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REMARKS ON SQUARE FUNCTIONS IN THE
LITTLEWOOD-PALEY THEORY

SHUICHI SATO

We prove that certain square function operators in the Littlewood-Paley theory
defined by the kernels without any regularity are bounded on L%, 1 < p < oo,
w € Ap (the weights of Muckenhoupt). Then, we give some applications to the
Carleson measures on the upper half space.

1. INTRODUCTION

In this note we shall prove weighted LP-estimates for the Littlewood-Paley type
square functions arising from kernels satisfying only size and cancellation conditions.
Suppose that 1 € L1(R™) satisfies

(1.1) Y(z)dz = 0.
Rﬂ

We consider a square function of Littlewood-Paley type

00 1/2
S0@ =5uN@ = ([ Wers@f §)
0
where ¢(z) =t "y (t"'z).
If 9 satisfies, in addition to (1.1),

(1.2) [¥(z)| < c(1 + |2|) 77 for some & >0

(1.3) / [¥(z — y) — ¥(z)| dz < c|yl|® for some € >0,
R"

then it is known that the operator S is bounded on LP(R") for all p € (1,00) (see
Benedek, Calderén and Panzone [1]). Well-known examples are as follows.

EXAMPLE 1: Let P,(z) be the Poisson kernel for the upper half space R™ x (0, c0):

t
(n+1)/2°
’)

Pi(z) = cn
lz)® + ¢
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v(o) = (5P

Then Sy (f) is the Littlewood-Paley g function.

t=1

ExXAMPLE 2: Consider the Haar function % on R :

Y(z) = X[-1,00(%) — X[0,1)(%)s

where xg denotes the characteristic function of a set E. Then, Sy(f) is the
Marcinkiewicz integral

e 1/2
wn@ = ([ IFe+o+Pe-n-2w@l F) .

where F(z) = [ f(y)dy.

In this note, we shall prove that the L?-boundedness of S still holds without the
assumption (1.3); the conditions (1.1) and (1.2) only are sufficient. This is already
known for the L2-case (see Coifman and Meyer [3, p.148], and also Journé [7, pp.
81-82] for a proof).

To state our result more precisely, we consider the least non-increasing radial ma-
jorant of ¢

hy(Jzl) = sup |¥(y)]-

L]

We also need to consider two seminorms

B.(¢¥) =/ |¥(2)] || dz for >0,
lz]>1

1/
D,(y) = (/|I|<1|1/1(z)| dz) for u>1.

We shall prove the following result.
THEOREM 1. Put Hy(z) = hy(|z|). If ¥ € L}(R™) satisfies (1.1) and

(1) Be(¢) <oo for somee >0 ;
(2) Dy(¢p) < oo forsomeu>1;
(3) HyeL'(R");

then the operator Sy is bounded on L%, :

||S¢(f)||qu < Cp,w ”f”z,{’".
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for all p € (1,00) and w € Ap, where A, denotes the weight class of Muckenhoupt (see
(6, 7]), and

» i/p
1l = 1oy = [ 1@ u(a) dc)

In fact, we shall prove a more general result.
THEOREM 2. Suppose that ¥ € L1(R") satisfies (1.1) and

(1) B.(¢)<oo forsomee>0;

(2) Dy(9p) <oo for some u>1;

(3 |¢(=)| < h(lz)Q(z") (:c’ = |z| 7! z) for some non-negative functions h
and 2 such that

(a) h(r) is non-increasing for r € (0,00) ;

(b) if H(z) = h(zl), H € I\®R™) ;

(c) Qe LIS™ 1) for some q, 2< g < 0.

Then, the operator Sy is bounded on L%, for p>q' and w € A,y , where q' denotes
the conjugate exponent of q.

When v is compactly supported, we have another formulation, which is not in-
cluded in Theorem 2.

