REMARKS ON SQUARE FUNCTIONS IN THE
LITTLEWOOD-PALEY THEORY

Shuichi Sato

We prove that certain square function operators in the Littlewood-Paley theory defined by the kernels without any regularity are bounded on L^p_w, $1 < p < \infty$, $w \in A_p$ (the weights of Muckenhoupt). Then, we give some applications to the Carleson measures on the upper half space.

1. INTRODUCTION

In this note we shall prove weighted L^p-estimates for the Littlewood-Paley type square functions arising from kernels satisfying only size and cancellation conditions. Suppose that $\psi \in L^1(\mathbb{R}^n)$ satisfies

(1.1) \(\int_{\mathbb{R}^n} \psi(x) \, dx = 0. \)

We consider a square function of Littlewood-Paley type

\[S(f)(x) = S\psi(f)(x) = \left(\int_0^\infty \left| \psi_t * f(x) \right|^2 \frac{dt}{t} \right)^{1/2}, \]

where $\psi_t(x) = t^{-n} \psi(t^{-1}x)$.

If ψ satisfies, in addition to (1.1),

(1.2) \(|\psi(x)| \leq c(1 + |x|)^{-n-\varepsilon} \) for some $\varepsilon > 0$

(1.3) \(\int_{\mathbb{R}^n} |\psi(x - y) - \psi(x)| \, dx \leq c |y|^{\varepsilon} \) for some $\varepsilon > 0$,

then it is known that the operator S is bounded on $L^p(\mathbb{R}^n)$ for all $p \in (1, \infty)$ (see Benedek, Calderón and Panzone [1]). Well-known examples are as follows.

EXAMPLE 1: Let $P_t(x)$ be the Poisson kernel for the upper half space $\mathbb{R}^n \times (0, \infty)$:

\[P_t(x) = c_n \frac{t}{(|x|^2 + t^2)^{(n+1)/2}}. \]
Put
\[\psi(x) = \left(\frac{\partial}{\partial t} F_1(x) \right)_{t=1} . \]
Then \(S_\psi(f) \) is the Littlewood-Paley g function.

EXAMPLE 2: Consider the Haar function \(\psi \) on \(\mathbb{R} \):
\[\psi(x) = \chi_{[-1,0]}(x) - \chi_{[0,1]}(x), \]
where \(\chi_E \) denotes the characteristic function of a set \(E \). Then, \(S_\psi(f) \) is the Marcinkiewicz integral
\[\mu(f)(x) = \left(\int_0^\infty \left| F(x + t) + F(x - t) - 2F(x) \right|^2 \frac{dt}{t^3} \right)^{\frac{1}{2}}, \]
where \(F(x) = \int_0^x f(y) dy \).

In this note, we shall prove that the \(L^p \)-boundedness of \(S \) still holds without the assumption (1.3); the conditions (1.1) and (1.2) only are sufficient. This is already known for the \(L^2 \)-case (see Coifman and Meyer [3, p. 148], and also Journe [7, pp. 81–82] for a proof).

To state our result more precisely, we consider the least non-increasing radial majorant of \(\psi \)
\[h_\psi(|x|) = \sup_{|y| \geq |x|} |\psi(y)|. \]
We also need to consider two seminorms
\[B_\varepsilon(\psi) = \int_{|x| > 1} \left| \psi(x) \right| |x|^\varepsilon \, dx \quad \text{for} \quad \varepsilon > 0, \]
\[D_u(\psi) = \left(\int_{|x| < 1} \left| \psi(x) \right|^u \, dx \right)^{\frac{1}{u}} \quad \text{for} \quad u > 1. \]

We shall prove the following result.

THEOREM 1. Put \(H_\psi(x) = h_\psi(|x|) \). If \(\psi \in L^1(\mathbb{R}^n) \) satisfies (1.1) and
\begin{align*}
(1) \quad & B_\varepsilon(\psi) < \infty \quad \text{for some} \ \varepsilon > 0; \\
(2) \quad & D_u(\psi) < \infty \quad \text{for some} \ u > 1; \\
(3) \quad & H_\psi \in L^1(\mathbb{R}^n);
\end{align*}
then the operator \(S_\psi \) is bounded on \(L^p_w \):
\[\|S_\psi(f)\|_{L^p_w} \leq C_{p,w} \|f\|_{L^p_w}. \]
for all \(p \in (1, \infty) \) and \(w \in A_p \), where \(A_p \) denotes the weight class of Muckenhoupt (see [6, 7]), and

\[
\|f\|_{L^p_w} = \|f\|_{L^p(w)} = \left(\int_{\mathbb{R}^n} |f(x)|^p w(x) \, dx \right)^{1/p}
\]

In fact, we shall prove a more general result.

