b), such that

$$||f||_{W^{s,p}(a,b)} = ||f||_{L^{p}(a,b)} + ||f^{(s)}||_{L^{p}(a,b)} < \infty.$$

It is well-known (see Nikol'skii [3], Babich [1]) that there exists a bounded linear extension operator

$$T: W^{s,p}(-\infty,0) \to W^{s,p}(-\infty,\infty)$$
(2.1)

(i.e. (Tf)(t) = f(t) if t < 0). It can be constructed in the following way: for t > 0,

$$(Tf)(t) = \sum_{j=1}^{s} \alpha_j f(-\beta_j t),$$
 (2.2)

where β_i are arbitrary distinct positive numbers and α_i are defined by

$$\sum_{j=1}^{s} \alpha_j (-\beta_j)^i = 1 \qquad (i = 0, 1, ..., s - 1).$$

(This construction was first used in Hestenes [2].)

Denote by κ a dilation transform of the type

$$(\kappa f)(t) = A f(\lambda t), \qquad t \in (-\infty, \infty),$$

where A and λ are positive numbers. Then the extension operator T defined by (2.2) commutes with κ :

$$T\kappa = \kappa T. \tag{2.3}$$

(Note that in the left side κ is considered as an operator acting from $W^{s,p}(-\infty, 0)$ to $W^{s,p}(-\infty, 0)$, while in the right side it is considered as an operator acting from $W^{s,p}(-\infty, \infty)$ to $W^{s,p}(-\infty, \infty)$.)

Below we consider a more general transform κ defined by

$$(\kappa f)(t) = Af(M(t)), \qquad x \in (-\infty, \infty), \tag{2.4}$$

where A is a positive number and M a function satisfying appropriate conditions. We construct a bounded linear extension operator commuting with this transform.

THEOREM 2.1. Suppose $s \in \mathbb{Z}_+$, $1 \le p \le \infty$, and κ is a transform defined by (2.4), where A > 0 and M satisfies the following conditions:

(1) $M \in C^s_{loc}(-\infty, \infty)$ and all derivatives $M^{(i)}$, i = 1, ..., s, are bounded;

- (2) M is odd;
- (3) M(t) > 0, for all $t \in (0, \infty)$;
- (4) there exists c > 0 such that M'(t) > c for $t \in (-\infty, \infty)$; moreover $M'(0) \neq 1$;
- (5) $M''(0) = \dots = M^{(s-1)}(0) = 0.$

Then, there exists a bounded linear extension operator (2.1) satisfying (2.3).

Proof. 1°. For $f \in W^{s,p}(-\infty, 0)$, we set f(t) = f(-t) and

$$(Tf)(t) = \sum_{j=1}^{s} \alpha_j(\kappa^j f_{-})(t) \qquad (t > 0),$$

where $\alpha_j, j = 1, ..., s$, are defined by

$$\sum_{j=1}^{s} \alpha_j A^j (M'(0))^{ij} = (-1)^i \qquad (i = 0, 1, ..., s - 1).$$
(3.1)

We note that, since $M'(0) \neq 1$, the determinant of this system with respect to the variables $\alpha_j A^j$, being a Van-der-Mond determinant, is not equal to 0.

Put

$$M_j(t) = \underbrace{M(\cdots(M(t))\cdots)}_j.$$

Then

$$(Tf)(t) = \sum_{j=1}^{s} \alpha_j A^j f(-M_j(t)) \quad (t > 0).$$

As, by condition (3), $M_i(t) > 0$ for t > 0, the value (Tf)(t) is well-defined.

2.° Suppose $f \in W^{s,p}(-\infty, 0)$. In order to prove that $Tf \in W^{s,p}(-\infty, \infty)$ it is enough to prove that $Tf \in W^{s,p}(0, \infty)$ and

$$(Tf)^{(i)}(0+) = f^{(i)}(0-) \qquad (i=0,1,...,l-1),$$
(3.2)

where $f^{(i)}(0-)$ and $(Tf)^{(i)}(0+)$ are boundary values of $f^{(i)}$ and $(Tf)^{(i)}$ respectively. (See for instance Nikol'skii [4], Triebel [6].)

