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Abstract
We prove several consistency results concerning the notion of𝜔-strongly measurable cardinal in HOD. In particular,
we show that is it consistent, relative to a large cardinal hypothesis weaker than 𝑜(𝜅) = 𝜅, that every successor of a
regular cardinal is 𝜔-strongly measurable in HOD.
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1. Introduction

A prominent line of research in set theory is the study of the set theoretic universe V (i.e., model of
the axioms of set theory, ZFC) by considering canonical inner model 𝑀 ⊆ 𝑉 with additional strong
features, which approximates V. The concept builds on the suggestion that if M is sufficiently ‘close’
to V, then some of the properties of M may lift to V and allow us to derive new consequences about
models of set theory.

The prospects of this approach are demonstrated in the theory of Gödel’s constructible universe
𝐿 ⊆ 𝑉 and Jensen’s Covering Theorem ([8]), which asserts that under the anti-large cardinal assumption
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of the nonexistence of 0#, the covering property holds for 𝐿 ⊆ 𝑉 .1 The combination of covering for
𝐿 ⊆ 𝑉 , together with the rigid structure of L, has been shown to have many implications both on cardinal
arithmetic in V,2 as well as on the existence of incompactness phenomena in V such as an Abelian group
𝐺 ∈ 𝑉 of size ℵ𝜔+1 that is not free, although every subgroup 𝐻 ⊳ 𝐺 of smaller cardinality is free.

Jensen’s Covering Lemma describes one side of a sharp dichotomy: if 0# does not exist, then L covers
subsets of V successfully. By Silver, if 0# does exist, then L fails to approximate even the most basic
features of V. For example, in the presence of 0#, L never computes successor cardinals correctly.

Jensen’s Covering Lemma can be utilized to obtain a lower bound for the consistency strength of set
theoretical statements, which do not necessarily mention large cardinals. However, it is quite restrictive.
To be able to obtain various lower bounds, one has to construct canonical models that can accommodate
stronger large cardinal axioms. The construction of such inner models is the subject of a prominent
program in set theory known as the Inner Model program. For a large cardinal property Φ,3 one would
like to to construct a canonical L-like inner model K that is maximal with respect to inner models that
do not satisfy the large cardinal property Φ (see Schimmerling-Steel [32] for the precise statement).
This maximality property couples with a covering lemma: assuming there is no inner model of V with
the property Φ, K approximates the universe V by satisfying a certain covering property. For example,
for Φ being the existence of 0#, 𝐾 = 𝐿.

For stronger Φ, the existence of such an inner model K would allow us to extend Jensen’s sharp
dichotomy. Namely, either the large cardinal property Φ holds, or V is close to K and therefore inherits
various combinatorial properties such as the existence of certain incompactness phenomena.

Starting in the 1970s, inner models for increasing large cardinal properties Φ have been constructed.
Starting from the seminal studies of Kunen, Silver and Solovay on a model 𝐿 [𝑈] with a measurable
cardinal ([18],[35]), extended by Dodd-Jensen ([10]) and Mitchell ([23]), to large cardinal properties
Φ involving coherent sequences of normal measures and many measurable cardinals. Then, following
major developments and the introduction of iteration trees in Martin and Steel ([20]), Mitchell and Steel
([24]), and Steel ([36]), the theory was extended to the level of Woodin cardinals.

The program took a significant turn after Woodin showed that there cannot be a single maximal inner
model, in an absolute sense, past a Woodin cardinal. This has sparked new lines of study, involving forms
of the 𝐾𝑐 construction (see Jensen, Schimmerling, Schindler, and Steel [17] and Andereta, Neeman and
Steel [2]).

Another seminal development was the introduction of The Core Model Induction method, first in-
troduced by Woodin and extensively developed by Steel, Schindler, Sargsyan, Trang and many others
([34]). The method establishes new consistency results for stronger large cardinal properties by incor-
poration ideas from descriptive set theory with various local construction methods. The relevant large
cardinal properties are often described in terms of expansions of the Axiom of Determinacy (AD) in in-
ner models M of ZF and can be further translated to inner models of ZFC with large cardinal properties.

First results on fine structural inner models for finite levels of supercompact cardinals were obtained
by Neeman and Steel, [27] and by Woodin. It is still unknown whether similar constructions could
lead to an inner model with a (full) supercompact cardinal, and some recent results of Woodin suggest
that major obstructions appear past the level of finite supercompactness [41]. There are many excellent
resources for the introduction of the inner model theory, the inner model program and its development.
We refer the reader to [16, 22, 26, 29, 33, 37, 43].

The inner model of Hereditarily Ordinal Definable sets (HOD) plays a significant role in many of the
recent advancements in the Inner Model program.
Definition 1.1. Let M be a model of set theory. A set 𝑥 ∈ 𝑀 is hereditarily ordinal definable in M if
both x and every set in the transitive closure of x is definable in V using some formula with ordinal
parameters. The class of all hereditarily ordinal definable sets in a model M is denoted by HOD𝑀.

1i.e., every set of ordinals 𝑥 ∈ 𝑉 is contained in a set 𝑦 ∈ 𝐿 such that |𝑦 | ≤ |𝑥 | + ℵ𝑉
1 .

2e.g., it implies that the Singular Cardinal Hypothesis (SCH) holds in V
3e.g., the existence of a cardinal 𝜅 with a large cardinal property such as a measurable cardinal, a strong cardinal, a Woodin

cardinal or a supercompact cardinal.
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We write HOD for HOD𝑉 ⊆ 𝑉 .
The class HOD was first introduced by Gödel, and has been extensively studied (for example, see

[25]). The study of HOD in inner models of strong forms of AD and the associated strategic-extender
models plays a critical role in Descriptive Inner Model Theory. See [30, 31, 38].

In [39], Woodin presents a new approach of addressing the inner model problem for all large cardinals.
Woodin analyses the possible properties and limitations of some of the current methods, and introduces
the seminal notions of a suitable extender model N for a supercompact cardinal 𝛿 (in V), which in
addition to several properties similar to well-known inner models, requires that N captures witnessing
𝛿-supercompact measures in V.4 In a following work (see [41]), Woodin presents the ‘V = Ultimate-
L’ axiom, to assert (roughly) that Σ2-definable properties of the universe are satisfied in canonical
strategic-extender models of the form HOD𝐿 (𝐴,R) ∩𝑉Θ, for some Universally Baire set 𝐴 ⊆ R.

Combining the above notions, Woodin has formulated the ‘Ultimate-L’ conjecture, asserting that
there exists a suitable extender model 𝑁 ⊆ HOD which satisfies the axiom ‘V = Ultimate-L’. Following
the search for some N, the theory established in [39] studies the possibility of HOD ⊆ 𝑉 being a suitable
extender model, and possible implications. For this, Woodin introduces a new assumption known as
the HOD-conjecture (Conjecture 1.3 below) and shows that, remarkably, if the HOD-conjecture is true,
then a sufficiently strong large cardinal assumption (e.g., an extendible cardinal) guarantees a version of
the covering lemma for HOD ⊆ 𝑉 . However, if the HOD-conjecture fails in the presence of sufficiently
large cardinals, then HOD is very far from V, just like the smaller inner models. See Theorem 1.5 for an
exact formulation.

We remark that, in general, the inner model HOD of an arbitrary model of ZFC can be easily modified
by forcing. Nevertheless, it contains every canonical inner model and thus, the HOD-conjecture might
be a consequence of the covering theorem for some extremely large canonical inner model [40]. An
appealing aspect of the HOD-conjecture is that it is a combinatorial statement about the HOD and V, and
it does not rely on inner model theory. Even without any further development in the inner model program,
Woodin established that the HOD-conjecture poses many significant limitations on the consistency of
large cardinals in the choice-less context. Moreover, large cardinals beyond choice, if consistent, form
a hierarchy of failures of the HOD-conjecture [3].

The HOD-conjecture centers around the notion of 𝜔-strongly measurable cardinals in HOD. Not
much was know about this notion, and previously, Woodin has raised the question ([41]) of whether
more than three 𝜔-strongly measurables in HOD can exist. In this work, we study the notion of 𝜔-
strongly measurable cardinals in HOD, we prove several consistency results concerning this notion
and we establish the consistency of a model where all successors of regular cardinal are 𝜔-strongly
measurable in HOD.
Definition 1.2. Let 𝜅 be an uncountable regular cardinal, and let S be a stationary subset of 𝜅. We say
that 𝜅 is strongly measurable in HOD with respect to S if there exists some 𝜂 < 𝜅 such that (2𝜂)HOD < 𝜅
and there is no partition 〈𝑆𝛼 | 𝛼 < 𝜂〉 ∈ HOD of S into sets, all stationary sets in V. We say that 𝜅 is 𝜔-
strongly measurable in HOD if it is strongly measurable in HOD with respect to the set 𝑆 = 𝜅∩Cof (𝜔),
and that it is strongly measurable in HOD if it is strongly measurable in HOD with respect to 𝑆 = 𝜅.

In general, one might replace HOD with any other inner model of V, M, obtaining a meaningful notion
of strong measurability in M. Since, in this paper, we will be interested solely in strong measurability in
HOD, we will occasionally omit the emphasis ‘in HOD’ and say simply that 𝜅 is strongly measurable.

It is shown in [39] that if 𝜅 is an 𝜔-strongly measurable in HOD, then there are stationary sets
𝑆 ⊆ 𝜅 ∩ Cof (𝜔) for which the restriction of the filter CUB𝜅 � 𝑆 to HOD forms a measure on 𝜅 in
HOD. However, Woodin shows ([39]) that the existence of a class of regular cardinals which are not
𝜔-strongly measurable in HOD, together with the existence of a HOD-supercompact, implies that HOD
satisfies many appealing approximation properties with respect to V. The results promote Woodin’s
HOD-conjecture.

4Namely, for all 𝜆 > 𝛿, there is a supercompact measure U for 𝑃𝛿 (𝜆) such that 𝑁 ∩ 𝑃𝛿 (𝜆) ∈ 𝑈 and𝑈 ∩ 𝑁 ∈ 𝑁 .
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Conjecture 1.3 (HOD conjecture, [39, Definition 191]). There is a proper class of regular uncountable
cardinals 𝜅 which are not 𝜔-strongly measurable in HOD.

In light of the HOD-conjecture, it is natural to attempt forming models with as many as possible
𝜔-strongly measurable cardinals in HOD. Woodin has established the consistency (relative to large
cardinals) of models with up to three 𝜔-strongly measurable cardinals (see [41, Remark 3.43]). The
main purpose of this work is to prove that many strongly measurable cardinals can be obtained from a
relatively mild large cardinal assumption of hypermeasurability.

Theorem 1.4. It is consistent relative to the existence of an inaccessible cardinal 𝜃 for which {𝑜(𝜅) |
𝜅 < 𝜃} is unbounded in 𝜃, that every successor of a regular cardinal is strongly measurable in HOD.

Cummings, Friedman and Golshani ([7]) have established the consistency of a model where
(𝛼+)HOD < 𝛼+ for every infinite cardinal 𝛼. In [15, Theorem 2.2], Gitik and Merimovich prove that it
is consistent relative to large cardinals that every regular uncountable cardinal is measurable in HOD.
A similar result is obtained using a different technique in [5, Theorem 1.4]. Perhaps more related to
our work is [5, Theorem 1.3], in which a club of cardinals which are measurable in HOD is obtained
from a large cardinal axiom weaker than 𝑜(𝜅) = 𝜅. In those models, there are no 𝜔-strongly measurable
successor cardinals.

We note that these results do not apply to models where there is an extendible cardinal. The existence
of an extendible cardinal in V derives a sharp dichotomy between HOD being either very close or very
far from V, as shown by Woodin’s HOD-Dichotomy Theorem ([39]).

Theorem 1.5 (The HOD-Dichotomy, Woodin, [42]). Let 𝛿 be an extendible cardinal. Then one of the
following holds:

1. Every cardinal 𝜂 above 𝛿, which is singular in V, is singular in HOD and (𝜂+)HOD = 𝜂+.
2. Every regular cardinal above 𝛿 is 𝜔-strongly measurable in HOD.

In the last part of this work, we prove a consistency result regarding strong measurability at successors
of singular cardinals. Woodin ([39]) establishes the consistency of a successor of a singular cardinal
𝜆, which is a 𝜔-strongly measurable cardinal in HOD, from the large cardinal assumption 𝐼0. Here, we
prove a weaker consistency result from a weaker large cardinal assumption.

Theorem 1.6. Suppose that 𝜅 < 𝜆 are cardinals, 𝜅 is 𝜆-supercompact and 𝜆 is measurable. Then, there
is a generic extension in which 𝜅 is a singular cardinal of cofinality𝜔, and 𝜆 = 𝜅+ is strongly measurable
in HOD with respect to S, for some stationary subset 𝑆 ⊆ 𝜆 ∩ Cof (𝜔).

A brief summary of this paper. In section 2, we review some basic facts about strong measurability
which will be central in the proof of the main theorem. In the following sections, we gradually develop
the forcing methods used to prove our main results (Theorems 1.4 and 1.6). In section 3, we show
how to obtain a model where 𝜔1 is strongly measurable in HOD starting with a single measurable
cardinal. The case of 𝜅 = 𝜔1 is different from the general case as it does not require incorporating
posets for changing cofinalities. It can also be seen as a warmup for the general case. In section 4,
we further develop the ideas from the previous section and combine them with a suitable iteration for
changing cofinalities. As a result, we establish the consistency of a strongly measurable cardinal which
is a successor of an arbitrary regular cardinal 𝜆, from the large cardinal assumption of 𝑜(𝜅) = 𝜆 + 1.
In section 6, we introduce a method to construct a Prikry-type poset which is equivalent to the forcing
from the previous section and has a direct extension order that is 𝜆-closed. This is utilized in section 5
to form iterations of the single cardinal forcing, thus obtaining models with many strongly measurable
cardinals. In section 7, we prove our theorem concerning successors of singular cardinals. The results
of this section do not depend on the other sections past our preliminaries.

In the appendix, we cite and prove some useful results related to homogeneous forcings and their
iterations (including Prikry type forcings), and homogeneous iterations for changing cofinalities.

Our notations are mostly standard. We follow the Jerusalem forcing convention, in which for two
conditions 𝑝, 𝑝′ in a poset P, the fact that 𝑝′ is stronger (more informative) than p is denoted by 𝑝′ ≥ 𝑝.
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2. Variations of strong measurability

We start with several observations concerning a natural generalization of the notion of 𝜔-strong mea-
surability.

Definition 2.1. Let 𝑆 ⊆ 𝜅, 𝑆 ∈ HOD stationary, and let 𝜂 be a cardinal in HOD. 𝜅 is (𝑆, < 𝜂)-strongly
measurable if there is no partition in HOD of S into 𝜂 many disjoint stationary sets. 𝜅 is (𝑆, 𝜂)-strongly
measurable if it is (𝑆, < (𝜂+)HOD)-strongly measurable.

Definition 2.2. A cardinal 𝜅 is S-strongly measurable if 𝑆 ∈ HOD, and 𝜅 is (𝑆, < 𝜂)-strongly measurable
for some 𝜂 such that (2𝜂)HOD < 𝜅. We say that 𝜅 is strongly measurable if 𝜅 is 𝜅-strongly measurable.

Therefore, a cardinal 𝜅 is 𝜔-strongly measurable if it is (𝑆𝜅𝜔 , 𝜂)-strongly measurable for 𝜂 such that
(2𝜂)HOD < 𝜅. Note that if 𝑆 ⊆ 𝑇 are stationary subsets of 𝜅 in HOD and 𝜅 is T-strongly measurable, then
it is S-strongly measurable. In particular, every strongly measurable cardinal is 𝜔-strongly measurable.

Theorem 2.3 (Woodin). Let 𝛿 be an extendible cardinal. Then the following are equivalent:

1. There is a regular cardinal 𝜅 ≥ 𝛿 which is not 𝜔-strongly measurable.
2. There is a regular cardinal 𝜅 ≥ 𝛿 which is not (𝑆, 𝛿)-strongly measurable for some 𝑆 ∈ HOD which

consists of singular ordinals of cofinality < 𝛿.
3. The HOD-conjecture.
4. There is no regular 𝜔-strongly measurable cardinal above 𝛿.

For the proof, see [39, Theorems 197, 212, 213]. Without the assumption that the ordinals of S have
fixed V-cofinality, the equivalence might fail.

The next result provides a necessary and sufficient condition for a cardinal 𝜅 to be 𝜔-strongly
measurable in HOD. This observation will guide us in devising the main forcing construction, which
will be used to prove theorem 1.4.

Lemma 2.4. A cardinal 𝜅 is strongly measurable with respect to 𝑆 ∈ HOD if and only if 𝜅 is an
inaccessible cardinal in HOD, and the restriction of the club filter on S to HOD is the intersection of 𝜂
normal measures from HOD, 〈𝑈𝜅,𝑖 | 𝑖 < 𝜂〉 ∈ HOD, for some 𝜂 < 𝜅.

Proof. For the backwards implication, since 𝜅 is inaccessible in HOD and 𝜂 < 𝜅, (2𝜂)HOD < 𝜅.
Let 〈𝑇𝛼 | 𝛼 < (𝜂+)HOD〉 ∈ HOD be a decomposition of S into stationary sets. By the assumption, for

each 𝛼 there is a measure𝑈𝜅,𝑖 in HOD such that 𝑇𝛼 ∈ 𝑈𝜅,𝑖 . Since the sets 𝑇𝛼 are pairwise disjoint, it is
impossible for 𝛼 ≠ 𝛽 to belong to the same𝑈𝜅,𝑖 . Thus, we obtain an injective function from (𝜂+)HOD to
𝜂 in HOD – a contradiction.

Let us assume now that 𝜅 is strongly measurable with respect to 𝑆 ∈ HOD. In particular, 𝜅 is
inaccessible in HOD. Let S ∈ HOD be a maximal collection of pairwise disjoint stationary subsets of
S, in HOD, such that for all 𝑇 ∈ S , the club filter restricted to T is an ultrafilter in HOD. Let us denote
this ultrafilter by𝑈𝑇 . Since this collection is a partition of S into stationary sets, |S | < 𝜅.

If
⋂
{𝑈𝑇 | 𝑇 ∈ S} is not the club filter restricted to S in HOD, then it contains a set 𝑆 \ 𝑆′, where

𝑆′ ⊆ 𝑆 stationary, 𝑆′ ∈ HOD. In particular, 𝑆′ ∉ 𝑈𝑇 for all 𝑇 ∈ S , so 𝑆′ ∩ 𝑇 is nonstationary for all
𝑇 ∈ S , and 𝑆′′ = 𝑆′ \

⋃
𝑇 ∈S (𝑆

′ ∩𝑇) is a stationary subset of S, disjoint from all members of S . Since 𝜅
is strongly measurable with respect to S, it is also strongly measurable with respect to 𝑆′′. Thus, there
is some 𝑇 ′ ⊆ 𝑆′′ stationary such that the club filter restricted to 𝑇 ′ is an ultrafilter. But this contradicts
the maximality of S . �

Corollary 2.5. Let 𝜅 be (𝑆, <𝜅)-strongly measurable. Then S is contained in the regular cardinals of
HOD, up to a nonstationary error.

3. 𝜔1 is strongly measurable from one measurable cardinal

In this section, we would like to present a forcing that forces 𝜔1 to be strongly measurable. By Lemma
2.4, this means that in HOD, the club filter of 𝜔1 is an intersection of countably many normal measures.
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In the case of 𝜔1, we can take a single measure. So, we would like to collapse a measurable cardinal 𝜅
with a normal measure to be 𝜔1 and then using a Mathias-type forcing, add a club that diagonalizes the
normal measure. In order to show that this works, we need to show two things. First, we must show that
the iteration is cone homogeneous. This is done in Lemma 3.3. Second, we need to show that it does
not collapse 𝜔1. This amount to showing that the second step of the iteration is 𝜎-distributive, which in
turn requires us to be able to add a U-generic point to the generic club. See Lemma 3.1 for the precise
formulation.