Theorem 2. Suppose that \(\psi \in L^1(\mathbb{R}^n) \) satisfies (1.1) and

1. \(B_{\varepsilon}(\psi) < \infty \) for some \(\varepsilon > 0 \);
2. \(D_u(\psi) < \infty \) for some \(u > 1 \);
3. \(|\psi(x)| \leq h(|x|) \Omega(x') \quad (x' = |x|^{-1} x) \) for some non-negative functions \(h \) and \(\Omega \) such that
 - \(h(\tau) \) is non-increasing for \(\tau \in (0, \infty) \);
 - \(h \) and \(\Omega \) are in \(L^q(S^{n-1}) \) for some \(q \), \(2 \leq q \leq \infty \).

Then, the operator \(S_\psi \) is bounded on \(L^p_w \) for \(p > q' \) and \(w \in A_p/q' \), where \(q' \) denotes the conjugate exponent of \(q \).

When \(\psi \) is compactly supported, we have another formulation, which is not included in Theorem 2.

Theorem 3. Suppose that \(\psi \in L^1(\mathbb{R}^n) \) satisfies (1.1) and

1. \(\psi \) is compactly supported;
2. \(\psi \in L^q(\mathbb{R}^n) \) for some \(q \geq 2 \).

Then \(S_\psi : L^p_w \to L^p_w \) for \(p > q' \) and \(w \in A_p/q' \).

These results will be derived from more abstract ones. Let \(\psi \in L^1(\mathbb{R}^n) \) satisfy (1.1). We also assume the following:

1. There exists \(\varepsilon \in (0, 1) \) such that
 \[
 \int_1^2 |\hat{\psi}(t\xi)|^2 \, dt \leq c \min(|\xi|^\varepsilon, |\xi|^{-\varepsilon}) \quad \text{for all} \quad \xi \in \mathbb{R}^n,
 \]
 where \(\hat{\psi} \) denotes the Fourier transform

 \[
 \hat{\psi}(\xi) = \int \psi(x) e^{-2\pi i x \cdot \xi} \, dx,
 \]
 \(\langle x, \xi \rangle = \sum_{j=1}^n x_j \xi_j \) (the inner product in \(\mathbb{R}^n \)).

2. Let \(1 \leq s \leq 2 \). For all \(w \in A_s \), we have
 \[
 \sup_{k \in \mathbb{Z}} \int_{\mathbb{R}^n} \int_1^2 |\psi_{2^k} \ast f(x)|^2 \, dt \, w(x) \, dx \leq C_w \|f\|_{L^2_w}^2 \quad \text{for all} \quad f \in \mathcal{S}(\mathbb{R}^n),
 \]
 where \(\mathbb{Z} \) denotes the integer group and \(\mathcal{S}(\mathbb{R}^n) \) the Schwartz space.
Under these assumptions the following holds.

Proposition 1. For $p > 2/s$ and $w \in A_{ps/2}$, the operator S_ψ is bounded on L^p_w.

This will be used to prove the next result.

Proposition 2. Put

$$J_\epsilon(\psi) = \sup_{|\xi|=1} \int_{\mathbb{R}^n \times \mathbb{R}^n} |\psi(x)\psi(y)\||\langle \xi, x-y \rangle|| \log |\langle \xi, x-y \rangle| \, dx \, dy \quad \text{for} \quad \epsilon \in (0, 1].$$

Let $\psi \in L^1$ satisfy (1.1) and (1.5). Then if $B_\epsilon(\psi) < \infty$ and $J_\epsilon(\psi) < \infty$ for some $\epsilon \in (0, 1]$, the operator S_ψ is bounded on L^p_w for $p > 2/s$ and $w \in A_{ps/2}$.