THEOREM 3. Suppose that ¢ € L}(R™) satisfies (1.1) and
(1) ¢ is compactly supported ;
(2) 9 € LIR™) for some ¢ > 2.
Then Sy : LE, — L?, for p> ¢’ and w € Ap;y -

These results will be derived from more abstract ones. Let ¢ € L!(R™) satisfy
(1.1). We also assume the following :

(1) There exists € € (0,1) such that
2
(1.4) / |¢(t§)|2dt < cmin (€5, J€]7°) forall £eR™,
1

where 17; denotes the Fourier transform

D(E) = /1/1(3:)6_2"‘(”5) dz, (z,€) = sz{,- (the inner product in R™).
i=1
(2) Let 1 € s< 2. Forall we A,, we have
2
(1.5) SUP/ / |¥par * f(:c)lzdt w(z)dz < Cy ”f”i;-", forall feSR"),
kezJrn 1

where Z denotes the integer group and S(R™) the Schwartz space.
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Under these assumptions the following holds.
PROPOSITION 1. For p>2/s and w € Ap, 2, the operator Sy is bounded on
Lr.

This will be used to prove the next result.

PROPOSITION 2. Put
1w =mw [ el -0l Tdd o e

Let ¢ € L* satisfy (1.1) and (1.5). Then if B.()) < co and J.(¥) < oo for some
€ € (0,1], the operator Sy is bounded on L, for p > 2/s and w € Apy/s.

In Section 2, we shall prove Proposition 1 by the method of the proof of Duoandikoet-
xea and Rubio de Francia [5, Corollary 4.2] and then Proposition 2 by using Proposition
1. Proposition 2 will be applied to prove Theorems 2 and 3 in Section 3. Finally, in
Section 4, we shall give some applications of Theorem 1 to generalised Marcinkiewicz
integrals and the Carleson measures on the upper half space R x (0, c0).

To conclude this section, we state a result for the L2?-case, from which the result
of Coifman-Meyer mentioned above immediately follows, and the idea of the proof will
be applied later too (see the proof of Lemma 2).

PROPOSITION 3. Suppose that y € L! satisfies (1.1). Let

v = s [ wewllosie. e - o)l dedy

Then, if L(1) < oo, the operator Sy is bounded on L?.

Proor: It is sufficient to show that

Al PN 2 dt
sup / |1,b(t§)l T < oo0.
l€j=1J0

We write
96| = Beoee = [[  wepe s dzay,

and so

[T 2 o o0 )
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Note that
N
amitle.o— dt g
/ (e 2mit(€,2-Y) _ cog (21rt)) - —log|(¢,z — v - iz sgn(£, T — y)
€
as N — oo and € — 0, and the integral is bounded, uniformly in £ and N, by

c(l + Ilog|(.§,x - y)||)

Thus, using (1.1) and the dominated convergence theorem, we get

[ [seof" 5 = [[ w56 (~toglie. - 0] - i seate, o - ) doay.

This immediately implies the conclusion. a

REMARK. In the one-dimensional case, it is easy to see that if
/|¢(z)| log(2 + |z])dz < o0 and /|1p(1:)| log(Z + |1/}(:1:)|) dz < oo,
then L(1) < oo, and so Sy : L2 — L2.

2. PROOFS OF PROPOSITIONS 1 AND 2

We use a Littlewood-Paley decomposition. Let f € S(R"), and define

~

(D) = v(2e)fe) for jez,

where ¥ € C* is supported in {1/2 < [¢] € 2} and satisfies

Dw(E)=1 for £#0.

j€Z
Decompose
f*'l/)t(x) ZZA]+k f*¢t z)x[zk 2k+l (t ZF (I t ’
JEZ keZ j€Z

say, and define

Tj(f)(x)=(/ |F(a t“”)m.