Let us present the forcing. Suppose that 𝜅 is a measurable cardinal in a model V, and U is a normal
measure on 𝜅. Force with Levy collapse poset Coll(𝜔, < 𝜅) over V. Let H be a V-generic filter.

Working in the generic extension 𝑉 [𝐻], let C𝑈 be the poset consisting of pairs 𝑥 = 〈𝑐, 𝐴〉, where
𝑐 ⊆ 𝜅 is a bounded closed subset of 𝜅 and 𝐴 ∈ 𝑈. The condition 𝑥 ′ = 〈𝑐′, 𝐴′〉 extends x if 𝑐′ is an end
extension of c, 𝐴′ ⊆ 𝐴, and 𝑐′ \ 𝑐 ⊆ 𝐴.

It is clear that if 𝑥 = 〈𝑐, 𝐴〉 and 𝑥 ′ = 〈𝑐′, 𝐴′〉 are two conditions with the same bounded closed
set 𝑐 = 𝑐′, then 𝑥, 𝑥 ′ are compatible. Since 𝜅<𝜅 = 𝜅 in 𝑉 [𝐻], then C𝑈 satisfies 𝜅+-c.c. (which is
ℵ
𝑉 [𝐻 ]
2 -c.c.). The forcing C𝑈 adds a diagonalizing club to U. It has also been studied in [28] in the

context of well-behaved posets which can introduce square sequences and was found useful in other
contexts.

The following lemma is the key ingredient in the proof of the distributivity of C𝑈 .

Lemma 3.1. Work in 𝑉 [𝐻] and fix some regular cardinal 𝜃 > 𝜅+. There exists a stationary set of
structures 𝑀 ≺ 𝐻𝜃 of size |𝑀 | < 𝜅, with the property that sup(𝑀 ∩ 𝜅) ∈ 𝐴 for every 𝐴 ∈ 𝑈 ∩ 𝑀 .

Proof. Fix any 𝑓 : 𝐻<𝜔
𝜃 → 𝐻𝜃 in 𝑉 [𝐻]. We would like to show that there exists some 𝑀 ⊆ 𝐻𝜃 which

is closed under f and satisfies the conditions in the statement of the lemma.
Fix in V a name 𝑓

˜
for f and let 𝑓 ′ : Coll(𝜔, < 𝜅) × (𝐻𝑉

𝜃 )
<𝜔 → 𝐻𝑉

𝜃 be a function that sends
(𝑝, 𝑥) ∈ Coll(𝜔, < 𝜅) × (𝐻𝜃 )

<𝜔 to y if 𝑝 � 𝑓
˜
(𝑥) = �̌�. Note that x is a finite sequence of names.

By the definition of 𝑓 ′, if𝑀 ′ ≺ 𝐻𝑉
𝜃 is closed under 𝑓 ′,𝑀 ′∩𝜅 ∈ 𝜅, and 𝜅,𝑈 ∈ 𝑀 ′, then𝑀 ′ = 𝑀∩𝐻𝑉

𝜃
for some𝑀 ⊆ 𝐻𝜃 which is closed under f. Indeed, we may take𝑀 = 𝑀 ′ [𝐻∩𝑀]. By the chain condition
of Coll(𝜔, < 𝜅), every name for a ground model object that belongs to 𝑀 ′ can be refined to a nice name
which is contained in 𝑀 ′.

Since 𝑈 ⊆ 𝐻𝑉
𝜃 , it is therefore sufficient to prove that there exists some 𝑀 ′ ⊆ 𝐻𝑉

𝜃 which is closed
under 𝑓 ′ and satisfies |𝑀 ′ | < 𝜅 and sup(𝑀 ′ ∩ 𝜅) ∈ 𝐴 for all 𝐴 ∈ 𝑀 ′ ∩𝑈.

Working in V, take an elementary substructure 𝑁 ≺ 𝐻𝑉
𝜃 satisfying 𝑓 ′[𝑁] ⊆ 𝑁 , 𝑁<𝜅 ⊆ 𝑁 , |𝑁 | = 𝜅,

𝜅 ∈ 𝑁 . Let 𝑗 : 𝑉 → 𝑊 � Ult(𝑉,𝑈) be the ultrapower embedding induced by U. Consider the structure
�̃� ′ = 𝑗”𝑁 ≺ 𝑗 (𝐻𝑉

𝜃 ). �̃�
′ ∈ 𝑊 is closed under 𝑗 ( 𝑓 ′), and �̃� ′ ∩ 𝑗 (𝜅) ∈ 𝑗 (𝜅). It follows that 0 𝑗 (Coll(𝜔,<𝜅))

forces �̃� ′ to be closed under 𝑗 ( 𝑓
˜
). Finally, for every 𝐴 ∈ �̃� ′ ∩ 𝑗 (𝑈), 𝐴 = 𝑗 ( �̄�) for some �̄� ∈ 𝑈 and

therefore, 𝜅 ∈ 𝐴.
So �̃� satisfies the conclusion of the lemma in W, and it is closed under 𝑗 ( 𝑓 ′). By the elementarity of

j, there is 𝑀 ′ ∈ 𝑉 satisfying the conclusion of the lemma and closed under 𝑓 ′. Thus, 𝑀 ′ [𝐻 ∩𝑀 ′] = 𝑀
satisfies the requirements of the lemma. �

Proposition 3.2. C𝑈 is 𝜅-distributive.

Proof. Since 𝜅 = ℵ1 in𝑉 [𝐻], we need to check that the intersection of a countable family {𝐷𝑛 | 𝑛 < 𝜔}
of dense open subsets of C𝑈 is dense. Pick some regular cardinal 𝜃 > 𝜅+ such that C𝑈 , {𝐷𝑛 | 𝑛 < 𝜔} ∈
𝐻𝜃 . By lemma 3.1, for every condition 𝑥 ∈ C𝑈 , there exists an elementary substructure 𝑀 ≺ 𝐻𝜃 of
size |𝑀 | = ℵ0, with 𝑥, P,C𝑈 , {𝐷𝑛 | 𝑛 < 𝜔} ∈ 𝑀 and further satisfies that sup(𝑀 ∩ 𝜅) ∈ 𝐴 for every
𝐴 ∈ 𝑀 ∩ 𝜅. We may also assume that 𝑀 = 𝑀 ′ [𝐻 ∩ 𝑀 ′] for 𝑀 ′ ∈ 𝑉 , 𝑀 ′ ≺ 𝐻𝑉

𝜃 .
Denote sup(𝑀 ∩ 𝜅) by 𝛼 and pick a cofinal sequence 〈𝛼𝑛 | 𝑛 < 𝜔〉 in 𝛼. We can construct an

increasing sequence of extensions 〈𝑥𝑛 | 𝑛 < 𝜔〉 ⊆ 𝑀 of x, 𝑥𝑛 = 〈𝑐𝑛, 𝐴𝑛〉 such that 𝑥𝑛+1 ∈ 𝐷𝑛 and
max(𝑐𝑛) ≥ 𝛼𝑛 for every 𝑛 < 𝜔. Without loss of generality, we may assume that for every 𝐴 ∈ 𝑈 ∩ 𝑀 ,
there is 𝑛 < 𝜔 such that 𝐴𝑛 ⊆ 𝐴.
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Since 𝑥𝑛 = 〈𝑐𝑛, 𝐴𝑛〉 ∈ 𝑀 , then 𝛼 ∈ 𝐴𝑛 for all 𝑛 < 𝜔. It follows that 𝑥∗ = 〈{𝛼} ∪ (
⋃

𝑛 𝑐𝑛),
⋂

𝑛 𝐴𝑛〉 is
a condition in C𝑈 , which is clearly an upper bound of 〈𝑥𝑛 | 𝑛 < 𝜔〉.5 We conclude that there exists 𝑥∗
extending our given condition x such that 𝑥∗ ∈

⋂
𝑛 𝐷𝑛. �

Lemma 3.3. C𝑈 is cone homogeneous.
Proof. Let 𝑥1 = 〈𝑐1, 𝐴1〉, 𝑥2 = 〈𝑐2, 𝐴2〉 be two conditions of C𝑈 . Take 𝜈 ∈ 𝐴1 ∩ 𝐴2 above
max(𝑐1),max(𝑐2) and consider the extensions 𝑦1 = 〈𝑐1∪{𝜈}, (𝐴1∩𝐴2) \ (𝜈+1)〉, 𝑦2 = 〈𝑐2∪{𝜈}, (𝐴1∩
𝐴2) \ (𝜈 + 1)〉 of 𝑥1 Define a cone isomorphism 𝜎 : C𝑈/𝑦1 → C𝑈/𝑦2 by

𝜎(〈𝑐, 𝐴〉) = 〈𝑐2 ∪ (𝑐 \ 𝜈), 𝐴〉

𝜎 is clearly an order preserving map onto C𝑈/𝑦1 and has an order preserving inverse which is given by

𝜎−1(〈𝑐, 𝐴〉) = 〈𝑐1 ∪ (𝑐 \ 𝜈), 𝐴〉

�

Theorem 3.4. Suppose 𝐶 ⊆ C𝑈 is a 𝑉 [𝐻]-generic filter. Then, in 𝑉 [𝐻 ∗ 𝐶], 𝜅 = ℵ
𝑉 [𝐻∗𝐶 ]
1 is strongly

measurable.
Proof. By Lemma 8.3, Coll(𝜔, < 𝜅) ∗ C𝑈 is cone homogeneous, and therefore, HOD𝑉 [𝐻∗𝐶 ] ⊆ 𝑉 . It is
clear from the definition of C𝑈 that for every subset 𝑆 ⊆ 𝜅 in V, S is stationary in 𝑉 [𝐻 ∗ 𝐶] if and only
if 𝑆 ∈ 𝑈. It follows that the closed unbounded filter on 𝜅 = ℵ

𝑉 [𝐻∗𝐶 ]
1 in 𝑉 [𝐻 ∗ 𝐶] is a HOD-ultrafilter.

Therefore 𝑉 [𝐻 ∗ 𝐶] |= 𝜅 is strongly measurable. �

4. Strongly measurable successor of a regular cardinal

In this section, we would like to force a successor of an uncountable regular cardinal, 𝜅 = 𝜆+, to be
strongly measurable. There are a few difficulties that arise. First, there is a definable splitting of the
ordinals below 𝜅, according to the cofinalities, so the club filter cannot be an ultrafilter but rather an
intersection of a few normal measures. This means that we should fix a collection of normal measures
so that their intersection is indented to become the club filter. Moreover, when killing a stationary set
which is small with respect to the designated filter, we are forcing a club through the previous regulars,
which are now going to change cofinalities to various possibilities. This means that a Levy collapse by
itself would not provide all the cofinality changes that we need, and we must use a more complicated
method of changing cofinalities in a homogeneous way.

Suppose that 𝜆 < 𝜅 are two cardinals such that 𝜆 is regular and 𝜅 is measurable with 𝑜(𝜅) = 𝜆+1. Let
U = 〈𝑈𝛼,𝜏 | 𝜆 < 𝛼 ≤ 𝜅, 𝜏 < 𝑜U (𝛼)〉 be a coherent sequence of normal measures with 𝑜U (𝜅) = 𝜆 + 1.

Let PU𝜅 = 〈P𝛼,Q𝛼 | 𝛼 < 𝜅〉 be the homogeneous iteration of subsection 8.2. In the next two sections,
P stands for PU𝜅 . For the main properties of P, we refer the reader to Fact 8.6. We will explicitly need the
following additional property of the iteration.
Remark 4.1. We note that it follows at once from the definition ofQ𝛼 that every V-set 𝐴 ∈

⋂
𝑖<𝑜U (𝛼) 𝑈𝛼,𝑖

contains a tail of the cofinal sequence 𝑏𝛼. This is because every condition 𝑞 = 〈𝑡, 𝑇〉 ∈ Q𝛼 has a direct
extension 𝑞𝐴 = 〈𝑡, 𝑇 𝐴〉 of q, which satisfies that succ𝑇 (𝑠) ⊆ 𝐴 for all 𝑠 ∈ 𝑇 .
Definition 4.2. Let 𝐺 ⊆ P be a V-generic filter, and let 𝐻 ⊆ Coll(𝜆, < 𝜅) be the Levy collapse generic
over 𝑉 [𝐺]. Working in 𝑉 [𝐺 ∗ 𝐻], we consider the filter F𝜅 generated by

⋂
𝑖≤𝜆𝑈𝜅,𝑖 ,

F𝜅 = {𝐴 ⊆ 𝜅 | ∃𝐵 ∈
⋂
𝑖≤𝜆

𝑈𝜅,𝑖 , 𝐵 ⊆ 𝐴}.

The filter F𝜅 is going to generate the club filter in HOD in the generic extension.

5Note that
⋂
𝐴𝑛 =

⋂
𝐴∈𝑀′∩𝑈 𝐴.
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Lemma 4.3. F𝜅 is a 𝜅-complete filter in 𝑉 [𝐺 ∗ 𝐻].

Proof. Suppose that 〈𝐴𝜈 | 𝜈 < 𝛽〉 ∈ 𝑉 [𝐺 ∗ 𝐻] is a sequence of 𝛽 < 𝜅 many sets of F𝜅 . We would like
to show that

⋂
𝜈<𝛽 𝐴𝜈 belongs to F𝜅 . We may assume that 𝐴𝜈 ∈

⋂
𝑖≤𝜆𝑈𝜅𝑖 for all 𝜈 < 𝛽.

In order to prove the claim, we move from 𝑉 [𝐺 ∗ 𝐻] to 𝑉 [𝐺], and then to V. Working in 𝑉 [𝐺], let
𝐴𝜈
˜

be a Coll(𝜆, < 𝜅)-name for the V-set in
⋂

𝑖≤𝜆𝑈𝜅,𝑖 . Since Coll(𝜆, < 𝜅) satisfies 𝜅-c.c., there exists a
family of V-sets 𝑋𝜈 ⊆

⋂
𝑖≤𝜆𝑈𝜅,𝑖 , 𝑋𝜈 ∈ 𝑉 [𝐺], of size < 𝜅 such that � 𝐴𝜈

˜
∈ �̌�𝜈 . Fix in V a P-name 𝑋

˜ 𝜈

for each 𝑋𝜈 .
Let 𝑝 ∈ 𝐺 be a condition forcing the above. Moving back to V, the fusion lemma for nonstationary

support iteration of Prikry type forcings [5, Lemma 3.6] guarantees that there exists some 𝑞 ∈ 𝐺 and
a sequence of sets 〈𝑌𝜈 | 𝜈 < 𝛽〉 in V, so that for each 𝜈 < 𝛽, 𝑌𝜈 ⊆

⋂
𝑖≤𝜆𝑈𝜅,𝑖 has size |𝑌𝜈 | < 𝜅, and

𝑞 � 𝑋
˜ 𝜈 ⊆ 𝑌𝜈 . For each 𝜈, let 𝐴′𝜈 =

⋂
𝑌𝜈 , and 𝐴′ =

⋂
𝜈<𝛽 𝐴

′
𝜈 . Since 𝑈𝜅,𝑖 is 𝜅-complete for all 𝑖 ≤ 𝜆, we

have in 𝑉 [𝐺 ∗ 𝐻] that 𝐴′ ∈ F𝜅 and 𝐴′ ⊆
⋂

𝜈<𝛽 𝐴𝜈 . �

To produce a model where 𝜅 is 𝜔-strongly measurable, we will force over 𝑉 [𝐺 ∗ 𝐻] to add a closed
unbounded set 𝐶 ⊆ 𝜅 which is almost contained in every set 𝐴 ∈ F𝜅 .

Definition 4.4. Working in a V-generic extension 𝑉 [𝐺 ∗𝐻] by 𝐺 ∗𝐻 ⊆ P ∗Coll(𝜆, < 𝜅), we define the
forcing CF𝜅 . Conditions 𝑥 ∈ CF𝜅 are pairs 𝑥 = 〈𝑐, 𝐴〉 where c is a closed and bounded subset of 𝜅 and
𝐴 ∈ F𝜅 . A condition 𝑥 ′ = 〈𝑐′, 𝐴′〉 ∈ CF𝜅 extends x (denoted 𝑥 ′ ≥ 𝑥) if

(i) 𝑐′ ∩ max(𝑐) = 𝑐,
(ii) 𝐴′ ⊆ 𝐴, and

(iii) 𝑐′ \ 𝑐 ⊆ 𝐴.

For conditions 𝑥 = 〈𝑐, 𝐴〉 ∈ CF𝜅 , we will frequently denote c and A by 𝑐𝑥 and 𝐴𝑥 , respectively. It is
clear that if 𝑅 ⊆ CF𝜅 is generic, then the union 𝐶 =

⋃
{𝑐𝑥 | 𝑥 ∈ 𝑅} is a closed and unbounded subset

of 𝜅 which is almost contained in every 𝐴 ∈ F𝜅 . Since F𝜅 is a filter and 𝜅<𝜅 = 𝜅, the forcing CF𝜅 is
𝜅-centered and therefore satisfies 𝜅+-chain condition.

The following lemma is a parallel of Lemma 3.1. From this lemma we will infer the distributivity of
the forcing CF𝜅 .

Lemma 4.5. Working in𝑉 [𝐺 ∗𝐻], for any regular cardinal 𝜃 > 𝜅+ and 𝜏 ≤ 𝜆, there exists a stationary
set of structures 𝑀 ≺ 𝐻𝜃 with sup(𝑀 ∩ 𝜅) = 𝛼 which satisfy

(i) 𝑀<𝜏 ⊆ 𝑀;
(ii) 𝑜U (𝛼) = 𝜏;

(iii) For every 𝐴 ∈ F𝜅 ∩ 𝑀 , 𝛼 ∈ 𝐴 and, moreover, 𝑏𝛼 ⊆∗ 𝐴 (namely 𝑏𝛼 \ 𝐴 is bounded in 𝛼).

Proof. Fix a function 𝑓 : [𝐻𝜃 ]
<𝜔 → 𝐻𝜃 in 𝑉 [𝐺 ∗ 𝐻]. Back in the ground model V, let 𝑓

˜
be a

P ∗Coll(𝜆, < 𝜅)-name for f. Since Coll(𝜆, < 𝜅) is 𝜅-c.c., there exists a P-name function 𝐹
˜

: [𝐻𝑉
𝜃 ]

<𝜔 →
[𝐻𝑉

𝜃 ]
<𝜅 such that 𝑓

˜
(𝑥) is forced to be a member of 𝐹

˜
(𝑥) for every 𝑥 ∈ 𝐻𝑉

𝜃 .
Let us consider our ability to approximate 𝐹

˜
in V. Let 𝑁 ≺ 𝐻𝑉

𝜃 be an elementary substructure of size
𝜅 with 𝑁<𝜅 ⊆ 𝑁 and 𝜅, P, 𝐹

˜
∈ 𝑁 .

Claim 4.6. Let N be as above and 𝑝 ∈ P ∩ 𝑁 . Then, there is 𝑝∗ ≤ 𝑝 which is N-generic, namely, for
every name for an ordinal 𝜎

˜
∈ 𝑁 , there is set of ordinals 𝑆 ∈ 𝑁 such that 𝑆 ⊆ 𝑁 and 𝑝∗ � 𝜎

˜
∈ 𝑆.

Proof. By a standard argument concerning capturing dense open sets in Prikry-type forcings and fat-
trees (e.g., see [13]) for every dense open set D of P, 𝑝 ∈ P, there exists a direct extension 𝑝′ ≥∗ 𝑝
which reduces capturing D to a dense subset of P𝜇 for some 𝜇 < 𝜅, namely, the set of all 𝑟 ∈ P𝜇 such
that 𝑟�𝑝′ � [𝜇, 𝜅) ∈ 𝐷 is dense below 𝑝′ � 𝜇. Moreover, given 𝜈 < 𝜅, we can also make the direct
extension 𝑝′ to agree with p up to 𝜈 + 1 (i.e., 𝑝′ � 𝜈 + 1 = 𝑝 � 𝜈 + 1), in which case 𝜇 > 𝜈.