In Section 2, we shall prove Proposition 1 by the method of the proof of Duoandikoetxea and Rubio de Francia [5, Corollary 4.2] and then Proposition 2 by using Proposition 1. Proposition 2 will be applied to prove Theorems 2 and 3 in Section 3. Finally, in Section 4, we shall give some applications of Theorem 1 to generalised Marcinkiewicz integrals and the Carleson measures on the upper half space $\mathbb{R}^n \times (0, \infty)$.

To conclude this section, we state a result for the L^2-case, from which the result of Coifman-Meyer mentioned above immediately follows, and the idea of the proof will be applied later too (see the proof of Lemma 2).

Proposition 3. Suppose that $\psi \in L^1$ satisfies (1.1). Let

$$L(\psi) = \sup_{|\xi|=1} \int_{\mathbb{R}^n \times \mathbb{R}^n} |\psi(x)\psi(y)\||\langle \xi, x-y \rangle|| \log |\langle \xi, x-y \rangle| \, dx \, dy.$$

Then, if $L(\psi) < \infty$, the operator S_ψ is bounded on L^2.

Proof: It is sufficient to show that

$$\sup_{|\xi|=1} \int_0^\infty \left| \hat{\psi}(t\xi) \right|^2 \frac{dt}{t} < \infty.$$

We write

$$\left| \hat{\psi}(t\xi) \right|^2 = \hat{\psi}(t\xi)\overline{\hat{\psi}(t\xi)} = \int_{\mathbb{R}^n \times \mathbb{R}^n} \psi(x)\overline{\psi(y)}e^{-2\pi i t\langle \xi, x-y \rangle} \, dx \, dy,$$

and so

$$\int_0^\infty \left| \hat{\psi}(t\xi) \right|^2 \frac{dt}{t} = \lim_{N \to \infty, \epsilon \to 0} \int_0^N \int_{\mathbb{R}^n \times \mathbb{R}^n} \psi(x)\overline{\psi(y)} \left(\int_\epsilon^N e^{-2\pi i t\langle \xi, x-y \rangle} \frac{dt}{t} \right) \, dx \, dy.$$
Note that
\[\int_{\epsilon}^{N_e} \left(e^{-2\pi i t (\xi, x-y)} - \cos(2\pi t) \right) \frac{dt}{t} \to -\log|\langle\xi, x-y\rangle| - i\frac{\pi}{2} \text{sgn}(\xi, x-y) \]
as \(N \to \infty \) and \(\epsilon \to 0 \), and the integral is bounded, uniformly in \(\epsilon \) and \(N \), by
\[c \left(1 + |\log|\langle\xi, x-y\rangle|\right). \]

Thus, using (1.1) and the dominated convergence theorem, we get
\[\int_0^\infty \left| \tilde{\psi}(t\xi) \right|^2 \frac{dt}{t} = \iint \left(-\log|\langle\xi, x-y\rangle| - i\frac{\pi}{2} \text{sgn}(\xi, x-y) \right) dx \, dy. \]
This immediately implies the conclusion.

REMARK. In the one-dimensional case, it is easy to see that if
\[\int |\psi(x)| \log(2 + |x|) \, dx < \infty \quad \text{and} \quad \int |\psi(x)| \log(2 + |\psi(x)|) \, dx < \infty, \]
then \(L(\psi) < \infty \), and so \(S^\psi : L^2 \to L^2 \).

2. Proofs of Propositions 1 and 2

We use a Littlewood-Paley decomposition. Let \(f \in \mathcal{S}(\mathbb{R}^n) \), and define
\[\hat{\Delta_j(f)}(\xi) = \Psi(2^j \xi) \hat{f}(\xi) \quad \text{for} \quad j \in \mathbb{Z}, \]
where \(\Psi \in C^\infty \) is supported in \(\{1/2 \leq |\xi| \leq 2\} \) and satisfies
\[\sum_{j \in \mathbb{Z}} \Psi(2^j \xi) = 1 \quad \text{for} \quad \xi \neq 0. \]

