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REMARKS ON SQUARE FUNCTIONS IN THE
LITTLEWOOD-PALEY THEORY

SHUICHI SATO

We prove that certain square function operators in the Littlewood-Paley theory
defined by the kernels without any regularity are bounded on L*,, 1 < p < oo,
w e Ap (the weights of Muckenhoupt). Then, we give some applications to the
Carleson measures on the upper half space.

1. INTRODUCTION

In this note we shall prove weighted Lp -estimates for the Littlewood-Paley type
square functions arising from kernels satisfying only size and cancellation conditions.
Suppose that ip e L1(R") satisfies

(1.1)

We consider a square function of Littlewood-Paley type

aoo jf \ 1/2

\*t*f{x)\ j j ,
where ipt(x) = t~nij>(t-lx).

If ip satisfies, in addition to (1.1),

(1.2) |^ (z) | ^ c ( l + |x | )~n~£ for some e > 0

(1.3) / \i){x-y)-tp{x)\dx^c\y\£ for some e > 0,

then it is known that the operator 5 is bounded on LP(Rn) for all p G (l,oo) (see
Benedek, Calderon and Panzone [1]). Well-known examples are as follows.

EXAMPLE 1: Let Pt(x) be the Poisson kernel for the upper half space R n x (0, oo):
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Put

Then S^(f) is the Littlewood-Paley g function.

EXAMPLE 2: Consider the Haar function ip on R

where XE denotes the characteristic function of a set E. Then, S^(f) is the
Marcinkiewicz integral

a°

where F(x) = f* f(y) dy.

In this note, we shall prove that the Lp-boundedness of S still holds without the
assumption (1.3); the conditions (1.1) and (1.2) only are sufficient. This is already
known for the L2-case (see Coifman and Meyer [3, p. 148], and also Journe [7, pp.
81-82] for a proof).

To state our result more precisely, we consider the least non-increasing radial ma-
jorant of ip

h^(\x\) = sup \ip(y)\.

We also need to consider two seminorms

\ip{x)\ \x\E dx for e > 0 ,= [
J\M>i

/ \ ^ "

\yiii<i j

We shall prove the following result.

THEOREM 1. Put H^{x) = h^(\x\). Ifipe Ll(Rn) satisfies (1.1) and

(1) Be(\j)) < oo for some e > 0 ;
(2) Du(tp) < oo for some u > 1 ;
(o) Ily, fc Li \X\. ) ,

then the operator S^, is bounded on LPW :
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for all p € (l,oo) and w € Ap, where Ap denotes the weight class of Muckenhoupt (see

[6, 7}), and

Jf(x)\p
W(x)dxj

In fact, we shall prove a more general result.

THEOREM 2 . Suppose that tp € L ^ R " ) satisfies (1.1) and

(1) B£(ip) < 00 for some e > 0 ;

(2) Du(ip) < 00 for some u > 1 ;

(3) |t^(x)| < ft(|x|)fi(x') fx' = |rc|—1 a:J for some non-negative functions h

and fi such that
(a) h(r) is non-increasing for r e (0,00) ;
(b) ifi/^fcdzl), tfeL^R") ;
(c) fl 6 L^S"-1) for some g, 2^q^oo.

Then, the operator S^, is bounded on 1%, for p > q' and w S Ap/qi, where q' denotes

the conjugate exponent of q.

When xp is compactly supported, we have another formulation, which is not in-
cluded in Theorem 2.

THEOREM 3 . Suppose that ip € I -^R") satisfies (1.1) and

(1) tp is compactly supported ;
(2) t/> e Li(Rn) for some q^2.

Then S^ : Lp
w -^ Uw for p>q' and we Ap/q,.

These results will be derived from more abstract ones. Let ip € L1(Rn) satisfy
(1.1). We also assume the following :

(1) There exists e e (0,1) such that

(1.4) f $(tO\2dt ^ cmin(|£|e, |^|-£) for all f e Rn ,
Ji

where V denotes the Fourier transform

/

"
iP(x)e-2"i{x'i) dx, {x, O = J2 x& ( t h e i n n e r P r o d u c t m R n ) .

(2) Let 1 < s ̂  2. For all to € As, we have

(1.5) sup / f Ut2k*f(x)\2dtw(x)dx^Cw\\f\\2
L2 for all / e 5(Rn) ,

k€ZjRnJl w

where Z denotes the integer group and <S(R") the Schwartz space.
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Under these assumptions the following holds.