Given an initial condition 𝑝 ∈ P, we can list the dense open sets in N, 〈𝐷𝑖 | 𝑖 < 𝜅〉, and form
an increasing sequence of direct extensions of p, 〈𝑝𝑖 | 𝑖 < 𝜅〉, together with a closed unbounded set
𝐶∗ = 〈𝜈𝑖 | 𝑖 < 𝜅〉 such that for every successor ordinal 𝑖 = 𝑖′ + 1, 𝑝𝑖 ∈ 𝑁 reduces the dense set 𝐷𝑖′ of P
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to a bounded dense set 𝐷 ′
𝑖′ of P𝜇𝑖 for some 𝜈𝑖 < 𝜇𝑖 < 𝜅, and 𝑝𝑖 � 𝜈𝑖 + 1 = 𝑝𝑖

′
� 𝜈𝑖 + 1. By a standard

argument concerning nonstationary support iterations (e.g., see the fusion argument in the proof of [5,
Lemma 2.2]), the sequence of direct extensions 〈𝑝𝑖 | 𝑖 < 𝜅〉 has an upper bound 𝑝∗ ≥∗ 𝑝. It follows that
for every P-name 𝜎

˜
∈ 𝑁 of an element of 𝐻𝑉

𝜃 , there exists some 𝜇 < 𝜅 and a P𝜇-name 𝜎
˜
′ ∈ 𝑁 such

that 𝑝∗ � 𝜎
˜
= 𝜎

˜
′.

In particular, for each such name 𝜎
˜

, 𝑝∗ forces that it can take < 𝜅 many values in 𝐻𝑉
𝜃 , all of which

are in N. This follows from the elementarity of N in 𝐻𝜃 and the fact 𝜅 + 1 ⊆ 𝑁 . �

Let 𝑗𝜏 : 𝑉 → 𝑀𝜏 be the ultrapower embedding by𝑈𝜅,𝜏 and 𝑀 ′ = 𝑗𝜏”𝑁 ≺ 𝑗𝜏 (𝐻
𝑉
𝜃 ), 𝑀

′ ∈ 𝑀𝜏 .

Claim 4.7. 𝑗𝜏 (𝑝∗) forces that 𝑀 ′ is closed under 𝑗 (𝐹
˜
).

Proof. Indeed, if 𝐺∗ ⊆ 𝑗𝜏 (P) is 𝑀𝜏-generic with 𝑗𝜏 (𝑝∗) ∈ 𝐺∗, then for each 𝜇 < 𝜅, 𝐺∗
𝜇 = {𝑝 � 𝜇 |

𝑝 ∈ 𝐺∗} is a V-generic filter for P𝜇. For every 𝑦 = 𝑗𝜏 (𝜎˜
)𝐺∗ ∈ 𝑀 ′ ∩ 𝑗𝜏 (𝐻

𝑉
𝜃 ) and 𝐹∗ = 𝑗𝜏 (𝐹˜

)𝐺∗ ,
𝐹∗(𝑦) = 𝑗𝜏 (𝐹˜

) ( 𝑗𝜏 (𝜎˜
))𝐺∗ is the 𝐺∗-generic interpretation of the 𝑗𝜏 (P)-name 𝑗𝜏 (𝐹˜

(𝜎
˜
)). As 𝑝∗ forces

𝐹
˜
(𝜎
˜
) = 𝜎

˜
′ for some 𝜎

˜
′ ∈ 𝑁 which is a P𝜇-name for some 𝜇 < 𝜅, we see that 𝑗𝜏 (𝑝∗) forces

𝑗𝜏 (𝐹˜
(𝜎
˜
)) = 𝑗𝜏 (𝜎˜

′), where 𝑗𝜏 (𝜎˜
′) is a 𝑗𝜏 (P𝜇) = P𝜇-name. If 𝑞 ∈ 𝐺𝜇 and 𝑧 ∈ 𝑁 ∩ 𝐻𝑉

𝜃 are such that
𝑞 �P𝜇 𝜎˜

′ = 𝑧, then 𝑗𝜏 (𝑞) = 𝑞 � 𝑗𝜏 (𝜎˜
′) = 𝑗𝜏 (𝑧). We conclude that 𝐹∗(𝑦) = 𝑧 ∈ 𝑀 ′. �

We now return to prove the statement of the lemma. It is sufficient to prove that in 𝑉 [𝐺] there exists
some 𝑀 ′ ⊆ 𝐻𝑉

𝜃 which is closed under F and satisfies requirements (i)–(iii). Let 𝑝 ∈ P be a condition.
By a standard density argument, there are 𝑁 ≺ 𝐻𝑉

𝜃 and 𝑝∗ ∈ 𝐺 which is N-generic, with 𝑝∗ ≥∗ 𝑝.6
By Claim 4.7, 𝑗𝜏 (𝑝∗) forces that 𝑀 ′ = 𝑗𝜏”𝑁 is closed under 𝑗𝜏 (𝐹). It is now clear that 𝑀 ′ satisfies
condition (ii) in the ultrapower, as 𝑜 𝑗𝜏 (U) (𝜅) = 𝜏 and 𝑀 ′ ∩ 𝑗𝜏 (𝜅) = 𝜅. Condition (i) holds as well,
since 𝑗 (P𝜅 )/P𝜅 does not introduce new <𝜏-sequences to 𝑗𝜏”𝑁 . Therefore, it remains to verify that
𝑗𝜏 (𝑝

∗) forces 𝑀 ′ to satisfy condition (iii). For every 𝐴 ∈ 𝑀 ′ ∩ 𝑗𝜏 (F𝜅 ), there is some 𝐵 ∈ F𝜅 such that
𝐴 = 𝑗𝜏 (𝐵). In particular, 𝐴 ∩ 𝜅 = 𝐵 ∈ F𝜅 and 𝜅 ∈ 𝐴. Since F𝜅 ⊆

⋂
𝑖≤𝜏 𝑈𝜅,𝑖 (which is F𝑀𝜏

𝜅 ), it follows
form remark 4.1 that for every generic filter 𝐺∗ ⊆ 𝑗𝜏 (P) over 𝑀𝜏 , if 𝑏𝜅 is the 𝐺∗-induced Q𝜏𝜅 cofinal
generic sequence, then it is almost contained in 𝐵 = 𝐴 ∩ 𝜅. �

Proposition 4.8. CF𝜅 is 𝜅-distributive.

Proof. Since 𝜅 = 𝜆+ in 𝑉 [𝐺 ∗ 𝐻], we need to check that the intersection of every set {𝐷𝑖 | 𝑖 < 𝜆} of 𝜆-
many dense open subsets of CF𝜅 is dense. Pick some regular cardinal 𝜃 > 𝜅+ such that P,CF𝜅 , {𝐷𝑖 | 𝑖 <
𝜆} ∈ 𝐻𝜃 . By Lemma 4.5, for every condition 𝑥 ∈ CF , there exists an elementary substructure 𝑀 ≺ 𝐻𝜃

of cardinality < 𝜅, with 𝑥, P,CF𝜅 , {𝐷𝑖 | 𝑖 < 𝜆} ∈ 𝑀 and which further satisfies (i) 𝑀<𝜆 ⊆ 𝑀; (ii)
sup(𝑀 ∩ 𝜅) = 𝛼 has 𝑜U (𝛼) = 𝜆; and (iii) 𝛼 ∈ 𝐴 and 𝑏𝛼 is almost contained in A for every 𝐴 ∈ F𝜅 ∩𝑀 .

Let 〈𝛼𝑖 | 𝑖 < 𝜆〉 be an increasing enumeration of 𝑏𝛼. We construct by induction an increasing sequence
of extensions 〈𝑥 𝑗 | 𝑗 < 𝜆〉 of x, together with an increasing subsequence 〈𝛼𝑖 𝑗 | 𝑗 < 𝜆〉 of 𝑏𝛼 such that
𝑥 𝑗+1 ∈ 𝐷 𝑗 for every 𝑗 < 𝜆, and {𝛼} ∪ {𝛼𝑖 𝑗 | 𝑗 > 𝑗

∗} ⊆ 𝐴𝑥 𝑗∗ for all 𝑗∗ < 𝜆. For notational simplicity,
denote x by 𝑥−1. Given a condition 𝑥 𝑗 ∈ 𝑀 with a suitable 𝛼 𝑗 as above, we take 𝑥 𝑗+1 ∈ 𝐷 𝑗+1 to be an
extension of 𝑥 𝑗 with max(𝑐𝑥 𝑗+1 ) > 𝛼𝑖 𝑗 . Since 𝐴𝑥 𝑗+1 ∈ 𝑀 ∩ F𝜅 , we can use (iii) and get that 𝛼 ∈ 𝐴𝑥 𝑗+1

and there exist some 𝑖′ > 𝑖 𝑗 such that {𝛼𝑖 | 𝑖 > 𝑖′} ⊆ 𝐴𝑥 𝑗+1 . Take 𝑖 𝑗+1 < 𝜆 to be the minimal such 𝑖′ > 𝑖 𝑗 .
It remains to show that the construction goes through at limit stages 𝛿 ≤ 𝜆. Given 〈𝑥 𝑗 | 𝑗 < 𝛿〉, we
define 𝑖𝛿 = sup 𝑗<𝛿 𝛼𝑖 𝑗 . It is clear from our construction at successor steps that 𝛼𝑖𝛿 = sup 𝑗<𝛿 max(𝑐𝑥 𝑗 )
and 𝛼𝑖𝛿 ∈ 𝐴𝑥 𝑗 for every 𝑗 < 𝛿. It follows that the condition 𝑥𝛿 = 〈{𝛼𝛿} ∪

⋃
𝑗<𝛿 𝑐

𝑥 𝑗 ,
⋂

𝑗<𝛿 𝐴
𝑥 𝑗 〉 satisfies

the desirable conditions. Moreover, if 𝛿 < 𝜆, then 𝑥𝛿 ∈ 𝑀 since M is closed under < 𝜆-sequences.
Since the limit construction goes through at stage 𝜆 as well (although not producing a condition

in M), the limit condition 𝑥𝜆 is an extension of x and belongs to
⋂

𝑗<𝜆 𝐷 𝑗 . �

The argument of the proof of lemma 3.3 for C𝑈 applies to CF𝜅 as well.

6This is true, since for every 𝑞 ≥ 𝑝 there is 𝑟 ≥∗ 𝑝 such that 𝑞 ≥ 𝑟 is a finite Prikry extension. Let 𝑞∗ ≥∗ 𝑞 be N-generic.
Then, there is 𝛼 such that 𝑞 � [𝛼, 𝜅) = 𝑟 � [𝛼, 𝜅) . So, the condition 𝑝∗ = 𝑟 � 𝛼 ∪ 𝑞∗ � [𝛼, 𝜅) is an N-generic direct extension
of p, from G.
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Lemma 4.9. CF𝜅 is cone homogeneous.

Theorem 4.10. In the generic extension by P ∗ Coll(𝜆, < 𝜅) ∗ CF𝜅 , 𝜅 is strongly measurable.

Proof. Suppose 𝐺 (CF𝜅 ) ⊆ CF𝜅 is a generic filter over 𝑉 [𝐺 ∗ 𝐻]. We may identify 𝐺 (CF𝜅 ) with its
derived generic closed and unbounded set

𝐶 =
⋃

{𝑐 | ∃𝐴〈𝑐, 𝐴〉 ∈ 𝐺 (CF𝜅 )}.

By a standard density argument, we have that for every set 𝑋 ⊆ 𝜅 in V, if 𝑋 ∉ 𝑈𝜅,𝜏 for all 𝜏 ≤ 𝜆, then
|𝐶 ∩ 𝑋 | < 𝜅.

We conclude that for 𝑋 ⊆ 𝜅 in V to be stationary in 𝑉 [𝐺 ∗ 𝐻 ∗ 𝐶], it must belong to 𝑈𝜅,𝜏 for some
𝜏 ≤ 𝜆. It follows that if 〈𝑆𝑖 | 𝑖 < 𝜂〉 ⊆ 𝑉 is a partition of 𝜅 into disjoint sets which are stationary in
𝑉 [𝐺 ∗ 𝐻 ∗ 𝐶], then |𝜂 | ≤ 𝜆. Moreover, since 𝜅 is inaccessible in V, we have (2𝜂)𝑉 < 𝜅.

Finally, we know that each poset P, Coll(𝜆, < 𝜅), and CF𝜅 is forced in turn to be cone homogeneous
and clearly definable using parameters from the ground model. Therefore, P∗Coll(𝜆, < 𝜅) ∗CF𝜅 is cone
homogeneous, and therefore, HOD𝑉 [𝐺∗𝐻∗𝐶 ] ⊆ 𝑉 . The claim follows. �

The result in this section is weaker than the result of section 3 since the club filter is not an ultrafilter
in HOD. Since the club filter restricted to 𝑆𝜔2

𝜔 is an ultrafilter in a model of AD + 𝑉 = 𝐿(R), one can
force with the P𝑚𝑎𝑥 forcing and obtain a generic extension in which the club filter restricted to 𝑆𝜔2

𝜔 is
an ultrafilter in HOD.7

Question 4.11. Is it consistent that the club filter restricted to 𝑆𝜆𝜔 is an ultrafilter in HOD for a regular
cardinal 𝜆 > ℵ2?

By the general behavior of covering arguments, it is possible that the consistency strength of 𝜔2
being 𝜔-strongly measurable in HOD might be much lower than the same property for successors of
higher regular cardinals, and possibly as low as a single measurable cardinal.

Question 4.12. What is the consistency strength of 𝜔2 being 𝜔-strongly measurable in HOD?

5. Many 𝜔-strongly measurable cardinals

Suppose that U is a coherent sequence of normal measures so that 𝜆 < 𝜅 are regular cardinals and
𝑜U (𝜅) = 𝜆 + 1 and that the first measure in U is on a cardinal strictly greater than 𝜆. Let PU be the
nonstationary support iteration of Prikry/Magidor forcing from [5], and CFU

𝜅
be the PU ∗ Coll(𝜆, < 𝜅)-

name of the associated diagonalizing club forcing for the filter FU
𝜅 =

⋂
𝜏≤𝜆𝑈𝜅,𝜆 on 𝜅. In the next

section, we construct a PU ∗Coll(𝜆, < 𝜅)-name of a Prikry-type forcing notion C̄FU
𝜅

, which is equivalent
to CF𝜅 , and its direct extension order is 𝜆-closed. We will use that as a black box in this section.

Definition 5.1. Denote the post PU ∗ Coll(𝜆, < 𝜅) ∗ C̄F𝜅 by Q[U ].
We have shown in the previous section that Q[U ] is cone homogeneous and equivalent as a forcing

notion to the iteration PU ∗ Coll(𝜆, < 𝜅) ∗ CF𝜅 . By theorem 4.10, we conclude that 𝜅 is strongly
measurable in the generic extension by Q[U ].

In what follows, we would like to view Q[U ] as a Prikry-type forcing whose direct extension order
is 𝜆-closed. This is easily possible since Q[U ] is an iteration of three posets, each of which can be seen
as a Prikry-forcing whose direct extension order is 𝜆-closed (for Coll(𝜆, < 𝜅), we identify the direct
extension order with the standard order of the poset).

We finally turn to prove our main result.

7We would like to thank the referee for pointing us to this fact.
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Proof (Theorem 1.4). To simplify our arguments, we work over a minimal Mitchell model 𝑉 = 𝐿 [U ]
with a coherent sequence of measures U witnessing the assumed large cardinal assumption. Therefore,
𝜃 is the least inaccessible cardinal in V for which {𝑜(𝜅) | 𝜅 < 𝜃} is unbounded in 𝜃. We note that all
normal measures in this model appear on the main sequence U , in particular, 𝑜(𝜅) = 𝑜U (𝜅) for all 𝜅.
We also record here that by the Mitchell Covering Theorem and the fact 𝜃 is not measurable, there is no
generic extension of 𝑉 = 𝐿 [U ] which preserves the cardinals below 𝜃 and changes the cofinality of 𝜃.
Similarly, the Mitchell Covering Theorem guarantees that generic extensions of 𝑉 = 𝐿 [U ] satisfy the
Weak Covering Lemma with respect to V, which implies that successors of singular cardinals cannot be
collapsed.

Let 〈𝜅𝛼 | 𝛼 < 𝜃〉 be an increasing sequence of cardinals below 𝜃, which satisfies the following
conditions:

1. 𝜅0 = 𝜔, 𝜅1 is the least measurable,
2. for a limit ordinal 𝛼, 𝜅𝛼 = (sup𝛽<𝛼 𝜅𝛽)+,
3. for a successor ordinal 𝛼 + 1, let 𝜅𝛼+1 be the least cardinal such that 𝑜U 𝛼

(𝜅𝛼+1) = 𝜅𝛼 + 1, for the
coherent sequence of measures U 𝛼 = U �(𝜅𝛼 ,𝜅𝛼+1 ] . In particular, the first measure of the sequence
U 𝛼 has critical point > 𝜅𝛼.

We define by induction on 𝛼 < 𝜃 a Magidor iteration P = 〈P𝛼,Q𝛼 | 𝛼 < 𝜃〉 of Prikry type forcings.
Our description of the Magidor style iteration follows Gitik’s handbook chapter [13]. We recall that
conditions are sequences of the form 〈𝑞𝛼 | 𝛼 < 𝜃〉 where only finitely many coordinates are not a direct
extension of the weakest condition 0Q𝛼 . LetQ0 be Coll(𝜔, < 𝜅1) ∗C

∗
F𝜅1

, where F𝜅1 is the filter generated
from the normal measure on 𝜅1. For 𝛼 > 0, we define Q𝛼 = Q[U 𝛼].

The coherent sequenceU 𝛼 from 𝐿 [U ] uniquely extends in a generic extension byP𝛼 and can therefore
be used to force with Q[U 𝛼]. This is because as 𝐿 [U ] satisfies the GCH, we have that |P𝛼 | ≤ 𝜅𝛼 and
all measures of U 𝛼 are assumed to have critical points strictly above 𝜅𝛼. It is clear from our definitions
that Q𝛼 satisfies the Prikry Property, that its direct extension order is 𝜅𝛼-closed and that Q𝛼 is forced
to be cone homogeneous.

By the general theory of Magidor iteration of Prikry type posets, the iteration P𝜃/P1 also satisfies
the Prikry Property. Moreover, for every 𝛼 < 𝜃, P𝜃/P𝛼 has the Prikry Property in the generic extension
by P𝛼, and its direct extension order is 𝜅𝛼-closed (see [13] for details).

Claim 5.2. Every bounded subset of 𝜅𝛼 is introduced by P𝛼. Moreover, in the generic extension by P𝜃 ,
𝜅𝛼 is a regular cardinal for all 𝛼 < 𝜃.

Proof. The first assertion is an immediate consequence of the fact that P𝜃/P𝛼 satisfies the Prikry
Property and its direct extension order is 𝜅𝛼 closed. It follows that, in order to show that all cardinal
𝜅𝛼 remain regular in a generic extension by P𝜃 , it suffices to show that 𝜅𝛼 remains regular in the
intermediate generic extension by P𝛼. We prove the last assertion by induction on 𝛼 < 𝜃.

For a limit ordinal 𝛼, the assertion follows from the fact that the generic extension by P𝛼 satisfies
the Weak Covering property with respect to the ground model 𝑉 = 𝐿 [U ]. Indeed, 𝜅𝛼 = (sup𝛽<𝛼 𝜅𝛽)+
cannot be collapsed without collapsing a tail of the cardinals 𝜅𝛽 , 𝛽 < 𝛼, which would contradict our
inductive assumption.