Decompose
\[f \ast \psi_t(x) = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \Delta_{j+k} (f \ast \psi_k)(x) \chi_{[2^k, 2^{k+1}]}(t) = \sum_{j \in \mathbb{Z}} F_j(x, t), \]
say, and define
\[T_j(f)(x) = \left(\int_0^\infty \left| F_j(x, t) \right|^2 \frac{dt}{t} \right)^{1/2}. \]
Then
\[S(f)(x) \leq \sum_{j \in \mathbb{Z}} T_j(f)(x). \]
Put \(E_j = \{ 2^{-1-j} \leq |\xi| \leq 2^{1-j} \} \). Then by the Plancherel theorem and (1.4) we have

\[
\left\| T_j(f) \right\|_2^2 = \sum_{k \in \mathbb{Z}} \int_{\mathbb{R}^n} \int_{2^k}^{2^{k+1}} |\Delta_{j+k}(f * \psi_t)(x)|^2 \frac{dt}{t} \, dx \\
\leq \sum_{k \in \mathbb{Z}} c \int_{E_{j+k}} \left(\int_{2^k}^{2^{k+1}} \left| \hat{\psi}(t \xi) \right|^2 \frac{dt}{t} \right) \left| \hat{f}(\xi) \right|^2 \, d\xi \\
\leq \sum_{k \in \mathbb{Z}} c \int_{E_{j+k}} \min \left(|2^k \xi|^e, |2^k \xi|^{-e} \right) \left| \hat{f}(\xi) \right|^2 \, d\xi \\
\leq c 2^{-e|j|} \sum_{k \in \mathbb{Z}} \int_{E_{j+k}} \left| \hat{f}(\xi) \right|^2 \, d\xi \\
\leq c 2^{-e|j|} \|f\|_2^2,
\]

where the last inequality holds since the sets \(E_j \) are finitely overlapping. (We denote by \(\| \cdot \|_p \) the ordinary \(L^p \)-norm.)

On the other hand, for \(w \in A_s \) by (1.5) we see that

\[
\left\| T_j(f) \right\|_{L^2_w}^2 = \sum_{k \in \mathbb{Z}} \int_{\mathbb{R}^n} \int_{2^k}^{2^{k+1}} |\Delta_{j+k}(f * \psi_t)(x)|^2 \frac{dt}{t} \, w(x) \, dx \\
\leq \sum_{k \in \mathbb{Z}} c \int_{\mathbb{R}^n} |\Delta_{j+k}(f)(x)|^2 w(x) \, dx \\
\leq c \|f\|_{L^2_w}^2,
\]

where the last inequality follows from a well-known Littlewood-Paley inequality for \(L^2_w \) since \(A_s \subset A_2 \).

Interpolating with change of measures between the two estimates above, we get

\[
\left\| T_j(f) \right\|_{L^2_{(w^u)}} \leq c 2^{-e(1-u)|j|/2} \|f\|_{L^2_{(w^u)}}
\]

for \(u \in (0,1) \). If we choose \(u \) (close to 1) so that \(w^{1/u} \in A_s \), then from this inequality we get

\[
\left\| T_j(f) \right\|_{L^2_w} \leq c 2^{-e(1-u)|j|/2} \|f\|_{L^2_w},
\]

and so

\[
\|S(f)\|_{L^2_w} \leq \sum_{j \in \mathbb{Z}} \|T_j(f)\|_{L^2_w} \leq c \|f\|_{L^2_w}.
\]

Thus the extrapolation theorem of Rubio de Francia [8] implies the conclusion.

To derive Proposition 2 from Proposition 1 we need the following lemmas.
LEMMA 1. If \(\psi \in L^1(\mathbb{R}^n) \) satisfies (1.1) and \(B_\varepsilon(\psi) < \infty \) for \(\varepsilon \in (0, 1] \), then
\[
|\hat{\psi}(\xi)| \leq c |\xi|^\varepsilon \quad \text{for all } \xi \in \mathbb{R}^n.
\]

PROOF: Since \(a \leq a^\varepsilon \) for \(a, \varepsilon \in (0, 1] \), we see that
\[
|\hat{\psi}(\xi)| = \left| \int \psi(x) \left(e^{-2\pi i (x, \xi)} - 1 \right) dx \right| \leq c \int |\psi(x)| \min\left(1, |(x, \xi)|\right) dx
\leq c |\xi|^\varepsilon \int |\psi(x)| |x|^\varepsilon dx.
\]
This completes the proof.