3.° Since $f \in W^{s,p}(-\infty, 0)$, it is equivalent to a function F defined on $(-\infty, 0]$, such that the ordinary derivatives $F^{(i)}$, i = 1, ..., s - 1, exist on $(-\infty, 0]$ and $F^{(s-1)}$ is absolutely continuous on [a, 0] for each a < 0. Moreover, $f^{(i)}(0-) = F^{(i)}(0)$ for i = 1, ..., s - 1. We note also that the ordinary derivative $F^{(s)}$ exists almost everywhere on $(-\infty, 0)$ and is equivalent to the weak derivative $f^{(s)}$. (See for example Nikol'skii [4].)

294 V. BURENKOV, B.-W. SCHULZE AND N. N. TARKHANOV

It follows that Tf, defined on $(0, \infty)$, is equivalent to TF, defined on $[0, \infty)$, the ordinary derivatives $(TF)^{(i)}$, i = 1, ..., s - 1, exist on $[0, \infty)$ and $(TF)^{(s-1)}$ is absolutely continuous on [0, b] for each b > 0. The latter is due to the fact that the functions M_j are absolutely continuous and monotonic. Consequently, the ordinary derivative $(TF)^{(s)}$ exists almost everywhere on $(0, \infty)$, is equivalent to the weak derivative $(Tf)^{(s)}$ and

$$\|Tf\|_{W^{s,p}(0,\infty)} = \|TF\|_{L^{p}(0,\infty)} + \|(TF)^{(s)}\|_{L^{p}(0,\infty)}.$$
(3.3)

Moreover, condition (3.2) is equivalent to

$$(TF)^{(i)}(0) = F^{(i)}(0) \qquad (i = 0, 1, ..., l - 1).$$
 (3.4)

4.° Our next observation is that, for i = 1, ..., s and t > 0, we have

$$(F(-M_{j}(t)))^{(i)} = (-1)^{i} F^{(i)}(-M_{j}(t)) (M'(M_{j-1}(t))M'(M_{j-2}(t)) \cdots M'(t))^{i} + \sum_{k=1}^{i-1} F^{(k)}(-M_{j}(t))A_{i,k}(t),$$

where $A_{i,k}$ are linear combinations of products of some natural powers of derivatives $M^{(l)}(M_m(t))$, where $0 \le m \le j-1$ and $1 \le l \le i-k+1$. This equality is valid everywhere on $[0, \infty)$, if i < s, and almost everywhere, if i = s.

It is worth pointing out that every summand in $A_{i,k}$ contains as a factor at least one derivative of M of order greater than 1. Consequently, we can assert, by conditions (2) and (5), that

$$(F(-M_j(t)))^{(i)}|_{t=0} = (-1)^i (M'(0))^{ij} F^{(i)}(0),$$

for all i = 0, 1, ..., s - 1. Hence it follows that

$$(Tf)^{(i)}(0) = (-1)^{i} \left(\sum_{j=1}^{s} \alpha_{j} A^{j} (M'(0))^{ij}\right) F^{i}(0),$$
(3.5)

for i = 0, 1, ..., s - 1.

Moreover, since the derivatives $M^{(1)}$, ..., $M^{(s)}$ are bounded, there exists a constant $c_1 > 0$ such that

$$|(F(-M_j(t)))^{(i)}| \le c_1 \sum_{k=1}^{i} |F^{(k)}(-M_j(t))|, \quad t \ge 0,$$

for i = 1, ..., s. Thus,

$$|(TF)(t)| \le c_2 \sum_{j=1}^{s} |F(-M_j(t))|, \quad t \ge 0,$$

and

$$|(TF)^{(i)}(t)| \le c_2 \sum_{j=1}^{s} \sum_{k=1}^{i} |F^{(i)}(-M_j(t))|, \quad t \ge 0,$$

for i = 1, ..., s, the constant c_2 being independent of F.