Suppose now that 𝛼 is a successor ordinal. Then the forcing of P𝛼 naturally breaks into two parts
P𝛼 � P𝛼−1 ∗ Q𝛼−1. The size of P𝛼−1 is (2𝜅𝛼−1 )𝑉 < 𝜅𝛼 and cannot singularize 𝜅𝛼. The second poset
Q𝛼−1 does not collapse 𝜅𝛼 by Proposition 4.8. Note that, in order to apply the result of Proposition 4.8,
we use our inductive hypothesis that 𝜅𝛼−1 remains regular in a generic extension by P𝛼−1. �

Claim 5.3. In the generic extension, 𝜃 is regular.

Proof. This follows from the Mitchell Covering Theorem and the smallness assumption of 𝜃, as was
mentioned at the beginning of the proof. �

Claim 5.4. P is cone homogeneous.
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Proof. It suffices to verify conditions (i) and (ii) of Lemma 8.5 hold for every 𝛼 < 𝜅. (i) holds for
Q𝛼 = Q[U �(𝜅𝛼 ,𝜅𝛼+1 ] ] since Q𝛼, ≤Q𝛼 , ≤

∗
Q𝛼

are clearly definable in 𝑉 = 𝐿 [U ] from U , 𝜅𝛼, and 𝜅𝛼+1.
The fact (Q𝛼, ≤Q𝛼 , ≤

∗
Q𝛼

) is an immediate consequence of Lemma 6.12. �

Let 𝐺 𝜃 ⊆ P𝜃 be a generic filter over V. We conclude that HOD𝑉 [𝐺𝜃 ] ⊆ 𝑉 .8 Moreover, for each
𝛼 < 𝜅, the Q[U 𝛼] generic filter induced by 𝐺 𝜃 guarantees that 𝜅𝛼+1 = (𝜅+𝛼)

𝑉 [𝐺𝜃 ] and that 𝜅𝛼 is
strongly measurable in HOD𝑉 [𝐺𝜃 ] . It follows that all successors of regular cardinals below 𝜃 in 𝑉 [𝐺 𝜃 ]
are strongly measurable in HOD. Since 𝜃 remains strongly inaccessible in 𝑉 [𝐺 𝜃 ] and all the relevant
witnessing objects clearly belong to 𝑉𝑉 [𝐺𝜃 ]

𝜃 , we conclude that in 𝑉𝑉 [𝐺𝜃 ]
𝜃 , all successors of regular

cardinals are strongly measurable. �

6. Embedding CF𝜅 in suitable Prikry-type forcings

The method of Section 4 can be iterated finitely many times in order to get finitely many successive
𝜔-strongly measurable cardinals. In order to get a global result (or even just infinitely many 𝜔-strongly
measurables), we need to have a preservation of distributivity under iterations.

This is, in general, a difficult task. One way to obtain this is by shifting our goal from preserving dis-
tributivity into preserving the Prikry Property. There are several ways to iterate Prikry-type forcings and
preserve the Prikry Property as well as the closure properties of the direct extension. Thus, embedding
the distributive forcings into a Prikry-type forcing can be used in order to get a suitable distributivity
of the iteration. Usually, in order to achieve this, some strong compactness assumption is made that en-
ables one to embed any sufficiently distributive forcing into a Prikry-type forcing. See [14, 6] for some
examples for the consistency strength of such constructions.

Our goal is to embed CF𝜅 into a Prikry-type forcing without increasing our large cardinal hypothesis
from 𝑜(𝜅) = 𝜆 + 1. For this, our approach follows the finer technique, introduced by Gitik in [12].

This section is devoted to prove the following technical lemma:

Proposition 6.1. Let us assume that U is a coherent measure sequence witnessing 𝑜(𝜅) = 𝜆 + 1. Let PU
be the nonstationary support iteration of Subsection 8.2. Then, in PU ∗ Coll(𝜆, < 𝜅), there is a Prikry-
type forcing notion C̄F𝜅 , whose direct extension order is 𝜆-closed, and it has a dense subset isomorphic
to CF𝜅 .

Moreover, both orders ≤ and ≤∗ witness the forcing PU ∗Coll(𝜆, < 𝜅) ∗ C̄F𝜅 to be cone homogeneous.

The proof of the first part of the proposition is given in Corollary 6.10, and the proof of the second
part appears in Lemma 6.12. Let us sketch the main ideas behind the proof of the proposition. In order to
construct a Prikry-type forcing that projects onto CF𝜅 , we first work in the generic extension in which 𝜅
is singularized to be of cofinality 𝜆. In this model, the Magidor sequence is already a closed unbounded
set that diagonalizes the filter F𝜅 , so we can use it as a guide to the generic of CF𝜅 . This means that there
is a projection from the generic extension by the singularizing forcing iterated by a 𝜆-closed forcing
onto CF𝜅 . C̄F𝜅 is obtained by ‘forgetting’ the Magidor sequence and keeping the diagonalizing club.
A technical issue that arises when trying to pull up this strategy is that the singularizing forcing must be
defined after the cardinals between 𝜆 and 𝜅 were collapsed, and a major part of this section is devoted
to developing this forcing.

The rest of this section is organized as follows. In subsection 6.1, we review the basic construction
and properties of the tree Prikry-type forcing notions of the form Q𝜏𝜅 , 𝜏 ≤ 𝑜U (𝜅), which is defined in
the generic extension by P. Then, we introduce a filter-based variant Q∗

𝜅,𝜏 to be forced over a generic
extension𝑉 [𝐺 ∗𝐻] by P∗Coll(𝜆, < 𝜅) extension𝑉 [𝐺 ∗𝐻] of V, where 𝜅 = 𝜆+ is no longer measurable.

In subsection 6.2, we use the posets Q∗
𝜅,𝜏 , 𝜏 ≤ 𝜆 in order to introduce a forcing equivalent C̄F𝜅 of

CF𝜅 with a dense Prikry-type subforcing C∗F𝜅
whose direct extension order is 𝜆-closed.

8As a matter of fact, HOD𝑉 [𝐺𝜃 ] = 𝑉 since 𝑉 = 𝐿 [U ] is ordinal definable in 𝑉 [𝐺𝜃 ]. We will not used this fact here.
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This completes the proof of Section 5, as the posets C̄F𝜅 can be iterated on different cardinals to
construct models with many 𝜔-strongly measurable cardinals.

6.1. The forcing Q∗
𝜅,𝜏

We turn back to consider our forcing scenario with F𝜅 over 𝑉 [𝐺 ∗ 𝐻], where 𝐺 ⊆ P is generic over
V, and 𝐻 ⊆ Coll(𝜆, < 𝜅) is generic over 𝑉 [𝐺]. Recall that 𝑜U (𝜅) = 𝜆 + 1 and that each measure
𝑈𝜅,𝜏 , 𝜏 ≤ 𝜆 in V extends in 𝑉 [𝐺] to 𝑈𝜅,𝜏 (𝑡), where t is 𝜏-coherent. For each such 𝜏 ≤ 𝜆 and t, let
𝑗𝜅,𝜏,𝑡 : 𝑉 [𝐺] → 𝑀𝜅,𝜏,𝑡 be the ultrapower embedding of 𝑉 [𝐺] by𝑈𝜅,𝜏 (𝑡).

Moving to the further generic extension 𝑉 [𝐺 ∗ 𝐻] of 𝑉 [𝐺], 𝜅 is no longer measurable. Let 𝐹𝜅,𝜏 (𝑡)
denote the filter generated by 𝑈𝜅,𝜏 (𝑡) on P (𝜅)𝑉 [𝐺 ] , and let 𝐹𝜅,𝜏 (𝑡)+ denote the poset on P (𝜅)𝑉 [𝐺 ] of
𝐹𝜅,𝜏 (𝑡) positive sets where a set A is stronger than B if 𝐴 \ 𝐵 belongs to the dual ideal of 𝐹𝜅,𝜏 (𝑡).

By further forcing with the collapse quotient

R𝜏 = Coll(𝜆, < 𝑗𝜅,𝜏,𝑡 (𝜅))/𝐻 � Coll(𝜆, [𝜅, 𝑗𝜅,𝜏,𝑡 (𝜅)),

over 𝑉 [𝐺 ∗ 𝐻], producing a generic filter 𝐻∗
𝜏 ⊆ Coll(𝜆, < 𝑗𝜅,𝜏,𝑡 (𝜅)), with 𝐻∗

𝜏 � Coll(𝜆, < 𝜅) = 𝐻, the
elementary embedding 𝑗𝜅,𝜏,𝑡 extends into

𝑗∗𝜅,𝜏,𝑡 : 𝑉 [𝐺 ∗ 𝐻] → 𝑀𝜅,𝜏,𝑡 [𝐻
∗
𝜏] .

In turn, the embedding 𝑗∗𝜅,𝜏,𝑡 generates a 𝑉 [𝐺 ∗ 𝐻] ultrafilter 𝑈𝜅,𝜏 (𝑡)
∗ ⊆ 𝐹𝜅,𝜏 (𝑡)

+, which is an
𝐹𝜅,𝜏 (𝑡)

+-generic ultrafilter over 𝑉 [𝐺 ∗𝐻], by standard arguments connecting forcing with positive sets
and generic ultrapowers.9 Since the posetR𝜏 = Coll(𝜆, < 𝑗𝜅,𝜏,𝑡 (𝜅))/𝐻 is 𝜆-closed in𝑉 [𝐺 ∗𝐻], we have
that 𝐹𝜅,𝜏 (𝑡)+ has a 𝜆-closed dense subforcing 𝐷𝜅,𝜏,𝑡 . Other examples of applications of Prikry-type
forcings generated by ideals can be found in [4] and [1].

It would be useful for our purposes to work with a concrete description of the sets in 𝐷𝜅,𝜏,𝑡 . We
proceed to introduce the relevant notions.

Definition 6.2. Let 𝐺 ⊆ P be a generic filter over V. For each cardinal 𝜈 < 𝜅 with 𝑜U (𝜈) > 0, let 𝑏𝜈 be
the G-induced generic cofinal sequence in 𝜈.

1. Recall that every finite coherent sequence 𝑡 = 〈𝜈0, . . . , 𝜈𝑘−1〉 ∈ [𝜅]<𝜔 in 𝑉 [𝐺] has an assigned
closed unbounded set 𝑏𝑡 = ∪𝑖<𝑘 (𝑏𝜈𝑖 ∪ {𝜈𝑖}). For a coherent sequence t and a finite set of ordinals
𝑠 ∈ [min(𝑡)]<𝜔 , we define 𝜋𝑠 (𝑡) = min(𝑏𝑡 \ (max(𝑠) + 1)). When 𝑡 = 〈𝜈〉 has a single element, we
will often abuse this definition and write 𝜋𝑠 (𝜈) for 𝜋𝑠 (〈𝜈〉).

For every 𝜂, the function

𝜋𝑠𝜂 (𝜈) = min({𝜇 ∈ 𝑏𝜈 \ (max(𝑠) + 1) | 𝑜U (𝜇) = 𝜂})

defines a Rudin-Keisler projection from𝑈𝜅,𝜏 (𝑠) to𝑈𝜅,𝜂 (𝑠), for all 𝜏 > 𝜂. In particular, 𝜋𝑠 = 𝜋𝑠0 : 𝜅 →
𝜅 is a Rudin-Keisler projection of𝑈𝜅,𝜏 (𝑠) to its normal projected measure𝑈𝜅,0 (𝑠), for every 𝜏 ≥ 0.

2. Let 𝑇 ⊆ [𝜅]<𝜔 be a tree, 𝑡 ∈ [𝜅]<𝜔 , and 𝑄 : 𝑇 → Coll(𝜆, < 𝜅) be a function. We say that Q is
(𝑇, 𝑡)-suitable if for every 𝑠 ∈ 𝑇 , we have
◦ 𝑄(𝑠) ∈ Coll(𝜆, < 𝜅), and
◦ for every 𝑠′ ∈ 𝑇 that extends s, 𝑄(𝑠′) � 𝜆 × 𝜋𝑡⌢𝑠

0 (𝑠′) = 𝑄(𝑠).
For every 𝑠 ∈ 𝑇 , we define𝑄𝑠 to be the induced function on𝑇𝑠 = {𝑟 ∈ [𝜅]<𝜔 | 𝑠⌢𝑟 ∈ 𝑇}, given by

𝑄𝑠 (𝑟) = 𝑄(𝑠
⌢𝑟).

9Indeed, one can verify that the trivial condition in Coll(𝜆, [𝜅, 𝑗𝜅,𝜏,𝑡 (𝜅)) forces 𝜅 ∈ 𝑗 ( �𝑋 ) if and only if there is a subset of
�𝑋 in𝑈𝜅,𝜏 (𝑡) .
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3. Suppose that 𝐻 ⊆ Coll(𝜆, < 𝜅) is generic over 𝑉 [𝐺], 𝑇,𝑄 ∈ 𝑉 [𝐺] as above, and let 𝐴 = succ𝑇 (∅).
We define in 𝑉 [𝐺] [𝐻] the set Q-generic restriction of A with respect to H to be the set

𝐴𝐻𝑄 = {𝜈 ∈ 𝐴 | 𝑄(𝜈) ∈ 𝐻}.

Let 𝐺 ⊆ P be generic over V and 𝐻 ⊆ Coll(𝜆, < 𝜅) be generic over 𝑉 [𝐺]. In 𝑉 [𝐺], for all 𝜏 ≤ 𝜆
and 𝑡 ∈ [𝜅]<𝜔 , the function 𝜋𝑡 = 𝜋𝑡0 represents 𝜅 in the ultrapower by𝑈𝜅,𝜏 (𝑡). It is therefore immediate
from our definition of 𝐷𝜅,𝜏,𝑡 ⊆ 𝐹𝜅,𝜏 (𝑡)

+ that sets in 𝐷𝜅,𝜏,𝑡 are of the form 𝐴𝐻𝑟 = {𝜈 ∈ 𝐴 | 𝑟 (𝜈) ∈ 𝐻}
where 𝐴 ∈ 𝑈𝜅,𝜏 (𝑡), and 𝑟 : 𝐴→ Coll(𝜆, < 𝜅) satisfying 𝑟 (𝜈) ∈ Coll(𝜆, [𝜋𝑡 (𝜈), 𝜅)) for all 𝜈 ∈ 𝐴.10

We use these facts to introduce a variant of Gitik’s forcing Q𝜅,𝜏 in 𝑉 [𝐺 ∗ 𝐻]. The following poset
Q∗
𝜅,𝜏 collapses cardinals up to 𝜅+ to 𝜆 and adds a cofinal Magidor sequence 𝑏𝜅 of length 𝜔𝜏 to 𝜅, which

diagonalizes the filter
⋂

𝜏′<𝜏 𝑈𝜅,𝜏′ (i.e., 𝑏𝜅 is almost contained in each filter set).
Definition 6.3. In 𝑉 [𝐺 ∗ 𝐻], the forcing Q∗

𝜅,𝜏 consists of all (𝑡, 𝑇, 𝑄) ∈ 𝑉 [𝐺] such that:
1. t is a 𝜏-coherent finite sequence of ordinals below 𝜅,
2. T is a tree of 𝜏-coherent finite sequences with stem t,
3. Q is a (𝑇, 𝑡)-suitable function,
4. 𝑄(∅) ∈ 𝐻 and
5. For every 𝑠, 𝑠′ ∈ 𝑇 , if 𝑏𝑡⌢𝑠 = 𝑏𝑡⌢𝑠′ , then 𝑄(𝑠) = 𝑄(𝑠′).

As in Q𝜅,𝜏 , we identify two conditions (𝑡, 𝑇, 𝑄), (𝑡 ′, 𝑇, 𝑄) ∈ Q∗
𝜅,𝜏 , whenever 𝑏𝑡 = 𝑏𝑡′ .

The direct extension ordering of Q∗
𝜅,𝜏 naturally extends the direct extension ordering of Q𝜅,𝜏 .

Namely, for two conditions (𝑡, 𝑇, 𝑄), (𝑡∗, 𝑇∗, 𝑄∗) ofQ∗
𝜅,𝜏 , we have (𝑡, 𝑇, 𝑄) ≤∗ (𝑡∗, 𝑇∗, 𝑄∗) if (𝑡, 𝑇) ≤∗

Q𝜅,𝜏

(𝑡∗, 𝑇∗) and 𝑄∗(𝑠) ≥ 𝑄(𝑠) for every 𝑠 ∈ 𝑇∗.
We observe that the direct extension order ≤∗ is 𝜆-closed in 𝑉 [𝐺 ∗ 𝐻]. For this, note that it is

immediate from the definition above that the partial order ≤̃ ∈ 𝑉 [𝐺], obtained from ≤∗ by removing
the requirement 𝑄(∅) ∈ 𝐻, belongs to 𝑉 [𝐺] and is clearly 𝜆-closed in both 𝑉 [𝐺] and 𝑉 [𝐺 ∗ 𝐻] (note
that the two generic extensions agree on sequences of length < 𝜆). Then, as ≤∗ is equivalent to the
restriction of ≤̃ to a 𝜆-closed set (which is essentially H), it remains 𝜆-closed in 𝑉 [𝐺 ∗ 𝐻].

The end-extension ordering of Q∗
𝜅,𝜏 is based on the restriction of the end-extension of Q𝜅,𝜏 to the

Q-generic restriction of T with respect to H. Namely, for a condition 𝑝 = (𝑡, 𝑇, 𝑄), the only values
𝜈 ∈ succ𝑇 (∅) which are allowed to be used when taking a one-point extension, are 𝜈 ∈ succ𝑇 (∅)𝐻𝑄 .11
In this case, the resulting one-point extension is defined to be 𝑝⌢〈𝜈〉 = (𝑡 ∪ {𝜈}, 𝑇〈𝜈〉 , 𝑄 〈𝜈〉). In general,
for a sequence 𝑟 = 〈𝜈0, . . . , 𝜈𝑘−1〉 ∈ 𝑇 , the end extension of p by r, denoted 𝑝⌢𝑟 , is the one obtained by
taking a sequence of one-point extensions by 𝜈0, . . . , 𝜈𝑘−1, in turn.

We note that althoughQ∗
𝜅,𝜏 depends on the collapse generic H, and is fully defined only in𝑉 [𝐺 ∗𝐻],

we still have that Q∗
𝜅,𝜏 ⊆ 𝑉 [𝐺]. Moreover, dropping the requirement 𝑄(∅) ∈ 𝐻 in the definition of

conditions 𝑝 = (𝑡, 𝑇, 𝑄) ∈ Q∗
𝜅,𝜏 allows us to examine conditions (𝑡, 𝑇, 𝑄) and evaluate possible direct

extensions and one-point extensions in 𝑉 [𝐺]. For example, working in 𝑉 [𝐺], we can consider possible
one-point extensions 𝑝⌢〈𝜈〉 of a condition 𝑝 = (𝑡, 𝑇, 𝑄) by an arbitrary 𝜈 ∈ succ𝑇 (∅). Although
eventually, in 𝑉 [𝐺 ∗ 𝐻], p will be a valid condition only if 𝑄(∅) ∈ 𝐻, and 𝑝⌢〈𝜈〉 will form valid
extensions of p only for a 𝐷𝜅,𝜏,𝑡 -positive set of ordinals 𝜈 ∈ succ𝑇 (∅), it is still possible to decide
certain properties of such extensions on a measure one set of𝑈𝜅,𝜏 (𝑡) in𝑉 [𝐺]. This approach of arguing
from 𝑉 [𝐺] about the poset Q∗

𝜅,𝜏 in 𝑉 [𝐺 ∗ 𝐻] plays a significant role in our proof below, showing that
Q∗
𝜅,𝜏 satisfies the Prikry Property.

Remark 6.4. The forcing Coll(𝜅 < 𝜆) ∗Q∗
𝜅,𝜏 is isomorphic to the collection of all (𝑡, 𝑇, 𝑄) that satisfy

all requirements of Definition 6.3 except the fourth one, 𝑄(∅) ∈ 𝐻. Nevertheless, the decomposition
into the collapse part and the singularization part would be more appropriate for our construction, as
eventually Q∗

𝜅,𝜏 is used as merely an auxiliary forcing.