LEMMA 2. If \(\psi \in L^1(\mathbb{R}^n) \) and \(J_\varepsilon(\psi) < \infty \) for \(\varepsilon \in (0, 1] \), then
\[
\int_1^2 |\hat{\psi}(t\xi)|^2 dt \leq c |\xi|^{-\varepsilon} \quad \text{for all } \xi \in \mathbb{R}^n.
\]

PROOF: As in the proof of Proposition 3, we see that
\[
\int_1^2 |\hat{\psi}(t\xi)|^2 dt = \int_{\mathbb{R}^n \times \mathbb{R}^n} \psi(x)\overline{\psi(y)} \frac{e^{-4\pi i (\xi, x-y)} - e^{2\pi i (\xi, x-y)}}{-2\pi i (\xi, x-y)} dx dy.
\]
Thus
\[
\int_1^2 |\hat{\psi}(t\xi)|^2 dt \leq c \int_{\mathbb{R}^n \times \mathbb{R}^n} |\psi(x)| |\psi(y)| \min\left(1, |(\xi, x-y)|^{-1}\right) dx dy
\leq c J_\varepsilon(\psi) |\xi|^{-\varepsilon}.
\]
This completes the proof.

Now, we can see that Proposition 1 implies Proposition 2, since the condition (1.4) follows from Lemmas 1 and 2.

3. PROOFS OF THEOREMS 2 AND 3

To get Theorem 2 from Proposition 2 we need Lemmas 3 and 4 below. First, we give a sufficient condition for \(J_\varepsilon(\psi) < \infty \).

LEMMA 3. Let \(h(r), h \geq 0, \) be a non-increasing function for \(r > 0 \) satisfying \(H \in L^1(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n) \), where \(H(x) = h(|x|) \), and let \(\Omega \in L^v(S^{n-1}), v > 1, \Omega \geq 0. \) Suppose that \(F \) is a non-negative function such that
\[
F(x) \leq h(|x|)\Omega(x') \quad \text{for } |x| > 1
\]
and $D_u(F) < \infty$ for $u > 1$. Then $J_\varepsilon(F) < \infty$ if $\varepsilon < \min(1/u', 1/v')$.

Proof: For non-negative functions f, g and $\xi \in S^{n-1}$ put

$$L_\varepsilon(f, g; \xi) = \iint_{\mathbb{R}^n \times \mathbb{R}^n} f(x)g(y)|\xi, x - y|^{-\varepsilon} \, dx \, dy.$$

Decompose F as $F = E + G$, where $E(x) = F(x)$ if $|x| < 1$ and $E(x) = 0$ otherwise. Then

$$L_\varepsilon(F, F; \xi) = L_\varepsilon(E, E; \xi) + 2L_\varepsilon(E, G; \xi) + L_\varepsilon(G, G; \xi).$$

We show that each of $L_\varepsilon(E, E; \xi)$, $L_\varepsilon(E, G; \xi)$ and $L_\varepsilon(G, G; \xi)$ is bounded by a constant independent of ξ if $\varepsilon < \min(1/u', 1/v')$.

First, by Hölder’s inequality and a change of variables

$$L_\varepsilon(E, E; \xi) \leq \|E\|_u^2 \left(\int_{|x| < 1, |y| < 1} |x_1 - y_1|^{-\varepsilon u'} \, dx \, dy \right)^{1/u'},$$

where we note that $\|E\|_u = D_u(F)$.

Next, by Hölder’s inequality again

$$L_\varepsilon(E, G; \xi) \leq \|E\|_u \left(\int_{|x| < 1} \left(\int_{\mathbb{R}^n} G(y)|x_1 - \langle \xi, y \rangle|^{-\varepsilon} \, dy \right)^{u'} \, dx \right)^{1/u'}.$$