EXTENSION OPERATORS FOR SOBOLEV SPACES

5.° By condition (4), there is a constant $c_3 > 0$ with the property that

 $M'_j(t) \ge c_3, \qquad t \in (-\infty, \infty),$

for j = 1, ..., s. Consequently,

I

uently,

$$TF \parallel_{L^{p}(0,\infty)} \leq c_{2} \sum_{j=1}^{s} \|F(-M_{j}(t))\|_{L^{p}(0,\infty)}$$

$$= c_{2} \sum_{j=1}^{2} \left(\int_{-\infty}^{0} |F(r)|^{p} \frac{dr}{M'_{j}(M_{j}^{-1}(r))} \right)^{\frac{1}{p}}$$

$$\leq c_{2} c_{3}^{-\frac{1}{p}} \sum_{j=1}^{s} \|F\|_{L^{p}(-\infty,0)}$$

$$= c_{4} \|F\|_{L^{p}(-\infty,0)}$$
(3.6)

295

where $c_4 = c_2 c_3^{-\frac{1}{p}} s$. Similarly,

$$\|(TF)^{(s)}\|_{L^{p}(0,\infty)} \le c_{5} \sum_{k=1}^{s} \|F^{(k)}\|_{L^{p}(-\infty,0)}$$
(3.7)

with c_5 a constant independent of F.

Now we invoke a well-known result that

$$\|F^{(k)}\|_{L^{p}(-\infty,0)} \le c_{6} (\|F\|_{L^{p}(-\infty,0)} + \|F^{(s)}\|_{L^{p}(-\infty,0)})$$
(3.8)

for all $k \le s$, where the constant c_6 depends only on s. (See Nikol'skii [4].) Thus, combining (3.3), (3.6), (3.7) and (3.8) we obtain

$$\|Tf\|_{W^{s,p}(0,\infty)} \le c_7 \|f\|_{W^{s,p}(-\infty,0),}$$
(3.9)

where c_7 is independent of f.

6.° According to (3.5) condition (3.4) and, hence, (3.2) is equivalent to (3.1). Thus, from what has been said in item 2° it follows that $Tf \in W^{s,p}(-\infty, \infty)$. The estimate (3.9) now shows that the operator T is bounded.

7.° Finally, equality (2.3) is equivalent to

$$\sum_{j=1}^{s} \alpha_{j} \kappa^{j} (\kappa f)_{-} = \sum_{j=1}^{s} \alpha_{j} \kappa^{j+1} f_{-}$$

on $(0, \infty)$. The latter equality is valid for, by condition (2),

$$(\kappa f)_{(t)} = (Af(M(t)))_{-}$$
$$= Af(M(-t))$$
$$= Af(-M(t))$$
$$= (\kappa f_{-})(t),$$

which completes the proof.

V. BURENKOV, B.-W. SCHULZE AND N. N. TARKHANOV REFERENCES

1. V. M. Babich, On the extension of functions, Uspekhi Mat. Nauk. 8 (2 (54)) (1953), 11-113.

2. M. R. Hestenes, Extensions of the range of a differentiable function, Duke Math. J. 8 (1941), 183-192.

3. S. M. Nikol'skii, On the solution of the polyharmonic equation by a variational method, *Dokl. Akad. Nauk SSSR* **88** (1953), 409–411 (Russian).

4. S. M. Nikol'skii, Approximation of functions of several variables and embedding theorems (Springer-Verlag, 1974).

5. B.-W. Schulze, Boundary value problems and singular pseudo-differential operators (J. Wiley, 1997).

6. H. Triebel, Theory of function spaces (Birkhäuser, 1983).

Viktor Burkenov University of Wales Cardiff 23 Senghennydd Road Cardiff CF2 Wales Bert-Wolfgang Schulze Max-Planck AG "Analysis" Universität Potsdam Postfach 60 15 53 14415 Potsdam Germany

Nikolai N. Tarkhanov Institut für Mathematik Universität Potsdam Postfach 60 15 53 14415 Potsdam Germany