PROPOSITION 1. For p > 2/s and w € AV8/2, the operator S^, is bounded on

This will be used to prove the next result.

P R O P O S I T I O N 2 . Put

Je{-4>) = sup jJ n n\i/>(x)1>{y)\\(t,x-y)\-'dxdy for e e ( 0 , l ] .

Let ip € L1 satisfy (1.1) and (1.5). Then if Be(i/j) < oo and Je(ip) < oo for some
e e (0,1], the operator S^ is bounded on Lv

w for p > 2/s and w € -Aps/2.

In Section 2, we shall prove Proposition 1 by the method of the proof of Duoandikoet-
xea and Rubio de Francia [5, Corollary 4.2] and then Proposition 2 by using Proposition
1. Proposition 2 will be applied to prove Theorems 2 and 3 in Section 3. Finally, in
Section 4, we shall give some applications of Theorem 1 to generalised Marcinkiewicz
integrals and the Carleson measures on the upper half space R" x (0, oo).

To conclude this section, we state a result for the L2-case, from which the result
of Coifman-Meyer mentioned above immediately follows, and the idea of the proof will
be applied later too (see the proof of Lemma 2).

PROPOSITION 3 . Suppose that tpe L1 satisfies (1.1). Let

=sup ff \fKx)tl>(v)\\log\(t,x-y)\\dxdy.

Then, if L(ip) < oo, the operator 5,/, is bounded on L2.

PROOF: It is sufficient to show that

sup
1(1

/•O

up /
|=i ./o

2 dt
7<oo.

We write

= ff
J JR"

dx dy,

and so

2 At
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Note that

J x_y)

as N —> oo and e —> 0, and the integral is bounded, uniformly in e and N, by

Thus, using (1.1) and the dominated convergence theorem, we get

dxdy.

/ |^( i ) | k>g(2 + |V"(a:)|) dx < oo,

This immediately implies the conclusion.

REMARK. In the one-dimensional case, it is easy to see that if

/ \ip{x)\ log(2 + \x\) dx < oo and

then L(ip) < oo, and so S^ : L2 —> L2.

2. PROOFS OF PROPOSITIONS 1 AND 2

We use a Littlewood-Paley decomposition. Let / 6 iS(R"), and define

5 ( 7 5 ( 0 = * ( 2 * 0 / ( 0 for j e z ,

where $ € C°° is supported in {l/2 ^ |^| < 2} and satisfies

^ * ( 2 J ' O = 1 for f ^ 0.
J6Z

Decompose

say, and define

Then

iez

a°°, ,2d t \ 1 / 2
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Put Ej = . Then by the Plancherel theorem and (1.4) we
have

2*+i

Tj(f)\\l = £ / R n / , IA;+* v* +*) (*)la f**

^

d£

de
^ 2

where the last inequality holds since the sets Ej are finitely overlapping. (We denote
by ||• Up the ordinary I^-norm.)

On the other hand, for w € As by (1.5) we see that

k&zjRn

where the last inequality follows from a well-known Littlewood-Paley inequality for L
since As C A2-

Interpolating with change of measures between the two estimates above, we get

(<"u)

€ As, then from this inequalityfor u € (0,1). If we choose u (close to 1) so that
we get

and so

i ez

Thus the extrapolation theorem of Rubio de Francia [8] implies the conclusion.
To derive Proposition 2 from Proposition 1 we need the following lemmas.
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LEMMA 1. If ip € L^R") satisfies (1.1) and Be{tp) < oo for e e (0,1], then

|£ foraJi

PROOF: Since a ^ ae for a, e € (0,1], we see that

)(TU I T I £ HT
' I Ju I j I*** I \AJLt >

J

This completes the proof.

LEMMA 2 . Iftpe L^R") and J£{ip) < oo for e € (0,1], tien

for aii 4 € Rn.

PROOF: AS in the proof of Proposition 3, we see that

I"2 • •> r <• _e-4irt({,x-j/) _ e-27rt<£,x-y)

i; dt= dxdy.

Thus

[ ${tO 2 dt^c [f \ip(x)i>(y)\ min (l, \{£,x - y)\ ' ) dxdy
J\ JJRnxR" '

This completes the proof. D
Now, we can see that Proposition 1 implies Proposition 2, since the condition (1.4)

follows from Lemmas 1 and 2.

3. PROOFS OF THEOREMS 2 AND 3

To get Theorem 2 from Proposition 2 we need Lemmas 3 and 4 below. First, we
give a sufficient condition for JE{ip) < oo.