For $s > 0$, let

$$I_\varepsilon(s) = \int_{S^{n-1}} |x_1 - \langle \xi, s\omega \rangle|^{-\varepsilon} \Omega(\omega) \, d\sigma(\omega)$$

for fixed x_1 and ξ, where $d\sigma$ denotes the Lebesgue surface measure of S^{n-1} (when $n = 1$, let $\sigma\{1\} = \sigma\{-1\} = 1$). Then by Hölder’s inequality

$$I_\varepsilon(s) \leq (N_\varepsilon(s))^{1/u'} \|\Omega\|_u,$$

where

$$N_\varepsilon(s) = \int_{S^{n-1}} |x_1 - s\omega_1|^{-\varepsilon} \, d\sigma(\omega).$$

Thus, using Hölder’s inequality,

$$\int_{\mathbb{R}^n} G(y)|x_1 - \langle \xi, y \rangle|^{-\varepsilon} \, dy \leq \int_0^\infty h(s)s^{n-1} I_\varepsilon(s) \, ds \leq \|\Omega\|_u \int_0^\infty h(s)s^{n-1}(N_\varepsilon(s))^{1/u'} \, ds \leq c \|H\|_1^{1/u'} \|\Omega\|_u \left(\int_0^\infty h(s)s^{n-1}N_\varepsilon(s) \, ds \right)^{1/u'} = c \|H\|_1^{1/u'} \|\Omega\|_u \left(\int_{\mathbb{R}^n} h(|y|)|x_1 - y_1|^{-\varepsilon u'} \, dy \right)^{1/u'}.$$

Therefore, the desired estimate for $L_e(E, G; \xi)$ follows if we show that

\begin{equation}
\sup_{z_1 \in \mathbb{R}^n} \int_{\mathbb{R}^n} h(|y|) |x_1 - y_1|^{-\epsilon_1} dy < \infty.
\end{equation}

To see this, we split the domain of the integration as follows:

\[\int_{\mathbb{R}^n} h(|y|) |x_1 - y_1|^{-\epsilon_1} dy = \int_{|z_1 - y_1| < 1} h(|y|) |x_1 - y_1|^{-\epsilon_1} dy + \int_{|z_1 - y_1| > 1} h(|y|) |x_1 - y_1|^{-\epsilon_1} dy = I_1 + I_2, \]

Clearly $I_2 \leq \|H\|_1$. To estimate I_1 we may assume that $n \geq 2$; the case $n = 1$ can be easily disposed of since h is bounded. We need further splitting of the domain of the integration. We write $y = (y_1, y')$, $y' \in \mathbb{R}^{n-1}$. Then

\[I_1 = \int_{|z_1 - y_1| < 1} h(|y|) |x_1 - y_1|^{-\epsilon_1} dy + \int_{|z_1 - y_1| < 1} h(|y|) |x_1 - y_1|^{-\epsilon_1} dy = I_3 + I_4, \]

It is easy to see that

\[I_3 \leq \|H\|_\infty \int_{|y_1| < 2} |y_1|^{-\epsilon_1} dy < \infty. \]

Next, since $h(|y|) \leq h(|y'|)$,

\[I_4 \leq \int_{|y_1| < 1} |y_1|^{-\epsilon_1} dy_1 \int_{|y'| > 1} h(|y'|) dy' \leq c \int_{|y_1| < 1} |y_1|^{-\epsilon_1} dy_1 \int_{|y'| > 1} h(|y|) dy < \infty. \]

It remains to estimate $L_e(G, G; \xi)$. Note that

\begin{equation}
L_e(G, G; \xi) \leq \int_0^\infty \int_0^\infty h(r) h(s) r^{n-1} s^{n-1} I_e(r, s) \, dr \, ds,
\end{equation}

where

\[I_e(r, s) = \int_{S^{n-1} \times S^{n-1}} |(\xi, r\theta - s\omega)|^{-\epsilon} \Omega(\theta) \Omega(\omega) \, d\sigma(\theta) \, d\sigma(\omega). \]
By Hölder’s inequality

$$I_{e}(r,s) \leq \left(N_{e,r}(r,s) \right)^{1/v'} \|\Omega\|_{v}^{2},$$

where

$$N_{e}(r,s) = \int_{S^{n-1} \times S^{n-1}} |r \theta_{1} - s \omega_{1}|^{-\varepsilon} \, d\sigma(\theta) \, d\sigma(\omega).$$