S()(=) <Y Ti(H)(=)-

JEZ

Then
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Put E; = {27179 < |¢] < 2'77}. Then by the Plancherel theorem and (1.4) we

have
TP = gz / /2k+l|A,-+k(f*¢t WL de
LA 2 dt\ |-
é;/M(/ Bee) )V)I@

<X, min(l2rel 2 ™) [Fiof ae

k€eZ
< cz-ﬂﬂZ/ g)l de
keZ
<2~ hly5|3,

where the last inequality holds since the sets E; are finitely overlapping. (We denote
by ||[|, the ordinary LP-norm.)
On the other hand, for w € A, by (1.5) we see that

2t dt
Ti(f)| 52 = Ajk(f) x (@) = w(z) dz
Il =3 [, [ 1 "3
<D e / |84k (H) (@) w(z) dz
k€Z
<cllfl}s

where the last inequality follows from a well-known Littlewood-Paley inequality for L2
since A, C As.
Interpolating with change of measures between the two estimates above, we get

”Tj(f)”Lz(wu) < c2e(=wlil/2 ”f||L2(wu)

for u € (0,1). If we choose u (close to 1) so that w!/* € A, then from this inequality

we get .
IT5 (Dl g, < 27002 | g

and so

IS g2, < DIT5(D)la, < cllfllzz, -

JEZ

Thus the extrapolation theorem of Rubio de Francia [8] implies the conclusion.
To derive Proposition 2 from Proposition 1 we need the following lemmas.
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LEMMA 1. If ¢ € L}Y(R") satisfies (1.1) and B.(¢) < oo for € € (0,1], then
|$(§)[ <clelf  forall €eR™.
PROOF: Since a < af for a,¢ € (0, 1], we see that
< c/|1/)(z)| mjn(l, |(z,§)|) dz
ekl [ w(a)]lal" da.

}@(5)] = ’ / $(@) (20 - 1) do

This completes the proof. 0
LEMMA 2. If¢ € LY(R™) and J:(¢) < oo for € € (0, 1}, then

2. 2
/1|¢(t§)| dt<clel™  forall £cR

PROOF: As in the proof of Proposition 3, we see that

[0l = [ 90

Thus

/12 |$(t§)‘2 dt < //Rnxm 2)$(y)| min (1’ €.z~ y)|_1) dz dy

< cle(y) I€17°.

This completes the proof. 0

Now, we can see that Proposition 1 implies Proposition 2, since the condition (1.4)
follows from Lemmas 1 and 2.

3. PrROOFS OF THEOREMS 2 AND 3

To get Theorem 2 from Proposition 2 we need Lemmas 3 and 4 below. First, we
give a sufficient condition for J.(¢) < oo.

LEMMA 3. Let h(r), h > 0, be a non-increasing function for r > 0 satisfying
H € LY(R™) N L°(R"), where H(z) = h(|z|), and let Q@ € L¥(S""1), v > 1, 2 > 0.
Suppose that F is a non-negative function such that

F(z) < h(jz))Qz")  for |z|>1
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and Dy(F) < oo for u> 1. Then J.(F) < oo if e < min(1/u',1/v").
ProOOF: For non-negative functions f, g and £ € S*~! put

Le(f,9:6) = // F(@)g@)|(€ - v)| ™" dzdy.

Decompose F as F = E + G, where E(:c) = F(z) if |z] <1 and E(z) = 0 otherwise.
Then
Le(F, F;£) = Le(E, E;§) + 2Le(E, G5 §) + Le(G, G5 §).

We show that each of L.(FE, F;€), L.(E,G;£) and L.(G, G;£) is bounded by a constant
independent of £ if ¢ < min (1/v’,1/v').
First, by Holder’s inequality and a change of variables

1/’
L.(E, E;€) < | EIl2 ( / / o1 — 1|~ da dy) ,
lz|<1,lyi<1

where we note that ||Ef|, = Dy(F).
Next, by Holder’s inequality again

L(E,G;¢) < || E|l, (/|z|<1 (/Rn G(y)|z - (& v " dy)ul da:) 1/""

For s > 0, let
I(s) = / 21— (€, sw)|~*Qw) do(w)

for fixed z; and €, where do denotes the Lebesgue surface measure of S™~! (when
n=1,let 6({1}) = o({-1}) = 1). Then by Holder’s inequality

L(5) < (New () 1921, »
where

No(s) = /Sn_l 1 — swi|~¢ do(w).