10i.e., dom(𝑟 (𝜈)) ⊆ 𝜆 × (𝜅 \ 𝜋𝑡 (𝜈)) .
11i.e., 𝜈 ∈ 𝐴𝐻

𝑄 for 𝐴 = succ𝑇 ( ∅) .
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The coherency requirements in Definition 6.3 allow us to obtain a natural amalgamation property,
similar to the one satisfied by the 𝑉 [𝐺] poset Q𝜅,𝜏 .

Lemma 6.5. Work in 𝑉 [𝐺]. Let 𝑝 = (𝑡, 𝑇, 𝑄), forced to be a condition in Q∗
𝜅,𝜏 by 𝑞 = 𝑄(∅), and

𝐴 = succ𝑇 (∅). For each 𝜂 < 𝜏, denote

𝐴(𝜂) = 𝐴 ∩ {𝜈 ∈ 𝐴 | 𝑜U (𝜈) = 𝜂} ∈ 𝑈𝜅,𝜂 (𝑡).

Suppose that there are 𝜂 < 𝜏, a set 𝐴′(𝜂) ⊆ 𝐴(𝜂) with 𝐴′(𝜂) ∈ 𝑈𝜅, �̄� (𝑡) and a sequence of
conditions 〈(𝑡 ∪ {𝜈}, 𝑇 𝜈 , 𝑄𝜈) | 𝜈 ∈ 𝐴′(𝜂)〉, such that (𝑡 ∪ {𝜈}, 𝑇 𝜈 , 𝑄𝜈) is a direct extension of 𝑝⌢〈𝜈〉
for all 𝜈 ∈ 𝐴′(𝜂). Then, there exists a direct extension 𝑝∗ ≥∗ 𝑝, 𝑝∗ = (𝑡, 𝑇∗, 𝑄∗), such that the set
{(𝑡⌢〈𝜈〉, 𝑇 𝜈 , 𝑄𝜈) | 𝜈 ∈ 𝐴′(𝜂)} is forced by 𝑄∗(∅) to be predense above 𝑝∗.

Remark 6.6. In the proof of the lemma, we make use of several construction arguments involving trees
T associated to conditions (𝑡, 𝑇) in the poset Q𝜅,𝜏 from [11]. We list these arguments and refer the
reader to [11] for proofs.

For a finite sequence s, we write 𝑜(𝑠) = max({𝑜(𝜈) | 𝜈 ∈ 𝑠}).

1. Suppose that (𝑡, 𝑇) is a condition of Q𝜅,𝜏 and 𝐴′(𝜂) ⊆ succ𝑇 (∅) belongs to𝑈𝜅,𝜂 (𝑡) for some 𝜂 < 𝜏.
Then there exists a subtree 𝑇 ′ of T, so that (𝑡, 𝑇 ′) ∈ Q𝜅,𝜏 is a direct extension of (𝑡, 𝑇), and

{𝜈 ∈ succ𝑇 ′ (∅) | 𝑜(𝜈) = 𝜂} ⊆ 𝐴′(𝜂).

Similarly, for every 𝑠 ∈ 𝑇 and 𝐴′𝑠 (𝜂) ⊆ succ𝑇 (𝑠) which belongs to 𝑈𝜅,𝜂 (𝑡
⌢𝑠) there is a direct

extension (𝑡, 𝑇 ′) of (𝑡, 𝑇), which only requires shrinking the tree T above s (i.e., shrinking 𝑇𝑠) and in
particular 𝑠 ∈ 𝑇 ′, so that {𝜈 ∈ succ𝑇 ′ (𝑠) | 𝑜(𝜈) = 𝜂} ⊆ 𝐴′𝑠 (𝜂).

Furthermore, this construction can be naturally combined over different values 𝑠 ∈ 𝑇 . Namely,
given a family {𝐴′𝑠 (𝜂) | 𝑠 ∈ 𝑇} of sets as above we can apply the same procedure, level by level, to
the tree T and obtain a subtree 𝑇 ′ ⊆ 𝑇 with the property that (𝑡, 𝑇 ′) ∈ Q𝜅,𝜏 and for every 𝑠 ∈ 𝑇 ′,

{𝜈 ∈ succ𝑇 ′ (𝑠) | 𝑜(𝜈) = 𝜂} ⊆ 𝐴′𝑠 (𝜂).

2. For a condition (𝑡, 𝑇), 𝑠 ∈ 𝑇 , and 𝜂 < 𝜏, there exists a direct extension (𝑡, 𝑇 ′) ≥∗ (𝑡, 𝑇), which only
requires shrinking the tree T above s such that for all 𝑠′ ∈ 𝑇 which end extends s, if there exists
𝜈 ∈ 𝑏𝑠′ \ 𝑏𝑠 such that 𝑜(𝜈) = 𝜂,12 then 𝜈′ = 𝜋𝑡⌢𝑠

𝜂 (𝑠′) (the minimal such 𝜈) belongs to succ𝑇 ′ (𝑠).
Repeating this construction, level by level, produces a direct extension (𝑡, 𝑇 ′) of (𝑡, 𝑇) satisfying that
for every 𝑠 ∈ 𝑇 ′ and 𝑠′ ∈ 𝑇 ′ which extends s, 𝜈′ = 𝜋𝑡⌢𝑠

𝜂 (𝑠′) ∈ succ𝑇 ′ (𝑠) ∩ {𝜈 < 𝜅 | 𝑜(𝜈) = 𝜂}.
We note that if 𝑠 ∈ 𝑇 ′ satisfies that 𝑜(𝜇) < 𝜂 for all 𝜇 ∈ 𝑠, then for every 𝜇 ∈ succ𝑇 ′ (𝑠) with

𝑜(𝜇) ≥ 𝜂, we have 𝜋𝑡⌢𝑠
𝜂 (𝜇) = 𝜋𝑡𝜂 (𝑠

⌢〈𝜇〉), which by our assumption of 𝑇 ′ (applied to 𝑠′ = 𝑠⌢〈𝜇〉),
implies that 𝜋𝑡𝜂 (𝑠⌢〈𝜇〉) ∈ succ𝑇 ′ (∅). It follows that

succ𝑇 ′ (𝑠) ∩ {𝜈 | 𝑜(𝜈) = 𝜂} ⊆ succ𝑇 ′ (∅) ∩ {𝜈 | 𝑜(𝜈) = 𝜂}.

Since the former set belongs to𝑈𝜅,𝜂 (𝑡
⌢𝑠), we conclude that

succ𝑇 ′ (∅) ∩ {𝜈 | 𝑜(𝜈) = 𝜂} ∈ 𝑈𝜅,𝜂 (𝑡
⌢𝑠)

as well.
The same consideration applies to any 𝑠 ∈ 𝑇 ′ and 𝑠′ ∈ 𝑇 ′ which extends s, and for which 𝑜(𝜈) < 𝜂

for every 𝜈 ∈ 𝑠′ \ 𝑠, and implies that

succ𝑇 ′ (𝑠) ∩ {𝜈 | 𝑜(𝜈) = 𝜂} ∈ 𝑈𝜅,𝜂 (𝑡
⌢𝑠′).

12this is equivalent to the existence of 𝜇 ∈ 𝑠′ \ 𝑠 such that 𝑜 (𝜇) ≥ 𝜂.
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3. Let (𝑡, 𝑇 ′) be a condition as in the previous clause. There exists a direct extension (𝑡, 𝑇∗) of (𝑡, 𝑇 ′)
such that for every 𝑠′ ∈ 𝑇∗ for which 𝜈′ = 𝜋𝑡𝜂 (𝑠′) ∈ 𝑏𝑠′ \ 𝑏𝑡 is defined, not only that

𝜈′ ∈ succ𝑇 ∗ (∅) ∩ {𝜈 | 𝑜(𝜈) = 𝜂},

but further, there is some 𝑠′′ ∈ 𝑇∗ which extends 〈𝜈′〉 such that 𝑏𝑡⌢𝑠′′ = 𝑏𝑡⌢𝑠′ and 𝑇∗𝑠′ ⊆ 𝑇
∗
𝑠′′ . We

note that it implies that the set

{(𝑡 ∪ {𝜈}, 𝑇∗〈𝜈〉) | 𝜈 ∈ succ𝑇 ∗ (∅), 𝑜(𝜈) = 𝜂}

is predense above (𝑡, 𝑇∗).

We turn to the proof of Lemma 6.5.

Proof (Lemma 6.5). For 𝑠 ∈ 𝑇 , define 𝑜(𝑠) = max({𝑜(𝜈) | 𝜈 ∈ 𝑠}), and for a tree 𝑇 ⊆ [𝜅]<𝜔 , and 𝜂,
𝑇 (< 𝜂) = {𝑠 ∈ 𝑇 | 𝑜(𝑠) < 𝜂}. Let 𝑝 = (𝑡, 𝑇, 𝑄), 𝐴′(𝜂), and 〈(𝑡 ∪ {𝜈}, 𝑇 𝜈 , 𝑄𝜈) | 𝜈 ∈ 𝐴′(𝜂)〉, as in the
statement of the Lemma. By part (1) of Remark 6.6 above, we may assume (by reducing to a suitable
subtree) that succ𝑇 (∅) ∩ {𝜈 | 𝑜(𝜈) = 𝜂} ⊆ 𝐴′(𝜂). Furthermore, by part (2) of the remark, we may
further assume that 𝐴′(𝜂) ∈ 𝑈𝜅, �̄� (𝑡

⌢𝑠) for every 𝑠 ∈ 𝑇 with 𝑜(𝑠) < 𝜂.
Recall that for each sequence 𝑠 ∈ 𝑇 , 𝑜(𝑠) < 𝜂, the function 𝜋𝑡⌢𝑠 (𝜈) is a normal projection of

𝑈𝜅, �̄� (𝑡
⌢𝑠) to 𝑈𝜅,0 (𝑡

⌢𝑠). Since 𝑄𝜈 (∅) � 𝜆 × 𝜋𝑡
⌢𝑠 (𝜈) is bounded in 𝜋𝑡⌢𝑠 (𝜈),13 we can press down

on its value and find a subset 𝐴′𝑠 (𝜂) ∈ 𝑈𝜅, �̄� (𝑡
⌢𝑠) of 𝐴′(𝜂) and a collapse condition 𝑄 ′(𝑠) such that

𝑄𝜈 (∅) � 𝜋𝑡
⌢𝑠 (𝜈) = 𝑄 ′(𝑠) for all 𝜈 ∈ 𝐴′𝑠 (𝜂).

By applying the construction arguments of Remark 6.6, we may find direct extension (𝑡, 𝑇 ′) of (𝑡, 𝑇)
having both properties from parts (1) and (2) of the remark, where (1) is applied with respect to the sets
𝐴′𝑠 (𝜂), 𝑠 ∈ 𝑇 ′, 𝑜(𝑠) < 𝜂, given by the pressing down process above, by which 𝑄 ′(𝑠) is defined. We note
that, as mentioned at the end of part (2) of the remark, for every 𝑠′ ∈ 𝑇 ′(< 𝜂) = {𝑠 ∈ 𝑇 ′ | 𝑜(𝑠) < 𝜂}
which end extends s,

succ𝑇 ′ (𝑠) ∩ {𝜈 | 𝑜(𝜈) = 𝜂} ∈ 𝑈𝜅, �̄� (𝑡
⌢𝑠′).

Moreover, since

succ𝑇 ′ (𝑠) ∩ {𝜈 | 𝑜(𝜈) = 𝜂} ⊆ 𝐴′𝑠 (𝜂),

we conclude that 𝐴′𝑠 (𝜂) ∈ 𝑈𝜅, �̄� (𝑠
′). It follows that 𝐴′𝑠 (𝜂) ∩ 𝐴′𝑠′ (𝜂) ≠ ∅, which in turn, implies that

𝑄 ′(𝑠) = 𝑄 ′(𝑠′) � 𝜆 × 𝜋𝑡
⌢𝑠 (𝑠′)

(as witnessed by 𝑄𝜈 (∅) for any 𝜈 ∈ 𝐴′𝑠 (𝜂) ∩ 𝐴′𝑠′ (𝜂)).
Finally, we form a subtree 𝑇 ′′ of 𝑇 ′ by intersecting 𝑇 ′

〈𝜈〉
with 𝑇 𝜈 , for each 𝜈 ∈ succ𝑇 ′ (∅) ∩ {𝜈 |

𝑜(𝜈) = 𝜂} ⊆ 𝐴′(𝜂). By appealing to part (3) of the previous remark, we can find a direct extension
(𝑡, 𝑇∗) of (𝑡, 𝑇 ′′) which further satisfies that for every 𝑠 ∈ 𝑇∗ for which 𝜈𝑠 := 𝜋𝑡𝜂 (𝑠) ∈ 𝑏𝑠 \ 𝑏𝑡 is defined,
𝜈𝑠 ∈ succ𝑇 ∗ (∅) ∩ {𝜈 | 𝑜(𝜈) = 𝜂}, and there exists some 𝑠′ ∈ 𝑇∗ which end extends 〈𝜈𝑠〉, such that
𝑏𝑡⌢𝑠′ = 𝑏𝑡⌢𝑠 and 𝑇∗𝑠 ⊆ 𝑇∗𝑠′ . Let 𝑠 = 𝑠′ \ 𝜈𝑠 + 1.
𝑄𝜈𝑠 (𝑠) is defined, since 𝑇∗

〈𝜈𝑠 〉
⊆ 𝑇 𝜈𝑠 = dom(𝑄𝜈𝑠 ). Moreover, since (𝑡 ∪ {𝜈𝑠}, 𝑇

𝜈𝑠 , 𝑄𝜈𝑠 ) is assumed
to be a condition in Q∗

𝜅,𝜏 , the value 𝑄𝜈𝑠 (𝑠) does not depend on the choice of a sequence 𝑠′ and its
associated subsequence 𝑠 ∈ 𝑇 𝜈𝑠 satisfying 𝑏𝑡⌢ 〈𝜈𝑠 〉⌢𝑠 = 𝑏𝑡⌢𝑠′ = 𝑏𝑡⌢𝑠 .

We turn to define the function 𝑄∗ on 𝑇∗. We follow the convention from the last paragraph, where
for 𝑠 ∈ 𝑇∗ with 𝑜(𝑠) ≥ 𝜂, we denote 𝜈𝑠 = 𝜋𝑡�̄� (𝑠). We set

13i.e., 𝑄𝜈 ( ∅) � 𝜆 × 𝜋𝑡⌢𝑠 (𝜈) ∈ 𝑉𝜋𝑡⌢𝑠 (𝜈) and 𝜋𝑡⌢𝑠 (𝜈) is an inaccessible cardinal
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𝑄∗(𝑠) =

{
𝑄𝜈𝑠 (𝑠) if 𝑜(𝑠) ≥ 𝜂, 𝑠 ∈ 𝑇 𝜈𝑠 satisfies 𝑏𝑡⌢ 〈𝜈𝑠 〉⌢𝑠 = 𝑏𝑡⌢𝑠

𝑄 ′(𝑠) if 𝑜(𝑠) < 𝜂

We claim that 𝑄∗(∅) forces that (𝑡, 𝑇∗, 𝑄∗) is a condition that extends (𝑡, 𝑇, 𝑄). We show first that
𝑄∗(∅) forces (𝑡, 𝑇∗, 𝑄∗) is a condition of Q∗

𝜅,𝜏 , which requires verifying the first three conditions in the
definition of the poset. Conditions (i) and (ii) are clearly satisfied as (𝑡, 𝑇∗) ∈ Q𝜅,𝜏 . To verify condition
(iii), we need to check that for every 𝑠, 𝑠′ ∈ 𝑇∗, if 𝑠′ extends s, then 𝑄∗(𝑠) = 𝑄∗(𝑠′) � 𝜆 × 𝜋𝑡

⌢𝑠 (𝑠′). The
verification breaks down to three cases.

Case I: If 𝑜(𝑠), 𝑜(𝑠′) < 𝜂, then 𝑠, 𝑠′ ∈ 𝑇∗(< 𝜂) and, as described above, the result is an immediate
consequence of the fact that 𝑠′ ∈ 𝑇 ′(< 𝜂) end extends s.

Case II: If 𝑜(𝑠) < 𝜂 and 𝑜(𝑠′) ≥ 𝜂, then 𝜈′ = 𝜋𝑡
⌢𝑠
�̄� (𝑠′) ∈ 𝐴′𝑠 (𝜂). As 𝜋𝑡⌢𝑠 (𝑠′) = 𝜋𝑡

⌢𝑠 (𝜈′) and
(𝑡 ∪ {𝜈′}, 𝑇 𝜈 , 𝑄𝜈) ∈ Q∗

𝜅,𝜏 , it follows that

𝑄∗(𝑠′) � 𝜆 × 𝜋𝑡
⌢𝑠 (𝑠′) =

𝑄𝜈′ (𝑠′) � 𝜆 × 𝜋𝑡
⌢𝑠 (𝑠′) =

𝑄𝜈′ (∅) � 𝜆 × 𝜋𝑡
⌢𝑠 (𝜈′) = 𝑄 ′(𝑠) = 𝑄∗(𝑠).

Case III: If 𝑜(𝑠) ≥ 𝜂, then there exists some 𝑠 ∈ 𝑇∗𝜈𝑠 ⊆ 𝑇 𝜈𝑠 such that 𝑏𝑡⌢ 〈𝜈𝑠 〉⌢𝑠 = 𝑏𝑡⌢𝑠 and𝑇∗𝑠 ⊆ 𝑇∗
〈𝜈𝑠 〉⌢𝑠

.
In particular,𝑄∗(𝑠) = 𝑄∗(𝑠) and 𝑠′ ∈ 𝑇∗

〈𝜈𝑠 〉⌢𝑠
⊆ 𝑇 𝜈𝑠𝑠 . Since𝑄𝜈𝑠 is (𝑡∪{𝜈𝑠}, 𝑇

𝜈𝑠 )-coherent, we conclude
that

𝑄∗(𝑠′) � 𝜆 × 𝜋𝑡
⌢𝑠 (𝑠′) =

𝑄𝜈𝑠 (𝑠′) � 𝜆 × 𝜋𝑡
⌢𝑠 (𝑠′) = 𝑄𝜈𝑠 (𝑠) = 𝑄∗(𝑠).

This concludes the proof that 𝑝∗ = (𝑡, 𝑇∗, 𝑄∗) satisfies the property (iii) of the definition of Q∗
𝜅,𝜏 ,

and thus, that 𝑄∗(∅) ∈ Coll(𝜆, < 𝜅) forces it as a condition of Q∗
𝜅,𝜏 . It is immediate from its definition

that 𝑝∗ is a direct extension of p. Finally, our choice of the tree 𝑇∗ above, obtained from 𝑇 ′ using fact
(3) from Remark 6.6 above, implies at once that 𝑄∗(∅) forces {(𝑡⌢〈𝜈〉, 𝑇 𝜈 , 𝑄𝜈) | 𝜈 ∈ 𝐴′(𝜂)} to be
predense above 𝑝∗. �

Lemma 6.7. Q∗
𝜅,𝜏 satisfies the Prikry Property.

Proof. Suppose otherwise. Working in 𝑉 [𝐺 ∗ 𝐻], let (𝑡, 𝑇, 𝑄), 𝜎 be condition and statement of Q∗
𝜅,𝜏 ,

respectively, such that no direct extension of (𝑡, 𝑇, 𝑄) decides 𝜎. Back in𝑉 [𝐺], let 𝑞 ∈ 𝐻 be a condition
which forces this statement about (𝑡, 𝑇, 𝑄) and 𝜎. Since q forces (𝑡, 𝑇, 𝑄) to be a condition of Q∗

𝜅,𝜏 ,
we have that 𝑞 ≥ 𝑄(∅). Therefore, by moving to a direct extension of (𝑡, 𝑇, 𝑄), we may assume that
𝑞 = 𝑄(∅). For notational simplicity, we make the assumption that 𝑡 = ∅. The proof for an arbitrary
sequence t is similar.