Using the estimate (4.3) in (4.2) and then applying Hölder’s inequality, we see that

$$L_{e}(G,G;\xi) \leq c \|H\|_{1}^{2/v} \|\Omega\|_{v}^{2} \left(\int_{0}^{\infty} \int_{0}^{\infty} N_{e,r}(r,s) h(r) h(s) r^{n-1} s^{n-1} \, dr \, ds \right)^{1/v'}$$

$$= c \|H\|_{1}^{2/v} \|\Omega\|_{v}^{2} \left(\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} h(|x|) h(|y|) |x_{1} - y_{1}|^{-e v'} \, dx \, dy \right)^{1/v'}.$$

Therefore, the desired estimates follows again from (4.1). This completes the proof. \qed

For a non-negative function Ω on S^{n-1} we define a non-isotropic Hardy-Littlewood maximal function

$$M_{\Omega}(f)(x) = \sup_{r>0} r^{-n} \int_{|y|<r} |f(x-y)| \Omega(|y|^{-1} y) \, dy.$$

To prove Theorem 2 we also need the following (see Duoandikoetxea [4]).

Lemma 4. If $\Omega \in L^{q}(S^{n-1})$, $q \geq 2$, and $w \in A_{2/q'}$, then M_{Ω} is bounded on L^{2}_{w}.

Now we can prove Theorem 2. As in Stein [10, pp.63-64], we can show that

$$\sup_{t>0} |\psi_{t} * f(x)| \leq c M_{\Omega}(f).$$

So, by Lemma 4 we see that the condition (1.5) holds for ψ of Theorem 2 with $s = 2/q'$.

Next, applying Lemma 3, we see that $J_{e}(\psi) < \infty$ for $\varepsilon < \min(1/u', 1/q')$ (note that $h(r)$ of Theorem 2 (3) is bounded for $r \geq 1$). Combining these facts with the assumption in Theorem 2 (1), we can apply Proposition 2 to reach the conclusion.

Finally, we give the proof of Theorem 3. Clearly $B_{1}(\psi) < \infty$, and $J_{1/(2q')}(\psi) < \infty$ by applying Lemma 3 suitably. Therefore, the conclusion follows from Proposition 2 if we show that the condition (1.5) holds with $s = 2/q'$. But, for $q > 2$ this is a consequence of the inequality

$$\sup_{t>0} |\psi_{t} * f(x)| \leq c M \left(|f|^{q'} \right)^{1/q'},$$
where M denotes the Hardy-Littlewood maximal operator. (This inequality is easily proved from Hölder’s inequality.)

To prove condition (1.5) when $q = 2$ and $w \in A_1$, we may assume that ψ is supported in $\{|x| < 1\}$. Then by Schwarz’s inequality

$$|\psi_t * f(x)|^2 \leq t^{-n} \|\psi\|_{2}^2 \int_{|y| < t} |f(x - y)|^2 \, dy.$$ Integrating with the measure $w(x) \, dx$ and using a property of the A_1-weight function, we get

$$\int |\psi_t * f(x)|^2 w(x) \, dx \leq \|\psi\|_{2}^2 \int |f(y)|^2 t^{-n} \int_{|x - y| < t} w(x) \, dx \, dy$$

$$\leq C_w \|\psi\|_{2}^2 \int |f(y)|^2 w(y) \, dy$$
uniformly in t. From this the desired inequality follows.

4. APPLICATIONS

It is to be noted that Theorem 1 can be applied to study the L_p^w-boundedness of generalised Marcinkiewicz integrals.

Corollary 1. For $\varepsilon > 0$, let

$$\psi(x) = |x|^{-n+\varepsilon} \Omega(x') \chi_{(0,1)}(|x|),$$

where $\Omega \in L^\infty(S^{n-1})$ and $\int \Omega(x') \, d\sigma(x') = 0$. Define a Marcinkiewicz integral

$$\mu(f)(x) = \left(\int_0^\infty |\psi_t * f(x)|^2 \frac{dt}{t} \right)^{1/2}.$$ Then, the operator μ is bounded on L_p^w for all $p \in (1, \infty)$ and $w \in A_p$:

$$\|\mu(f)\|_{L_p^w} \leq C_{p,w} \|f\|_{L_p^w}.$$ This result, in particular, removes the Lipschitz condition assumed for Ω in Stein [9, Theorem 1 (2)].