Thus, using Holder’s inequality,

/ G(y)|z1 — (& y)| "dy < /oo h(s)s™ I (s)ds
R” 0
<@l [ A" (New(5) s
0

o0 1/v’
<clH 9y, ( Lm0 M) ds)

, 1/
= c||H||1/u 1, (/R" h(|y|) ETT dy) ‘
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Therefore, the desired estimate for L.(F,G;£) follows if we show that

!
(4.1) sup/ R(lyl) |21 — v11™* dy < oo.
z1ERJR"

To see this, we split the domain of the integration as follows :

/ h(ll) lz1 - val = dy = / h(lyl) 21 — v |7 dy
R© lz1~-mi<1

— /
+ / h(lw]) lex — 92~ dy
lz1—y1[>1

=1, +1,, say.
Clearly I < ||H||;. To estimate I; we may assume that n > 2; the case n =1

can be easily disposed of since A is bounded. We need further splitting of the domain
of the integration. We write y = (y1,¥'), ¥’ € R*~!. Then

L= / h(lyl) Jz1 — 1]~ dy + / h(lyl) le1 — 1]~ dy

|z1—1y11<1 lz1—y11<1
|v'|<1 |v'|>1
= I3+ 14, say.

It is easy to see that

I—ev’

dy < 0.

B< |l [

|ZJ1
lyl<2

Next, since h(|y|) < h(]¥']),
I s/ |~ dyx/ h(ly'l) dy’
lyl<1 ly'|>1
<ef ™ dn [ h(w)dy<oo.
lnl<1 lyi>1
It remains to estimate L.(G,G;€). Note that
o0 o0
(4.2) L.(G,G;¢) < / / h(r)h(s)r"~'s*~1I.(r,s)drds,
o Jo

where

I(r,s) = //S"_lxsn_ll(é,r{) - sw)|_€Q(9)Q(w) do(8) do(w).
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By Holder’s inequality

(4.3) I(r,8) < (New(r, 9)) V¥ 192112,

where

N.(r,s) = //s gt [r8; — sw1|™¢ do(8) do(w).
n—1ygn-

Using the estimate (4.3) in (4.2) and then applying Hélder’s inequality, we see that
00 poO 1/v
26,69 < clHIE 10 ([ [ Moot phtrIn(oyrsm=1 dr s
o Jo
2 , 1/’
=l i ([ wlebhlu) bor -l doay)

Therefore, the desired estimates follows again from (4.1). This completes the proof. [

For a non-negative function 2 on S"~! we define a non-isotropic Hardy-Littlewood
maximal function

Ma()@ =supr [ [e-vlo(u”v)d

<r

To prove Theorem 2 we also need the following (see Duoandikoetxea [4]).

LEMMA 4. IfQ € Lq(S"'l), g 2>2, and w € Ay, then Mq is bounded on
L.

Now we can prove Theorem 2. As in Stein [10, pp.63-64], we can show that
sup|e; * f(z)| < c Ma(f).
t>0

So, by Lemma 4 we see that the condition (1.5) holds for % of Theorem 2 with s = 2/¢’.

Next, applying Lemma 3, we see that J.(¥) < oo for € < min(1/¥',1/¢") (note
that h(r) of Theorem 2 (3) is bounded for » > 1). Combining these facts with the
assumption in Theorem 2 (1), we can apply Proposition 2 to reach the conclusion.

Finally, we give the proof of Theorem 3. Clearly B, (%) < 00, and Jy/(2¢/)(%) <
by applying Lemma 3 suitably. Therefore, the conclusion follows from Proposition 2
if we show that the condition (1.5) holds with s = 2/¢’. But, for ¢ > 2 this is a
consequence of the inequality

/

n 1/
supyex @) <eM(IF7) ",
t>0
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where M denotes the Hardy-Littlewood maximal operator. (This inequality is easily
proved from Hoélder’s inequality.)