Let 𝐴 = succ𝑇 (∅). We may assume that 𝑞 ∈ 𝑉𝜇0 , where 𝜇0 = min({𝜋∅0 (𝜈) | 𝜈 ∈ 𝐴}). For each
𝜈 ∈ 𝐴, we choose a condition 𝑞(𝜈) ∈ Coll(𝜆, < 𝜅), extending 𝑞 ∪𝑄(𝜈), which decides the Coll(𝜆, < 𝜅)
statement of whether there exists a direct extension 𝑝𝜈 = (〈𝜈〉, 𝑇 𝜈 , 𝑄𝜈) of 𝑝⌢〈𝜈〉 which decides 𝜎,
and if so, whether 𝑝𝜈 forces 𝜎 or ¬𝜎. Let 𝐴0 be the sets of 𝜈 ∈ 𝐴 for which 𝑞(𝜈) forces 𝑝𝜈 exists,
and ‘𝑝𝜈 � 𝜎’. Similarly, let 𝐴1 ⊆ 𝐴 consist of 𝜈 such that 𝑞(𝜈) forces 𝑝𝜈 exists, and ‘𝑝𝜈 � ¬𝜎’ and
𝐴2 = 𝐴 \ (𝐴0 � 𝐴1). The proof splits now into three main cases:

Case 0: There exists some 𝜂 < 𝜏 such that 𝐴0 ∈ 𝑈𝜅, �̄� (∅).

Let 𝐴′(𝜂) = 𝐴0 ∩ {𝜈 | 𝑜(𝜈) = 𝜂}. By applying Lemma 6.5 with respect to the family of conditions
{𝑝𝜈 = (〈𝜈〉, 𝑇 𝜈 , 𝑄𝜈) | 𝜈 ∈ 𝐴′(𝜂)}, we can find a 𝑝∗ = (∅, 𝑇∗, 𝑄∗) which is forced by𝑄∗(∅) to be a direct
extension of (∅, 𝑇, 𝑄), and to have {𝑝𝜈 | 𝜈 ∈ 𝐴′(𝜂)} be a predense in Q∗

𝜅,𝜏/(∅, 𝑇
∗, 𝑄∗). It follows that
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𝑄∗(∅) ≥ 𝑄(∅) = 𝑞 forces 𝑝∗ = (∅, 𝑇∗, 𝑄∗) is a direct extension of p which decides 𝜎. This contradicts
our assumption.

Case 1: There exists some 𝜂 < 𝜏 such that 𝐴1 ∈ 𝑈𝜅, �̄� (∅).

The argument for this case is similar to the previous one and leads to an extension 𝑞∗ ≥ 𝑞 in
Coll(𝜆, < 𝜅) and a direct extension 𝑝 ≥∗ 𝑝, such that 𝑞∗ forces 𝑝 �Q∗

𝜅,𝜏
¬𝜎. Contradiction.

Case 2: 𝐴2 ∈
⋂

𝜂<𝜏 𝑈𝜅,𝜂 (∅).

Let 𝐴2(0) = 𝐴2 ∩ {𝜈 | 𝑜(𝜈) = 0}, and apply Lemma 6.5 with respect to 𝐴2(0) and {𝑝⌢〈𝜈〉 | 𝜈 ∈
𝐴2 (0)} to obtain a direct extension 𝑝∗0 = (∅, 𝑇∗0 , 𝑄

∗
0) of p, with {𝑝⌢〈𝜈〉 | 𝜈 ∈ 𝐴2(0)} being predense in

Q∗
𝜅,𝜏/𝑝

∗
0.

Denoting 𝑞∗0 = 𝑄∗
0 (∅), we define �̄�2 to be the set of all 𝜈 ∈ 𝐴2 for which 𝑞∗0 forces there is no direct

extension 𝑝𝜈 ≥∗ 𝑝′⌢𝜈 which decides 𝜎. Note that �̄�2 must belong to
⋂

𝜂<𝜏 𝑈𝜅,𝜂 (∅), since otherwise,
there would be some 𝜂 < 𝜏, and a set 𝐴′(𝜂) ⊆ �̄�2 consisting of 𝜈 for which some 𝑞∗(𝜈) ≥ 𝑞∗0 forces
there exists a direct extension of 𝑝∗0

⌢𝜈 which decides 𝜎. This, in turn would allow us to repeat the
construction of one of the previous cases 0 and 1, to show that there is 𝑞∗ ≥∗ 𝑞∗0 which forces some
direct extension 𝑝∗ of 𝑝∗0 to force either 𝜎 or ¬𝜎, contradicting the choice of 𝑞∗0.

Let 𝑞1 := 𝑞∗0 and 𝑝1 = (∅, 𝑇1, 𝑄1) be the direct extension of 𝑝∗0 obtained by shrinking succ
𝑇

𝑝∗0
(∅)

to points in �̄�2. It follows from the construction 𝑞1 forces that for all 𝜈 ∈ succ𝑇 1 (∅), 𝑝1⌢〈𝜈〉 does not
have a direct extension in Q∗

𝜅,𝜏 which decides 𝜎.
Next, we move up to the second level of the tree. To each 𝜇 ∈ succ𝑇 1 (∅), we can repeat the above

analysis with respect to 𝑞(𝜇) = 𝑞1 ∪ 𝑄1 (𝜇) and 𝑝1⌢〈𝜇〉 = (〈𝜇〉, 𝑇1
〈𝜇〉
, 𝑄1

〈𝜇〉
). Accordingly, we split

𝐵 = succ𝑇 1 (∅) into three sets, 𝐵0, 𝐵1, 𝐵2, based on whether the analysis for 𝑞(𝜇) and 𝑝1⌢〈𝜇〉 has
produced an extension 𝑞∗(𝜇) ≥ 𝑞(𝜇) which forces some direct extension 𝑝1,𝜇 ≥∗ 𝑝1⌢〈𝜇〉 to decide 𝜎
(𝐵0 and 𝐵1 for forcing 𝜎 and ¬𝜎, respectively). The argument above shows that if 𝐵0 or 𝐵1 belongs
to 𝑈𝜅,𝜂 (∅) for some 𝜂 < 𝜏, then there exists some 𝑞∗ ≥ 𝑞1 which forces that 𝑝1 has a direct extension
which decides 𝜎, contradicting our assumptions.

It follows that 𝐵2 ∈
⋂

𝜂<𝜏 𝑈𝜅,𝜂 (∅), and by repeating the argument from the beginning of Case 2 for
each 𝑝1⌢〈𝜇〉, 𝜇 ∈ 𝐵2, we can find for each 𝜇 ∈ 𝐵2, conditions 𝑞∗(𝜇) ≥ 𝑞1 (𝜇), 𝑞∗(𝜇) ∈ Coll(𝜆, 𝜋∅0 (𝜇)),
and 𝑝∗𝜇 = (〈𝜇〉, 𝑇∗𝜇, 𝑄

1
𝜇) ≥

∗ 𝑝1⌢𝜇, such that 𝑞∗(𝜇) forces there is no direct extension of 𝑝∗𝜇⌢𝜈 which
decides 𝜎, for any 𝜈 ∈ succ𝑇 ∗

𝜇
(∅). We may assume 𝑞∗(𝜇) = 𝑄1

𝜇 (∅) and apply Lemma 6.5 with respect
to 𝐵2(0) and {𝑝∗𝜇 | 𝜇 ∈ 𝐵2(0)}, to conclude, similarly to the above, that there are extensions 𝑞2 ≥ 𝑞1

and 𝑝2 = (∅, 𝑇2, 𝑄2) ≥∗ 𝑝1, such that 𝑞2 forces that for any pair 〈𝜈0, 𝜈1〉 ∈ 𝑇
2, 𝑝2

〈𝜈0 ,𝜈1 〉
does not have a

direct extension which decides 𝜎.
The construction is now repeated level by level, for all 𝑛 < 𝜔. This produces sequences of extensions

𝑞 = 𝑞0 ≤ 𝑞1 ≤ · · · ≤ 𝑞𝑛 · · · in Coll(𝜆, < 𝜅) and 𝑝 = 𝑝0 ≤∗ 𝑝1 ≤∗ · · · ≤∗ 𝑝𝑛 · · · in Q∗
𝜅,𝜏 , such that for

each 𝑛 < 𝜔, writing 𝑝𝑛 = (∅, 𝑇𝑛, 𝑄𝑛), we have that 𝑞𝑛 forces that for all sequences 𝑠 ∈ 𝑇𝑛 of length
|𝑠 | ≤ 𝑛, 𝑝𝑛⌢𝑠 does not have a direct extension which decides 𝜎. Finally, let 𝑞𝜔 ∈ Coll(𝜆, < 𝜅) be a
union of all 𝑞𝑛, 𝑛 < 𝜔, and 𝑝∗ ∈ Q∗

𝜅,𝜏 be a direct extension of 𝑝𝑛 for all 𝑛 < 𝜔. Writing 𝑝∗ = (∅, 𝑇∗, 𝑄∗),
it follows from the construction that 𝑝𝜔 forces that for no 𝑠 ∈ 𝑇∗ such that 𝑝∗⌢𝑠 has a direct extension
which decides 𝜎. This is, of course, absurd. �

We conclude that (Q∗
𝜅,𝜏 , ≤, ≤

∗) is a Prikry-type forcing whose direct extension order ≤∗ is 𝜆-
closed. In particular, it does not add bounded subsets to 𝜆. Moreover, like Q𝜏𝜅 , (Q∗

𝜅,𝜏 , ≤) introduces a
generic club 𝑏𝜏𝜅 ⊆ 𝜅 of order-type ot(𝑏𝜏𝜅 ) = 𝜔𝜏 . Finally, since 𝑈𝜅,𝜏′ ⊆ 𝐹𝜅,𝜏′ (𝑡) is clearly contained
in 𝐷𝜅,𝜏′,𝑡 for every coherent sequence t, it follows from a standard density argument that if 𝑏𝜏𝜅 is a
Q∗
𝜅,𝜏-generic sequence over 𝑉 [𝐺 ∗ 𝐻], then for every V-set 𝐴 ∈ F𝜅 , there exists some 𝛽 < 𝜅 such

that 𝑏𝜏𝜅 \ 𝛽 ⊆ 𝐴.
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6.2. The forcing C̄F𝜅

Our goal now is to introduce a poset C̄F𝜅 which is equivalent to CF𝜅 , and further has a dense subforcing
C∗F𝜅

, which is of the Prikry-type, and its direct extension order is 𝜆-closed. We first introduce the poset
C∗F𝜅

, obtained from Q∗
𝜅,𝜆 and CF𝜅 .

Recall that 𝐺 ∗ 𝐻 is V generic for P ∗ Coll(𝜆, < 𝜅). Working in 𝑉 [𝐺 ∗ 𝐻], we consider the two-step
iterations Q∗

𝜅,𝜆 ∗ CF𝜅 consisting of conditions (𝑞, 𝑥
˜
) so that 𝑞 �Q∗

𝜅,𝜆
𝑥
˜
∈ ˇCF𝜅 . Note that when forcing

with CF𝜅 over a 𝑉 [𝐺 ∗ 𝐻]-generic extension by Q∗
𝜅,𝜆, we require that the bounded closed sets 𝑐 ⊆ 𝜅 in

the conditions 𝑥 = 〈𝑐, 𝐴〉 ∈ CF𝜅 are actually ground model sets, from 𝑉 [𝐺 ∗𝐻]. In particular, for every
condition (𝑞, 𝑥

˜
), there exists an extension 𝑞′ ≥ 𝑞 and a pair 𝑥 ∈ CF𝜅 so that 𝑞′ � 𝑥

˜
= 𝑥.

Let 𝑏𝜆𝜅 ⊆ 𝜅 be a Q∗
𝜅,𝜆 generic club in 𝜅. We know that ot(𝑏𝜆𝜅 ) = 𝜆 and that 𝑏𝜆𝜅 is almost contained

in every set 𝐴 ∈ F𝜅 . Working in a Q∗
𝜅,𝜆 generic extension 𝑉 [𝐺 ∗ 𝐻 ∗ 𝑏𝜆𝜅 ] of 𝑉 [𝐺 ∗ 𝐻], we see that for

every condition 𝑥 = 〈𝑐, 𝐴〉 in CF𝜅 , there exists some 𝛽 ∈ 𝐴 \ (max 𝑐 + 1) such that 𝑥 ′ = 〈𝑐′, 𝐴〉, with
𝑐′ = 𝑐 ∪ {𝛽}, extends x and satisfies that 𝑏𝜆𝜅 \ (max 𝑐′ + 1) ⊆ 𝐴.

Definition 6.8 (C𝜆F𝜅
). Working in aQ∗

𝜅,𝜆 generic extension𝑉 [𝐺∗𝐻∗𝑏𝜆𝜅 ] of𝑉 [𝐺∗𝐻], letC𝜆F𝜅
denote the

subset of CF𝜅 , consisting of conditions 𝑥 ′ = 〈𝑐′, 𝐴′〉 so that max(𝑐′) ∈ 𝑏𝜆𝜅 , and 𝑏𝜆𝜅 \ (max(𝑐′) +1) ⊆ 𝐴′.

It follows from the above that C𝜆F𝜅
is a dense subset of CF𝜅 . Since 𝑏𝜆𝜅 ⊆ 𝜅 is closed of order-type

𝜆 = cf(𝜅)𝑉 [𝐺∗𝐻∗𝑏𝜆𝜅 ] , and no sequences of ordinals of length < 𝜆 are introduced by 𝑏𝜆𝜅 , it follows that
the restriction of the CF𝜅 order to C𝜆F𝜅

is 𝜆-closed.
With this observation, we move back to 𝑉 [𝐺 ∗ 𝐻] to define the poset C∗F𝜅

.

Definition 6.9 (C∗F𝜅
). LetC∗F𝜅

be the two step iterationC∗F𝜅
= Q∗

𝜅,𝜆∗C
𝜆
F𝜅

. We define the direct extension
ordering ≤∗ of C∗F𝜅

to be the extension of the usual direct extension order of Q𝜆𝜅 with the standard order
on the second C𝜆F𝜅

component.

Corollary 6.10. C∗F𝜅
is a dense subforcing of Q∗

𝜅,𝜆 ∗ CF𝜅 which satisfies the Prikry Property, and its
direct extension order is 𝜆-closed.

Note that for every dense subset D ofCF𝜅 and a condition (𝑞, 𝑥
˜
) ∈ C∗F𝜅

, there exists a direct extension
(𝑞∗, 𝑥

˜
∗) ≥∗ (𝑞, 𝑥

˜
) such that 𝑞∗ � 𝑥

˜
∗ ∈ �̌�. Similarly, it is clear that the set of conditions (𝑞′, 𝑥 ′) ∈ C∗F𝜅

,
for which the second component is a canonical name 𝑥 ′ of a condition 𝑥 ′ ∈ CF𝜅 , is dense in C∗F𝜅

.
The map (𝑞′, 𝑥 ′) ↦→ 𝑥 ′ defined on this dense set naturally induces a forcing projection 𝜋 from C∗F𝜅

to
the boolean completion of CF𝜅 . This projection sends a condition of the form 〈𝑞, 𝑥

˜
〉 to the join of the

collection of all 𝑦 ∈ CF𝜅 such that there is some extension of q, 𝑞′ that forces 𝑥
˜
= �̌�.

Next, we follow Gitik’s machinery from [13], to form a Prikry-type forcing notion C̄F𝜅 which is
equivalent to CF𝜅 , from C∗F𝜅

.

Definition 6.11 (C̄F𝜅 ). We define a Prikry-type forcing notion (C̄F𝜅 , ≤
′, ≤∗) as follows.

◦ C̄F𝜅 = C∗F𝜅
,

◦ the partial ordering ≤′ is defined by 𝑝′ ≥′ 𝑝 if 𝜋(𝑝′) ≥ 𝜋(𝑝) and
◦ ≤∗ is taken to be the same direct extension order of C∗F𝜅

It is immediate from the definition that (C̄F𝜅 , ≤
′) is equivalent as a forcing notion to (CF𝜅 , ≤) and

that the direct extension order ≤∗ of C̄F𝜅 is 𝜆-closed. To show that (C̄F𝜅 , ≤
′, ≤∗) satisfies the Prikry

Property, it suffices to verify that for every statement 𝜎 in the forcing language of CF𝜅 and every
condition 𝑝 ∈ C̄F𝜅 , there is a direct extension 𝑝∗ ≥∗ 𝑝 such that 𝜋(𝑝∗) decides 𝜎. Indeed, defining
𝐷0 = {𝑝′ ∈ C∗F𝜅

| 𝜋(𝑝′) � 𝜎} and 𝐷1 = {𝑝′ ∈ C∗F𝜅
| 𝜋(𝑝′) � ¬𝜎}, it is clear that 𝐷0 ∪ 𝐷1 is dense in

C∗F𝜅
and that a generic filter 𝐺∗ of C∗F𝜅

will have a nontrivial intersection with exactly one of the two
sets. Let 𝜎∗ : 𝐺

˜
∗ ∩𝐷0 ≠ ∅. Then 𝜎∗ is a statement for the forcing language of C∗F𝜅

. Moreover, it is clear
from our construction that for a condition 𝑝∗ ∈ C∗F𝜅

which decides 𝜎∗, we have that 𝑝∗ � 𝜎∗ implies
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that 𝜋(𝑝∗) � 𝜎, and 𝑝∗ � ¬𝜎∗ implies that 𝜋(𝑝∗) � 𝜎. Since C∗F𝜅
satisfies the Prikry Property, every

condition p has a direct extension 𝑝∗ ≥∗ 𝑝 which decides 𝜎∗.
We note that, similarly to P ∗ Coll(𝜆, < 𝜅) ∗ CF𝜅 , the forcing P ∗ Coll(𝜆, < 𝜅) ∗ C∗F𝜅

is cone
homogeneous. In most applications of homogeneity, moving to an equivalent forcing does not change
the main properties of its iterations. In order to apply the results from section 8.1 and argue that the
iteration P ∗ Coll(𝜆, < 𝜅) ∗ C̄F𝜅 is cone homogeneous, we need to verify that this poset meets the
assumptions of Lemma 8.5.
Lemma 6.12. Denote P ∗ Coll(𝜆, < 𝜅) ∗ C∗F𝜅

byW, and its regular and direct extension orders by ≤W
and ≤∗

W
, respectively.

For every 𝑤0, 𝑤1 ∈ W there are direct extensions 𝑤∗
0, 𝑤

∗
1 of 𝑤0, 𝑤1, respectively, and a cone

isomorphism 𝜑 : W/𝑤∗
0 →W/𝑤∗

1 which respects the direct extension order ≤∗
W

.
In particular, the forcing P ∗ Coll(𝜆, < 𝜅) ∗ C̄F𝜅 is cone homogeneous.
We observe that assuming the coherent sequence U (by whichW = P∗Coll(𝜆, < 𝜅) ∗C∗F𝜅

is defined)
is ordinal definable in V, then the statement of the lemma guarantees thatW satisfies the requirements
of the iterated poset Q𝛼 from Lemma 8.5.

Proof. Let us start with the last assertion. Since the identity is a projection from C∗F𝜅
to C̄F𝜅 , an

isomorphism of a cone of elements in C∗F𝜅
naturally induces an isomorphism of the corresponding cone

in C̄F𝜅 .
Let 𝑤0 = 〈𝑝0, 𝑐0, 〈𝑞0, 𝑥˜ 0〉〉 and 𝑤1 = 〈𝑝1, 𝑐1, 〈𝑞1, 𝑥˜ 1〉〉, where the conditions 𝑞0 = 〈𝑡0, 𝑇0, 𝑄0〉 and

𝑞1 = 〈𝑡1, 𝑇1, 𝑄1〉 belong to Q∗
𝜅,𝜆.