Next, we consider applications to Carleson measures on the upper half spaces.

Corollary 2. Suppose $\psi \in L^1$ satisfies (1.1) and

$$|\psi(x)| \leq c(1 + |x|)^{-n-\varepsilon} \quad \text{for some} \quad \varepsilon > 0.$$
Take $b \in BMO$ and $w \in A_2$. Then the measure
\[d\nu(x,t) = \left| \psi_t * b(x) \right|^2 \frac{dt}{t} w(x) \, dx \]
on the upper half space $\mathbb{R}^n \times (0, \infty)$ is a Carleson measure with respect to the measure $w(x) \, dx$, that is,
\[\nu(S(Q)) \leq C_w \|b\|_{BMO}^2 \int_Q w(x) \, dx \]
for all cubes Q in \mathbb{R}^n, where
\[S(Q) = \{(x,t) \in \mathbb{R}^n \times (0, \infty) : x \in Q, \, 0 < t \leq \ell(Q) \}, \]
with $\ell(Q)$ denoting the sidelength of Q.

This can be proved by using L^2_w-boundedness of the operator S_ψ (see Theorem 1) as in Journé [7, Chapter 6 III, pp.85–87]. In [7], a similar result has been proved with an additional assumption on the gradient of ψ.

Arguing as in [7, Chapter 6 III, p.87], by Corollary 2 we can get the following.

COROLLARY 3. Let ψ and b be as in Corollary 2. Suppose φ satisfies
\[|\varphi(x)| \leq c(1 + |x|)^{-n-\delta} \]
for $\delta > 0$. Then, the sublinear operator
\[T_b(f)(x) = \left(\int_0^\infty \left| \psi_t * b(x) \right|^2 |\varphi_t * f(x)|^2 \frac{dt}{t} \right)^{1/2} \]
is bounded on L^p_w for all $p \in (1, \infty)$ and $w \in A_p$:
\[\|T_b(f)\|_{L^p_w} \leq C_{p,w} \|b\|_{BMO} \|f\|_{L^p_w}. \]

Here again we don’t need the assumption on the gradient of ψ. See Coifman and Meyer [3, p.149] for the L^2-case.

COROLLARY 4. Suppose $\eta \in L^1(\mathbb{R}^n)$ satisfies the assumptions of Theorem 1 for ψ. Let ψ, φ and b be as in Corollary 3, and define a paraproduct
\[\pi_b(f)(x) = \int_0^\infty \eta_t * ((\psi_t * b)(\varphi_t * f))(x) \frac{dt}{t}. \]
Then, the operator π_b is bounded on L^p_w for all $p \in (1, \infty)$ and $w \in A_p$:
\[\|\pi_b(f)\|_{L^p_w} \leq C_{p,w} \|b\|_{BMO} \|f\|_{L^p_w}. \]
PROOF: Let \(g \in L^2(w^{-1}), w \in A_2 \). Then, since \(w^{-1} \in A_2 \), by Schwarz's inequality, Theorem 1 and Corollary 3, for \(0 < u < v \), we see that

\[
\left| \int_u^v \eta_t \ast \left((\psi_t \ast b)(\varphi_t \ast f) \right)(x) \frac{dt}{t} g(x) \, dx \right| \\
\leq \left(\int_u^v \left| \eta_t \ast g(x) \right|^2 \frac{dt}{t} w^{-1}(x) \, dx \right)^{1/2} \| T_b(f) \|_{L^2(w)} \\
\leq C_w \| b \|_{BMO} \| g \|_{L^2(w^{-1})} \| f \|_{L^2(w)},
\]

where \(\eta(x) = \eta(-x) \). From this estimate we can see that \(\pi_b(f) \) is well-defined (see Christ [2, III, Section 3]). Taking the supremum over \(g \) with \(\| g \|_{L^2(w^{-1})} \leq 1 \), we get the \(L^2_w \)-boundedness, and so the extrapolation theorem of Rubio de Francia implies the conclusion. This completes the proof. \(\square \)

See Coifman and Meyer [3, p.149, Proposition 1] for a similar result in the \(L^2 \)-case.

REFERENCES