To prove condition (1.5) when ¢ = 2 and w € A;, we may assume that ¥ is
supported in {|z] < 1}. Then by Schwarz’s inequality

e % F@)|° <t~ 112 /I el
Y

Integrating with the measure w(z) dz and using a property of the A;-weight function,
we get

[1bes s@ P u@ds <l [l /| w(z) dz dy

z—y|<t

2
<Cullvl} [170)Put) dy
uniformly in ¢. From this the desired inequality follows.

4. APPLICATIONS

It is to be noted that Theorem 1 can be applied to study the L? -boundedness of
generalised Marcinkiewicz integrals.

COROLLARY 1. Fore >0, let
B(z) = |27 Q=")x (0,11 (1),

where Q € L*(S"~!) and [Q(z')do(z') = 0. Define a Marcinkiewicz integral

2.dt 1/2
t) ’

o0
un@ = ([ W@l §
Then, the operator u is bounded on L?, for all p € (1,00) and w € A, :

I6(Hllzz, < Cpaw Iz -

This result, in particular, removes the Lipschitz condition assumed for 2 in Stein
[9, Theorem 1 (2)].
Next, we consider applications to Carleson measures on the upper half spaces.

COROLLARY 2. Suppose ¥ € L! satisfies (1.1) and

[¢(@@)| <ec(l+1z)™"°  forsome &>0.
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Take b€ BMO and w € A;. Then the measure
d
dv(z,t) = | * b(:::)l2 7t w(z) dz

on the upper half space R™ x (0,00) is a Carleson measure with respect to the measure
w(z) dz, that is,

v(S(@) < Cullblpuo [ wiz)ds
Q
for all cubes @ in R™, where
S5@Q) ={(z,t) e R" x (0,00): 2 € Q, 0<t < £(Q)},

with £(Q) denoting the sidelength of Q.

This can be proved by using L2 -boundedness of the operator Sy, (see Theorem 1)
as in Journé [7, Chapter 6 III, pp.85-87]. In [7], a similar result has been proved with
an additional assumption on the gradient of 1.

Arguing as in [7, Chapter 6 III, p.87], by Corollary 2 we can get the following.

COROLLARY 3. Let ¢ and b be as in Corollary 2. Suppose ¢ satisfies

()] < c(1 + |z]) " °

for 6 > 0. Then, the sublinear operator

00 9 . dt 1/2
5(N@ = ([ exs@ o 007 5
is bounded on L&, for all p € (1,00) and w € A, :

”Tb(f)”[,fu < Gpw lIbllsaro “f“L‘,';, :

Here again we don’t need the assumption on the gradient of 3. See Coifman and
Meyer [3, p.149] for the L?-case.

COROLLARY 4. Suppose n € L*(R™) satisfies the assumptions of Theorem 1 for
. Let 9, ¢ and b be as in Corollary 3, and define a paraproduct

w(N@ = [ nex (@) (oex D)@ T

Then, the operator 7y is bounded on L, for all p € (1,00) and w € A :

7e()| 1z, < Cow bl pago £z, -
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PROOF: Let g € L?(w™!), w € A;. Then, since w=! € A, by Schwarz’s inequal-
ity, Theorem 1 and Corollary 3, for 0 < u < v, we see that

V/uum*((d« ) (e * )) () %g(x)dz

< ( / / [fxg(@)? % (z) dz) " ITo () 22wy

< Cu bl gpo ||9||L2(w—1) ||f||L2(w) )

where 7j(z) = n(—z). From this estimate we can see that my(f) is well-defined (see
Christ [2, III, Section 3]). Taking the supremum over g with |{gf| L2(w-1) <1, we get

the L2 -boundedness, and so the extrapolation theorem of Rubio de Francia implies the
conclusion. This completes the proof. a

See Coifman and Meyer {3, p.149, Proposition 1]} for a similar result in the L%-case.
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