LEMMA 3 . Let h(r), h ^ 0, be a non-increasing function for r > 0 satisfying
HeL 1 (R n )n J L o o (R") , where #(z) = h(\x\), and let ft € ^ ( S " " 1 ) , u > 1, fi >0 .
Suppose that F is a non-negative function such that

F(x) ^ h(\x\)Q(x') for \x\ > 1
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and DU{F) < oo for u > 1. Then Je(F) < oo if e < min(l/u', 1/v').

PROOF: For non-negative functions / , g and £ € Su~x put

Le(f,g;O= If f{x)g{y)\{i,x-y)\-edxdy.
J JRnxB.n

Decompose F as F = E + G, where E{x) — F(x) if |x| < 1 and E(x) = 0 otherwise.
Then

Lc(F,F;Z) = Le(E,E;$ + 2Le(E,G;Z) + Le(G,G;Q.

We show that each of Le(E,E; £),LE(E,G;£,) and L£(G, G;£) is bounded by a constant
independent of £ if e < min(l/u', 1/v').

First, by Holder's inequality and a change of variables

I \x1-y1\-'
u'dxdy)

\x\<l,\y\<l )

where we note that \\E\\U - DU{F).
Next, by Holder's inequality again

)L£(E,G;0^\\E\L\ I ( I Giy)^ - (£,y)\-edyY dx

For s > 0, let

Ie(a)=

for fixed xi and ^, where da denotes the Lebesgue surface measure of 5 n - 1 (when
n = 1, let o-({l}) = <T({-1}) = 1). Then by Holder's inequality

where
Ne(s) =

Thus, using Holder's inequality,

/ G(y)\xi - (£,y)\ edy ^ / h(s)sn~1 IE(s)ds
Jnn Jo

^ " Jo

^ c \\H\\l/v \\Q\\V ( j H h(s)8n-1Nev,{s) d,

= c\\H\\\'vm\(f fc(|y|)|ari-8firew
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Therefore, the desired estimate for Le(E,G;£) follows if we show that

(4.1) sup / h(\y\) |si - yi\-ev' dy < oo.
il£RJR»

To see this, we split the domain of the integration as follows :

/ h(\y\) |X! - yi\-
£V> dy= f h(\y\) \Xl - yi\-

ev' dy
JR" •'l^l-VlKl

+ / h(\y\) \Xl - Vir
v' dy

= h + h, say.

Clearly / 2 ^ 11-̂ 111- To estimate I\ we may assume that n ~£ 2; the case n = 1
can be easily disposed of since h is bounded. We need further splitting of the domain
of the integration. We write y = (yi, y'), y' € R""1. Then

h= I /i(M)|x1-2/1|-
£t';ci2/+ I h(\y\)\xl-y1\-'

v'dy
\X!-Vl\<l

| ||v'l<i

= / 3 + /4, say.

It is easy to see that

Next, since h(\y\) ^ h(\y'\),

\~ev dyi I h(\y'\)dy'

li\~ev dy-i. J h(\y\) dy < oo.

It remains to estimate Le(G,G;£). Note that

(4.2) Le(G,G;fK / f h(r)h(s)rn-1
S
n-1I£(r,s)drds,

Jo Jo

where

h{r,s) =
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By Holder's inequality

where

Ne(r, s) = ff \r0i - swi|"e do(6) do{w).
JJSn"1xSn"1

Using the estimate (4.3) in (4.2) and then applying Holder's inequality, we see that

l/v'

Le(G,G;Q<c\\H\\l'v\\Cl\\l( [™ I™ N^fasMrMs^s"-1

wo Jo '

= c ||ff Hf ||n||» ( / / h(\x\)h(\y\) \Xl - Vir
v'

Therefore, the desired estimates follows again from (4.1). This completes the proof. D

For a non-negative function fi on 5"" 1 we define a non-isotropic Hardy-Littlewood
maximal function

Mn(/ ) (x)=8upr- n / \f(x-y^yf1 y) dy.
r>0 J\y\<r V '

To prove Theorem 2 we also need the following (see Duoandikoetxea [4]).