By [5, Theorem 4.6] applied to the iteration P ∗ Q𝜅,𝜆, there are direct extensions 〈𝑝∗0, (𝑡0, 𝑇)〉 of
〈𝑝0, (𝑡0, 𝑇0)〉, and 〈𝑝∗1, (𝑡1, 𝑇)〉 of 〈𝑝1, (𝑡1, 𝑇1)〉, with a common top tree T, and an isomorphism 𝜓
between the cone below 〈𝑝∗0, (𝑡0, 𝑇)〉 and the cone below 〈𝑝∗1, (𝑡1, 𝑇)〉. We record here that the map 𝜓
constructed in the proof of [5, Theorem 4.6] satisfies two additional properties. First, it does not make
any changes to the F𝜅 -trees S appearing in conditions 𝑝⌢〈𝑠, 𝑆〉 ∈ P∗Q𝜅,𝜆. Second, it respects the direct
extension order of P ∗ Q𝜅,𝜆.

Next, we move to examine the Levy collapse condition and the suitable functions in the conditions
fromW. Since the collapsing forcing Coll(𝜆, < 𝜅) is evaluated in the generic extension by P, 𝜓 naturally
acts also on the P-names 𝑐0 and𝑄0 that appear in 𝑤0. As usual, we denote the resulting names by 𝑐𝜓0 and
𝑄
𝜓
0 . Let 𝜏∅ be a P-name of an automorphism of the Levy collapse poset which maps an extension 𝑐′0 of
𝑐
𝜓
0 to an extension 𝑐∗1 of 𝑐1, and define 𝑐∗0 = (𝑐′0)

𝜓−1 . Note that since 𝑐𝑖 forces𝑄𝑖 (∅) ∈ 𝐻˜
, we may extend

𝑄0 (∅), 𝑄1 (∅) to 𝑄∗
0(∅), 𝑄

∗
1(∅) so that 𝑐𝑖 = 𝑄∗

𝑖 (∅) for 𝑖 = 0, 1. Next, for each 𝑠 ∈ 𝑇 and 𝑖 = 0, 1, define
dom1(𝑄𝑖 (𝑠)) = {𝛼 < 𝜅 | 𝑄𝑖 (𝑠) � 𝜆 × {𝛼} ≠ ∅} and 𝜌𝑖𝑠 = sup(dom1(𝑄𝑖 (𝑠))). Set 𝜌𝑠 = max(𝜌0

𝑠 , 𝜌
1
𝑠).

By moving to a direct extension tree 𝑇∗ of T, we may assume that for every 𝑠 ∈ 𝑇∗ and 𝜈 ∈ succ𝑇 ∗ (𝑠),
𝜋𝑡

⌢𝑠
0 (𝜈) > 𝜌𝑠 where the projection is computed in both generic extensions. This leaves enough space

between the conditions𝑄𝑖 (𝑠), 𝑄𝑖 (𝑠
⌢〈𝜈〉), 𝑖 = 0, 1, to define autormorphisms taking an extension𝑄∗

0(𝑠)
of𝑄0 (𝑠) to an extension𝑄∗

1(𝑠) of𝑄1 (𝑠), without conflicting with𝑄𝑖 (𝑠
⌢〈𝜈〉), 𝑖 = 0, 1. We can therefore

define by induction on the lexicographic order <𝑙𝑒𝑥 on𝑇∗ (where two sequences are compared from their
top elements down) automorphisms 𝜏𝑠 , 𝑠 ∈ 𝑇∗, of Coll(𝜆, < 𝜅), and collapse extensions𝑄∗

𝑖 (𝑠) ≥ 𝑄𝑖 (𝑠),
𝑖 = 0, 1, with the following properties. For all 𝑠 ∈ 𝑇∗,
◦ 𝜏𝑠 is supported in Coll(𝜆, < 𝜌𝑠),14
◦ 𝜏𝑠 ((𝑄∗

0)
𝜓 (𝑠)) = 𝑄∗

1 (𝑠),
◦ If 𝑠′ ∈ 𝑇∗𝑠 , then 𝜏𝑠′ � Coll(𝜆, < 𝜋𝑡⌢𝑠

0 (𝑠)) = 𝜏𝑠 ,
◦ If 𝑠 ∈ 𝑇∗ and 𝑏𝑡0⌢𝑠 = 𝑏𝑡0⌢𝑠 , then 𝜏𝑠 = 𝜏𝑠 .

Let W̄ = P ∗ Coll(𝜆, < 𝜅) ∗ Q∗
𝜅,𝜆 be the initial forcing iteration of

W = P ∗ Coll(𝜆, < 𝜅) ∗ C∗F𝜅
= P ∗ Coll(𝜆, < 𝜅) ∗ (Q∗

𝜅,𝜆 ∗ C
𝜆
𝜅 ).

14i.e., for every 𝑝 ∈ Coll(𝜆, < 𝜅) , if 𝑝 = 𝑝0 ∪ 𝑝1 where 𝑝0 = 𝑝 � 𝜆 × 𝜌𝑠 , then 𝜏𝑠 (𝑝) = 𝜏𝑠 (𝑝0) ∪ 𝑝1.
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Let 𝑤0 � W̄ = 〈𝑝0, 𝑐0, 〈𝑡0, 𝑇0, 𝑄0〉〉 and 𝑤1 � W̄ = 〈𝑝1, 𝑐1, 〈𝑡1, 𝑇1, 𝑄1〉〉 be the restrictions of 𝑤0, 𝑤1 to
W̄, and consider their direct extensions 𝑤𝑜, 𝑤1 in W̄, defined by 𝑤𝑖 = 〈𝑝∗0, 𝑐

∗
0, 〈𝑡0, 𝑇

∗, 𝑄∗
0〉〉, 𝑖 = 0, 1.

Our choice of cone isomorphism 𝜓 for P ∗ Q𝜅,𝜆, together with the collection of Levy-Collapse
automorphisms �𝜏 = {𝜏𝑠}𝑠∈𝑇 ∗ , naturally induces a function �̄� on the cone W̄/𝑤0, defined as follows. For
a condition �̄� = 〈𝑝, 𝑐, 〈𝑠, 𝑆, 𝑄〉〉, we set �̄�(�̄�) = 〈𝑝′, 𝑐′, 〈𝑠′, 𝑆, 𝑄 ′〉〉 to be:

〈𝑝′, 〈𝑠′, 𝑆〉〉 = 𝜓(〈𝑝′, 〈𝑠, 𝑆〉〉), 𝑐′ = 𝜏𝑠 (𝑐
𝜓), 𝑄 ′(𝑠′) = 𝜏𝑠⌢𝑠′ (𝑄(𝑠

′))

We claim that 〈𝑝′, 𝑐′, 〈𝑠′, 𝑆, 𝑄 ′〉〉 is a condition in W̄. First, it is immediate from our choice of 𝑝, 𝑐
that 〈𝑝′, 𝑐′〉 ∈ P ∗ Coll(𝜆, < 𝜅). It therefore remains to verify that 〈𝑠′, 𝑆, 𝑄 ′〉 is forced by 〈𝑝′, 𝑐′〉 to
be a condition in Q∗

𝜆,<𝜅 . The fact that 〈𝑠′, 𝑆, 𝑄 ′〉 satisfies requirements (1) and (2) of definition 6.3
is immediate. To verify the coherency requirement (3) of definition 6.3, we note that 𝑄 ′ is forced by
𝑝′ to be (𝑠, 𝑆)-suitable. Indeed, it follows from our choice of 𝜏𝑠′ that its support is bounded below
the projection 𝜋𝑠⌢𝑠′

0 (𝜈), for any 𝜈 ∈ succ𝑇 ∗ (𝑠′). Property (4) follows from the fact that the statement
“𝑐 �Coll(𝜆,<𝜅) 𝑄(∅) ∈ 𝐻

˜
” is forced by 𝑝 ∈ P, which implies that 𝜏∅ (𝑐𝜓) � 𝜏∅ (𝑄(∅)𝜓) ∈ 𝜏∅ (𝐻˜

𝜓) is
forced by 𝑝′. This, combined with definition of 𝑐′ and 𝑄 ′, and the fact that the name 𝐻

˜
is a fixed point

of both 𝜏∅ and 𝜓, guarantees that requirement (4) is satisfied. Next, (𝑠′, 𝑆, 𝑄 ′) satisfies requirement (5)
of definition 6.3 by a similar argument to the previous one, using the fact that (𝑠, 𝑆, 𝑄) satisfies property
(5) together with the last property listed above for {𝜏𝑠}𝑠∈𝑇 . Having verified that 〈𝑝′, 𝑐′, 〈𝑠′, 𝑆, 𝑄 ′〉〉 is a
condition in W̄, it is straightforward to check that it extends 𝑤1 and thus �̄� : W̄/𝑤0 → W̄/𝑤1 is a well
defined function. In order to show that it is cone isomorphism, we need to show that it is order-preserving.

Let us remark that the automorphism 𝜓 modifies the values of 𝑏𝑠 for 𝑠 ∈ 𝑇∗ by changing the value
of their initial segments. Since those initial segments do not affect the definition of 𝜏𝑏𝑠 , we will ignore
it and write always 𝑏𝑠 instead 𝑏𝜓𝑠 .

Let �̄�1 = 〈𝑝1, 𝑐1, 〈𝑠1, 𝑆1, 𝑄1〉〉, �̄�2 = 〈𝑝2, 𝑐2, 〈𝑠2, 𝑆2, 𝑄2〉〉 be a pair of conditions in the cone above
�̄�0. We need to show that �̄�(�̄�1) ≤ �̄�(�̄�2) if and only if �̄�1 ≤ �̄�2.

For direct extensions, this is clear, as the tree 𝑆1 does not move under �̄�. Let us assume that �̄�2
is a one-point extension of �̄�1, by the point 〈𝜈〉. By moving to a dense subset, 𝑐2 ≥ 𝑐1, 𝑄1 (〈𝜈〉) and
𝑏𝑠2 = 𝑏𝑠1⌢ 〈𝜈〉 . Let us apply �̄� on �̄�1, �̄�2. The trees 𝑆1 and 𝑆2 do not move, so we must verify that 〈𝜈〉
is still a legitimate choice for an one-point extension of �̄�(�̄�1). Indeed, 𝜏𝑏𝑠2

(𝑐2) is (by the definition of
𝜏𝑏𝑠2

) stronger than 𝜏〈𝜈〉 (𝑄1 (〈𝜈〉). Thus, we conclude that �̄�(�̄�2) is an one-point extension of �̄�(�̄�2) by
〈𝜈〉. The other direction is the same.

Finally, to obtain a desirable cone isomorphism 𝜑 forW = W̄ ∗C𝜆𝜅 , it remains to extend �̄� to the final
additional components 𝑥0

˜
, 𝑥1

˜
of C𝜆F𝜅

. The proof Lemma 4.9 shows that there are W̄-names 𝑦
˜
′
0, 𝑦˜

1 of
extensions of 𝑥

˜
�̄�
0 , 𝑥˜ 1 respectively, and a name of a cone isomorphism 𝜎 : C𝜆𝜅/𝑦

˜
′
0 → C𝜆𝜅/𝑦

˜
1. Accordingly,

we set 𝑦
˜

0 = (𝑦
˜
′
0)

�̄�−1 and define direct extensions 𝑤∗
0 ≥∗ 𝑤0, 𝑤

∗
1 ≥∗ 𝑤1 and a map 𝜑 : W/𝑤∗

0 → W/𝑤∗
1

by 𝑤∗
𝑖 = �̄�𝑖

⌢𝑦
˜
𝑖 and

𝜑(〈�̄�, 𝑦
˜
〉) = 〈�̄�(�̄�), 𝜎(𝑦

˜
�̄�)〉.

The fact that 𝑤∗
0, 𝑤

∗
1, 𝜑 satisfies the result stated in the lemma is an immediate consequence of the fact

that �̄�0, �̄�1, �̄� satisfies similar properties for W̄ and our choice of 𝜑,𝑦
˜

0, 𝑦
˜

1. �

7. Strong measurability at successors of singulars

Suppose that 𝑉 = HOD, 𝜅 is a supercompact cardinal and 𝜆 > 𝜅 is a measurable cardinal with a normal
measure U . We would like to construct a cone homogeneous poset in V which will collapse 𝜆 to be the
successor of 𝜅, change the cofinality of 𝜅 to 𝜔 and add a closed unbounded subset of 𝜆 whose restriction
to the set of {𝛼 < 𝜆 | 𝛼 is regular in 𝑉} is almost contained in every set 𝐴 ∈ U .

It is natural to attempt obtaining this result by starting with an indestructible supercompact cardinal
𝜅, and forcing with a Levy collapse of 𝜆 to 𝜅+ followed by a Prikry forcing at 𝜅 and a club forcing at 𝜆.
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The difficulty with this approach is in its second step, where the choice of the measure on 𝜅 depends on
the generic filter for the Levy collapse and might lead to a Prikry generic sequence which will introduce
to HOD information about the collapse of 𝜆 to 𝜅+, and in particular prevent from HOD to witness that
𝜆 is a measurable cardinal.

Instead, our approach will be based on recent use of the supercompact extender based forcing,
introduced by Merimovich ([21]). Given a supercompact cardinal 𝜅, we derive a (𝜅, 𝜆)-supercompact
extender E from a supercompact embedding 𝑗 : 𝑉 → 𝑀 for which 𝜆𝑀 ⊆ 𝑀 . Let P𝐸 be the supercompact
extender based forcing associated to the extender E of [21]. The conditions of P𝐸 are pairs of the form
〈 𝑓 , 𝑇〉 where f is roughly a condition in the Cohen forcing and T is a tree, with large splittings. We
denote by P∗𝐸 the Cohen part.

The forcing P𝐸 preserves 𝜆 and singularizes all the regular cardinals in the interval [𝜅, 𝜆). We will
follow the definitions and notations of [21]. In [15], Gitik and Merimovich show that this forcing is
weakly homogeneous (and therefore cone homogeneous).

Let U be a normal measure on 𝜆 in the ground model. We would like to force a club to diagonalize
U relative to the set of V-regular cardinals below 𝜆. Note that the ordinals of uncountable cofinality
below 𝜆 in the extender based forcing extension are of measure zero in U . Therefore, our club shooting
poset has to allow V-singular ordinals as well. Moreover, since the set of previous inaccessible cardinals
below 𝜆 does not reflect at its complement, it is impossible for the generic club to avoid ground model
singular cardinals of countable cofinality. Thus, we restrict our club forcing poset to diagonalize U only
relative to the set of the regular cardinals in V. To make this precise, we denote by Sing the set of all
ground model singular cardinals below 𝜆 and define Ū = {Sing∪𝐴 | 𝐴 ∈ U }. We force with the poset
CŪ , consisting of pairs (𝑐, 𝐵) where 𝑐 ⊆ 𝜆 is a closed bounded set and 𝐵 ∈ Ū . The extension order is
as in the previous section.

We start by recalling a fundamental and useful fact, which lies in the heart of the proof of the Prikry
Property of P𝐸 .

Lemma 7.1. Let M be an elementary submodel of 𝐻𝜒 for some large 𝜒 such that 𝑀 ∩ 𝜆 = 𝛿 ∈ 𝜆 is
inaccessible cardinal and 𝑀<𝛿 ⊆ 𝑀 . Let 𝑝 ∈ 𝑀 ∩ P𝐸 .

Then, there is a condition 𝑓 ∗ ∈ P∗𝐸 which is M-generic (namely, it belongs to every dense open subset
of P∗𝐸 in M) and dom 𝑓 ∗ = 𝑀 ∩ 𝜆. Moreover, if 𝑝∗ = 〈 𝑓 ∗, 𝑇〉 is a condition in P𝐸 , then there is 𝑇∗ ⊆ 𝑇 ,
𝐸 ( 𝑓 ∗)-large such that 𝑇∗ ⊆ 𝑀 and 𝐷 ∈ 𝑀 is a dense open subset of P𝐸 , then there is a natural number
n such that for every 〈𝜈0, . . . , 𝜈𝑛−1〉 in the n-th level of 𝑇∗, 𝑝∗

〈𝜈0 ,...,𝜈𝑛−1 〉
∈ 𝐷.

Proof. The first claim follows from the closure of P∗𝐸 . Let us focus on the second part.
Let 𝑓 ∗ be as in the lemma. Let 𝐷 ∈ 𝑀 be dense open. For each 〈𝜈0, . . . , 𝜈𝑛−1〉 ∈ 𝑀 and for

each 𝑔 ∈ P∗𝐸 ∩ 𝑀 , we can ask whether there is a condition 𝑞 ∈ 𝐷 of the form 〈ℎ, 𝑆〉 ∈ 𝐷 such that
ℎ ≥∗ 𝑔 〈𝜈0 ,...,𝜈𝑛−1 〉 . The set of conditions that decide this statement is dense open and definable in M,
and thus 𝑓 ∗ decides whether there is such extension or not (for each possible 〈𝜈0, . . . , 𝜈𝑛−1〉). Let 𝐷 �𝜈

be this set, and let us split it into two parts 𝐷0
�𝜈
∪ 𝐷1

�𝜈
according to the decision, where conditions in 𝐷0

�𝜈
are direct extensions that enter D after the nondirect extension.

Let 𝑝∗ = 〈 𝑓 ∗, 𝑇〉. Since a typical point 𝜈 in a measure one tree T, associate with the measures 𝐸 ( 𝑓 ∗)
is a finite sequence of elements contained in M each has size |𝜈 | < 𝜅, we may assume that 𝑇 ⊆ 𝑀 .
There is an extension 𝑞 ≥ 𝑝∗ in D. By the definition of the order of P𝐸 , q is obtained by taking first
some Prikry extension and then a direct extension, and therefore the Prikry extension is done using
some �𝜈 ∈ 𝑀 . Thus, for this specific Prikry extension, 𝑓 ∗ ∈ 𝐷0

�𝜈
. We conclude that already 𝑝∗

�𝜈
∈ 𝐷.

We can now shrink T in order to stabilize the length of the extensions that enter D. �

Lemma 7.2. Ū extends to a 𝜆-complete filter in the generic extension by P𝐸 .

Proof. Assume that this is not the case. Since 𝜅 is singular, the closure of Ū must drop to some cardinal
𝜌 < 𝜅. Let 〈𝐴

˜ 𝑖 | 𝑖 < 𝜌〉 be a sequence of names of elements in Ū which are forced to have non-measure
one intersection.
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Using the strong Prikry Property, we can find a sequence of direct extensions 𝑝𝑖 and natural numbers
𝑛𝑖 such that any 𝑛𝑖-length Prikry extension of 𝑝𝑖 decides the value of 𝐴

˜ 𝑖 . Since there are fewer than 𝜆
many such extensions, we can find a set 𝐵𝑖 ∈ Ū such that 𝑝𝑖 � 𝐵𝑖 ⊆ 𝐴˜ 𝑖 . In particular, 𝑝𝜌 �

⋂
𝐵𝑖 ⊆

⋂
𝐴
˜ 𝑖 ,

but
⋂
𝐵𝑖 ∈ Ū . �

Lemma 7.3. CŪ is 𝜆-distributive in the generic extension by P𝐸 .

Proof. Since 𝜅 is singular in the extension byP𝐸 , it is enough to show that the forcingCŪ is 𝜌-distributive
for every 𝜌 < 𝜅.

We first work in V. Let �𝐷
˜
= 〈𝐷

˜ 𝑖 | 𝑖 < 𝜌〉 be a sequence of P𝐸 -names for dense open subsets of CŪ ,
𝜌 < 𝜅. Let 〈𝑝, 𝑞〉 be a condition in P𝐸 ∗CŪ . Let us define an increasing sequence of models 〈𝑀𝑖 | 𝑖 < 𝜌〉
such that:

◦ �𝐷
˜
, P𝐸 ,CŪ ∈ 𝑀0.

◦ 𝑀𝑖 ≺ 𝐻𝜒 for some large 𝜒, 𝑀𝑖 ∩ 𝜆 = 𝛿𝑖 ∈ 𝜆 inaccessible.
◦ 𝑀<𝛿𝑖

𝑖 ⊆ 𝑀𝑖 and 𝛿𝑖 ∈
⋂
{𝐴 ∈ U ∩ 𝑀𝑖}.