LEMMA 4 . If ft € Lq(Sn~l), 9 ^ 2 , and w 6 A2/q>, then Mn is bounded on

Now we can prove Theorem 2. As in Stein [10, pp.63-64], we can show that

00

So, by Lemma 4 we see that the condition (1.5) holds for ip of Theorem 2 with s = 2/q'.
Next, applying Lemma 3, we see that Je(ip) < 00 for e < min(l/u',l/q') (note

that h(r) of Theorem 2 (3) is bounded for r ^ 1). Combining these facts with the
assumption in Theorem 2 (1), we can apply Proposition 2 to reach the conclusion.

Finally, we give the proof of Theorem 3. Clearly B\{ip) < 00, and Ji/(2q')(ip) < 00
by applying Lemma 3 suitably. Therefore, the conclusion follows from Proposition 2
if we show that the condition (1.5) holds with s = 2/q'. But, for q > 2 this is a
consequence of the inequality

|
t>0
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where M denotes the Hardy-Littlewood maximal operator. (This inequality is easily
proved from Holder's inequality.)

To prove condition (1.5) when q = 2 and w e Ax, we may assume that ip is
supported in {|xj < 1}. Then by Schwarz's inequality

\f(x-y)\2dy.
\v\<t

Integrating with the measure w(x) dx and using a property of the Ai-weight function,
we get

f\f(y)\2t-n f w{x)dxdy
J J\x-y\<t

uniformly in t. Prom this the desired inequality follows.

4. APPLICATIONS

It is to be noted that Theorem 1 can be applied to study the 1PW -boundedness of
generalised Marcinkiewicz integrals.

COROLLARY 1 . For e > 0, let

where fi € L°°(Sn~l) and /fi(x') da(x') = 0. Define a Marcinkiewicz integral

|^*/(*)|2|J .
Then, the operator \x is bounded on £%, for all p € (l,oo) and w G Ap :

This result, in particular, removes the Lipschitz condition assumed for fi in Stein
[9, Theorem 1 (2)].

Next, we consider applications to Carleson measures on the upper half spaces.

COROLLARY 2 . Suppose ip e L1 satisfies (1.1) and

\rp{x)\ ^ c(l + \x\)~n~e for some e > 0.
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Take b g BMO and w € Ai. Then the measure

dv(x, t) — \ipt * b(x)\ — w(x) dx

on the upper half space R n x (0, oo) is a Carleson measure with respect to the measure
w{x) dx, that is,

v{S{Q))^Cw\\b\\2
BMO[ w{x)dx

JQ
for all cubes Q in R™, where

S(Q) = {(x,t) 6 R n x (0,oo) : x 6 Q, 0 < i ^ l(Q)},

with £(Q) denoting the sidelength of Q.

This can be proved by using L^ -boundedness of the operator 5^, (see Theorem 1)
as in Journe [7, Chapter 6 III, pp.85-87]. In [7], a similar result has been proved with
an additional assumption on the gradient of ip.

Arguing as in [7, Chapter 6 III, p.87], by Corollary 2 we can get the following.

COROLLARY 3 . Let ip and b be as in Corollary 2. Suppose (p satisfies

for 5 > 0. Then, the sublinear operator

Tb(f)(x)= ( rV*&(z)|V*/(*)|2 :
\Jo

is bounded on L£, for all p 6 (1, oo) and w € Ap :

\\Tb(f)\\LPw^Cp,w\\b\\BMO\\f\\LZ>.

Here again we don't need the assumption on the gradient of ip. See Coifman and
Meyer [3, p. 149] for the L2-case.

COROLLARY 4 . Suppose n e L1(Rn) satisfies the assumptions of Theorem 1 for
tp. Let rp, (p and b be as in Corollary 3, and define a paraproduct

Jo '

Then, the operator nb is bounded on 1%, for all p S (1, oo) and w 6 Ap :

b»(f)\\Lp^cPitu\\b\\BMO\\f\\Ll.
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PROOF: Let g € L2{w~x), w € A2. Then, since w~l £ A2, by Schwarz's inequal-
ity, Theorem 1 and Corollary 3, for 0 < u < v, we see that

' At
Vt * ((ipt * b) {ifit * / ) ) (x) —g(x) dx

u '
1/2

U J
^ Cw \\b\\BMO Hffll^^-!) \\f\\LHw),

where rj{x) = r)(—x). Prom this estimate we can see that TT&(/) is well-defined (see
Christ [2, III, Section 3]). Taking the supremum over g with IMI^c^-n < 1, we get

the L2
W -boundedness, and so the extrapolation theorem of Rubio de Francia implies the

conclusion. This completes the proof. D

See Coifman and Meyer [3, p. 149, Proposition 1] for a similar result in the L2-case.
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