◦ 〈𝑀 𝑗 | 𝑗 < 𝑖〉 ∈ 𝑀𝑖 .

This chain of models can be easily obtained using the same argument as in Lemma 3.1.
Next, let us pick by induction, for each 𝑖 < 𝜌, an 𝑀𝑖-generic condition 𝑓 ∗𝑖 ∈ P∗𝐸 such that 𝑓 ∗𝑖 ∈ 𝑀𝑖+1

and 𝑓 ∗𝑖 ⊆ 𝑓 ∗𝑗 for 𝑖 < 𝑗 . We will define a sequence of names 𝑞
˜
𝑖 and a sequence of conditions 𝑝𝑖 such that:

◦ 𝑝𝑖 = 〈 𝑓 ∗𝑖 , 𝑇𝑖〉 ∈ 𝑀𝑖+1, 𝑞𝑖 ∈ 𝑀𝑖 .
◦ 𝑝𝑖+1 � 𝑞𝑖+1 ∈ 𝐷

˜ 𝑖 .
◦ The sequence of conditions 𝑝𝑖 is ≤∗-increasing. Let 𝑝𝜌 be their limit.
◦ 𝑝𝜌 forces that the conditions 𝑞𝑖 are increasing and they have a limit 𝑞𝜌.

In 𝑀𝑖 , let 𝐷 ′
𝑖 be the dense open set in P𝐸 of all extensions of 𝑝𝑖 that force for some condition

𝑞 = (𝑐𝑞 , 𝐵𝑞) ≥ 𝑞𝑖 to be in 𝐷
˜ 𝑖 , and decide its maximum and its large set 𝐵𝑞 from Ū . By applying

Lemma 7.1 inside 𝑀𝑖 , we conclude that there is an 𝐸 ( 𝑓 ∗𝑖 )-large tree 𝑇𝑖 ⊆ 𝑀𝑖 and a natural number 𝑛𝑖
such that, for the condition 𝑝𝑖 = 〈 𝑓 ∗𝑖 , 𝑇𝑖〉, for every �𝜈 ∈ 𝐿𝑒𝑣𝑛𝑖 (𝑇𝑖), (𝑝𝑖)�𝜈 ∈ 𝐷 ′

𝑖 . In particular, it picks a
condition 𝑞𝑖+1, �𝜈 ≥ 𝑞𝑖 from CŪ , which is going to be in 𝑀𝑖 . Since this condition is in 𝑀𝑖 , it is going to
be bounded below 𝛿𝑖 , and its large set belongs to Ū ∩ 𝑀𝑖 .

Note that the collection of all n-step extensions of a fixed condition in P𝐸 is always a maximal
antichain above this condition and thus, we can define 𝑞

˜
′
𝑖+1 to be equal to 𝑞𝑖+1, �𝜈 above (𝑝𝑖)�𝜈 , and trivial

below any condition which is incompatible with 𝑝𝑖 . Finally, we define 𝑞
˜
𝑖+1 to be the extension of 𝑞

˜
′
𝑖+1

by the single ordinal 𝛿𝑖 . By the construction, this is indeed an extension, as 𝛿𝑖 ∈ 𝐵 for all 𝐵 ∈ Ū ∩ 𝑀𝑖 .
At limit steps, we define 𝑞

˜
𝑖 to be the limit of previous conditions. This is possible since the filter Ū

is still 𝜆-complete and since the maximal element of the closed set in 𝑞
˜
𝑗 is forced to be 𝛿 𝑗 . Therefore,

the maximal element of 𝑞
˜
𝑖 is 𝛿𝑖 which is singular strong limit cardinal in the limit case. �

Lemma 7.4. Let 𝐵′ ∈ U . Then, 𝐵′ is stationary in P𝐸 ∗ CŪ .

Proof. Let 𝐶
˜

be a name for a club. We show that every condition 𝑞 ∈ CŪ has an extension which forces
that 𝐶

˜
∩ 𝐵′ ≠ ∅. Working in V, let 𝑀 ≺ 𝐻𝜒, such that 𝑀 ∩ 𝜆 = 𝛿, P𝐸 ,CŪ , 𝐶˜

, 𝑞, 𝐵′ ∈ 𝑀 , and 𝛿 ∈ 𝐵′ is
inaccessible. Moreover, let us assume that M is obtained as a union of a chain of models of length 𝛿,
𝑀𝑖 , such that 𝑀𝑖 ∩ 𝜆 = 𝛿𝑖 and 𝑀<𝛿𝑖+1

𝑖+1 ⊆ 𝑀𝑖+1 and 𝛿𝑖+1 ∈
⋂
(U ∩ 𝑀𝑖+1).

For each i, let 𝑓 ∗𝑖 be 𝑀𝑖-generic for P∗𝐸 , such that 𝑓 ∗𝑖 ⊆ 𝑓 ∗𝑗 for 𝑖 < 𝑗 . Let 𝑓 ∗ =
⋃
𝑓 ∗𝑖 .

Let𝐺 ⊆ P𝐸 be a generic filter that contains a condition 𝑝∗ = 〈 𝑓 ∗, 𝐴〉, 𝐴 ⊆ 𝑀 . In𝑉 [𝐺], cf 𝛿 = 𝜔. Let
〈𝛿𝑛 | 𝑛 < 𝜔〉 be a cofinal sequence in 𝛿. For each n, for sufficiently large 𝜉 < 𝛿,𝑀𝜉 contains the dense set
of conditions in P𝐸 that decide on some condition 𝑞 ∈ CŪ that forces some ordinal 𝛾𝑛 ≥ 𝛿𝑛 to be in 𝐶

˜
.

Following the same arguments as in the previous lemma, we can define a condition 𝑞
˜
𝑛 by going over

some maximal antichain. The maximum of the closed set of 𝑞
˜
𝑛 is always 𝛿𝑛+1. Finally, the sequence

of conditions 𝑞𝐺𝑛 has an upper bound, by attaching 𝛿 on top of the union. Let 𝑞𝜔 be the upper bound.
Clearly, 𝑞𝜔 forces 𝛿 ∈ 𝐶

˜
, as wanted. �
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Finally, the following proposition finishes the proof of Theorem 1.6.

Proposition 7.5. Let 𝜅 be 𝜆-supercompact, where 𝜆 is measurable. Then, there is a generic extension
in which cf 𝜅 = 𝜔, 𝜅 is a cardinal, 𝜆 = 𝜅+ and it is ((𝑆𝜆𝑟𝑒𝑔)

𝑉 , 1)-strongly measurable cardinal.

We can now finish the proof of Theorem 1.6.

Proof of Theorem 1.6. The iteration P𝐸 ∗ CŪ is cone homogeneous as an iteration of two cone ho-
mogeneous, ordinal definable forcing notions. Since P𝐸 preserves cardinals below 𝜅 and ≥ 𝜆 and CŪ
preserves cardinals, the result follows. The set 𝑆𝜆𝑟𝑒𝑔 is stationary by Lemma 7.4. �

The result that we obtain for the successor of a singular cardinal is weaker than the result for a
successor of a regular cardinal. The reason is that, in order to get the closed unbounded filter to be
sets from the intersection of some ground model normal measures, we will have to obtain a situation
in which the regular cardinals between the supercompact cardinal 𝜅 and the measurable cardinal 𝜆 are
going to change cofinalities into values which differ from the cofinality of 𝜅 in the generic extension.
This is also the reason that such a method cannot work for getting an 𝜔-strongly measurable successor
of a singular cardinal of uncountable cofinality.

We remark that Woodin in [39], proved that it is consistent relative to the large cardinal axiom 𝐼0 that
a successor of a singular cardinal is 𝜔-strongly measurable.

Question 7.6. Is it consistent that there is an 𝜔-strongly measurable cardinal 𝜆+, where cf 𝜆 > 𝜔 is a
limit cardinal?

Question 7.7. Is it consistent that there is a cardinal 𝜆+, where cf 𝜆 > 𝜔 is a limit cardinal and (𝑆𝜆
+

𝑟𝑒𝑔)
HOD

contains a club in V?

8. Appendix - homogeneity

In this section we review some basic facts related to homogeneity and develop some basic tools in order
to preserve homogeneity of iterations of Prikry-type forcings.

8.1. Homogeneity and HOD

When dealing with HOD, we would like to modify the universe (via forcing) while not adding objects to
HOD. The main method to obtain this is to force with posets which satisfy a certain weak homogeneity
property. The main results of this work will focus on the notion of cone homogeneous posets.

Definition 8.1. We say that a poset P is cone homogeneous if, for every 𝑝, 𝑞 ∈ P, there are extensions
𝑝∗, 𝑞∗ of 𝑝, 𝑞, respectively, and a forcing isomorphism 𝜑 from the coneP/𝑝∗ (i.e., of conditions extending
𝑝∗) to the cone P/𝑞∗.

This notion can also be found under different names in the literature concerning weak forms of
homogeneity. Our terminology follows Dorbinen and Friedman, [9] for the most part. It is easy to
see that cone homogeneous posets satisfy most standard properties of homogeneous posets concerning
ordinal definability sets. In particular, the following well-known result holds.

Fact 8.2 (Levy, [19]). If P is cone homogeneous and belongs to HOD, and 𝐺 ⊆ P is generic over V,
then HOD𝑉 [𝐺 ] ⊆ HOD𝑉 .

If 𝜑 is an isomorphism of two cones P/𝑝0 and P/𝑝1, and 𝜎 is a P/𝑝0 name, then by recursively
applying 𝜑, we obtain a P/𝑝1-name, which we denote by 𝜎𝜑 .

Let P = P𝜅 where 〈P𝛼,Q𝛼 | 𝛼 < 𝜅〉 is an iteration of cone homogeneous posets Q𝛼, and moreover,
let us assume that all cone automorphisms of P𝛼 do not modify Q𝛼 as a poset. For simplicity, we may
assume that Q𝛼 and its order are ordinal definable.
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Given two conditions �𝑝 = 〈𝑝𝛼 | 𝛼 < 𝜅〉, �𝑞 = 〈𝑞𝛼 | 𝛼 < 𝜅〉 in P, it is natural to try forming extensions
�𝑝∗ = 〈𝑝∗𝛼 | 𝛼 < 𝜅〉 ≥ �𝑝, �𝑞∗ = 〈𝑞∗𝛼 | 𝛼 < 𝜅〉 ≥ �𝑞, and an isomorphism 𝜑 : P/ �𝑝∗ → P/ �𝑞∗ as follows.

By induction on 𝛽 ≤ 𝜅, we attempt defining extensions �𝑝𝛽 = 〈𝑝∗𝛼 | 𝛼 < 𝛽〉 of �𝑝 � 𝛽, and
�𝑞𝛽 = 〈𝑞∗𝛼 | 𝛼 < 𝛽〉 of �𝑞 � 𝛽, and an isomorphism 𝜑𝛽 : P𝛽/ �𝑝𝛽 → P𝛽/�𝑞

𝛽 . Our inductive assumptions
further include �𝑝𝛽1 � 𝛽0 = �𝑝𝛽0 , �𝑞𝛽1 � 𝛽0 = �𝑞𝛽0 , and 𝜑𝛽1 � P𝛽0/ �𝑝

𝛽0 = 𝜑𝛽0 ,15 for all 𝛽0 < 𝛽1.
For 𝛽 = 0, where P0 = {0P0 } is a trivial forcing, we take 𝜑0 to be the identity. At a successor step,

assuming �𝑝𝛽 , �𝑞𝛽 and 𝜑𝛽 have been defined, we have that 𝜑𝛽 ( �𝑝𝛽) = �𝑞𝛽 forces that 𝑝𝜑𝛽

𝛽 and 𝑞𝛽 are
conditions of the cone homogeneous poset Q𝛽 . There are therefore P𝛽-names 𝑝′𝛽 and 𝑞′𝛽 of extensions
of 𝑝𝜑𝛽

𝛽 and 𝑞𝛽 , respectively, and a name of a cone isomorphism 𝜓𝛽 : Q𝛽/𝑝′𝛽 → Q𝛽/𝑞
′
𝛽 . We stress that

we use the maximality principle and do not extend the conditions �𝑝𝛽 and �𝑞𝛽 in order to determine the
values of 𝑝′𝛽 , 𝑞

′
𝛽 and 𝜓𝛽 .

Let 𝑝∗𝛽 = (𝑝′𝛽)
𝜑𝛽 and 𝑞∗𝛽 = 𝑞′𝛽 . Clearly, �𝑝𝛽 ,�𝑞𝛽 force that 𝑝∗𝛽 , 𝑞

∗
𝛽 extend 𝑝𝛽 , 𝑞𝛽 , respectively. We set

�𝑝𝛽+1 = �𝑝𝛽⌢〈𝑝∗𝛽〉, �𝑞
𝛽+1 = �𝑞𝛽⌢〈𝑞∗𝛽〉 and define 𝜑𝛽+1 : P𝛽+1/ �𝑝

𝛽+1 → P𝛽+1/�𝑞
𝛽+1 by mapping a condition

�𝑟 = �𝑟 � 𝛽⌢〈𝑟𝛽〉 ∈ P𝛽+1/ �𝑝
𝛽+1 to

𝜑𝛽+1(�𝑟) = 𝜑𝛽 (�𝑟 � 𝛽)⌢〈𝜓𝛽 (𝑟
𝜑𝛽

𝛽 )〉.

It is immediate from our assumption of 𝜑𝛽 and choice of 𝜓𝛽 that 𝜑𝛽+1 is an isomorphism. Finally, for
a limit ordinal 𝛿 ≤ 𝜅, �𝑝 𝛿 (similarly �𝑞 𝛿) is determined by the requirement �𝑝 𝛿 � 𝛽 = �𝑝𝛽 for all 𝛽 < 𝛿
(similarly for �𝑞 𝛿), and 𝜑𝛿 by the requirement 𝜑𝛿 � P𝛽/ �𝑝𝛽 = 𝜑𝛽 for all 𝛽 < 𝛿. See [9] for a more detailed
proof for the validity of this construction.

We conclude that, for this construction to succeed, the following conditions need to hold for all
𝛽 ≤ 𝜅: (i) �𝑝𝛽 , �𝑞𝛽 are well-defined conditions in P𝛽 which extend �𝑝 � 𝛽, �𝑞 � 𝛽, respectively, and (ii) 𝜑𝛽
is a well-defined cone isomorphism.

If the construction succeeds throughout all stages 𝛽 ≤ 𝜅, then the final conditions �𝑝∗ = �𝑝𝜅 , �𝑞∗ = �𝑞𝜅

and cone isomorphism 𝜑 = 𝜑𝜅 satisfy the required properties. It is easy to see that condition (i) and (ii)
may only fail at limit stages 𝛿 ≤ 𝜅, where the precise formation of the iteration (e.g., its support) may
prevent �𝑝 𝛿 from being a condition in P𝛿 . Similarly, the definition of the limit order ≤P𝛿 might prevent
the defined map 𝜑𝛿 from being an isomorphism.

This problem does not occur for finite iteration.

Lemma 8.3 ([9]). A finite iteration of ordinal definable cone homogeneous forcings is cone homoge-
neous.

Since our proof of Theorem 1.4 is based on a construction of a Magidor Iteration P = 〈P𝛼,Q𝛼 |
𝛼 < 𝜃〉 of Prikry-type forcings (Q𝛼, ≤Q𝛼 , ≤

∗
Q𝛼

), we conclude this section with a description of a specific
variant of cone homogeneity for the posets Q𝛼, which guarantees that the Magidor iteration P is cone
homogeneous as well.

Definition 8.4 (Prikry-type forcing, [13]). 〈P, ≤, ≤∗〉 is a Prikry-type forcing if

◦ ≤⊇≤∗ are partial orders on P and
◦ (the Prikry Property) for every statement 𝜎 in the forcing language for 〈P, ≤〉, and a condition p, there

is a condition 𝑝∗, 𝑝 ≤∗ 𝑝∗ such that 𝑝∗ � 𝜎 or 𝑝∗ � ¬𝜎.

Conditions in the Magidor iteration P = 〈P𝛼,Q𝛼 | 𝛼 < 𝜅〉 of Prikry-type posets 〈Q𝛼, ≤Q𝛼 , ≤
∗
Q𝛼

〉

are sequences �𝑝 = 〈𝑝𝛼 | 𝛼 < 𝜅〉, which beyond the standard requirement of 𝑝 � 𝛼 � 𝑝𝛼 ∈ Q𝛼, also
satisfy that for all but finitely many ordinals 𝛼 < 𝜅, �𝑝 � 𝛼 � 𝑝𝛼 ≥∗

Q𝛼
0Q𝛼 . We note that, in particular,

the definition allows using full-support conditions, as long as almost all components 𝑝𝛼 are direct
extensions of the trivial conditions. Similarly, for the definition of the ordering ≤P, we have that �𝑝′ ≥ �𝑝

15i.e., the restriction 𝜑𝛽1 � P𝛽0/ �𝑝
𝛽0 is obtained by identifying conditions �𝑟𝛽0 ∈ P𝛽0/ �𝑝

𝛽0 with their extension �𝑟𝛽1 =
�𝑟𝛽0⌢ ( �𝑝𝛽1 �[𝛽0 ,𝛽1 ) ) .
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requires both that �𝑝′ � 𝛼 � 𝑝′𝛼 ≥Q𝛼 𝑝𝛼 for all 𝛼 and that for all but finitely many ordinals 𝛼 < 𝜅,
�𝑝′ � 𝛼 � 𝑝′𝛼 ≥∗ 𝑝𝛼. See [13] for a comprehensive description of the Magidor iteration style and its
main properties.

Lemma 8.5. Suppose that P = 〈P𝛼,Q𝛼 | 𝛼 < 𝜅〉 is a Magidor iteration of Prikry-type posets 〈Q𝛼, ≤Q𝛼 ,
≤∗
Q𝛼

〉 so that the following conditions hold for each 𝛼 < 𝜅:

(i) Q𝛼, ≤Q𝛼 and ≤∗
Q𝛼

are ordinal definable in V, and
(ii) it is forced by 0P𝛼 that for every two conditions 𝑝, 𝑞 ∈ Q𝛼, there are 𝑝∗ ≥∗

Q𝛼
𝑝 and 𝑞∗ ≥∗

Q𝛼
𝑞 and

a cone isomorphism 𝜓𝛼 : Q𝛼/𝑝
∗ → Q𝛼/𝑞

∗ which respects the direct extension order ≤∗
Q𝛼

.

Then P is cone homogeneous.

Proof. Let �𝑝, �𝑞 ∈ P, and let ( �𝑝𝛽 , �𝑞𝛽 , 𝜑𝛽 | 𝛽 ≤ 𝜅) be the sequence obtained form the procedure described
above. It suffices to verify inductively that conditions (i) and (ii) are satisfied by the sequence.

We note that, in the successor step construction of 𝑝′𝛽 , 𝑝∗𝛽 = (𝑝′𝛽)
𝜑−1
𝛽 , 𝑞∗𝛽 = 𝑞′𝛽 , and 𝜓𝛽 , we may

assume that 𝜑𝛽 ( �𝑝𝛽) � 𝑝′𝛽 ≥∗
Q𝛽
𝑝
𝜑𝛽

𝛽 , �𝑞𝛽 � 𝑞′𝛽 ≥∗ 𝑞𝛽 , and that 𝜓𝛽 is ≤∗
Q𝛽

-preserving. Since ≤∗
Q𝛽

is

ordinal definable in V, 0P𝛽 �≤∗
Q𝛽

= (≤∗
Q𝛽

)
𝜑−1
𝛽 , and therefore by applying the automorphism 𝜑−1

𝛽 we
get �𝑝𝛽 � 𝑝∗𝛽 ≥∗

Q𝛽
𝑝𝛽 , and 𝑝 ↦→ 𝜓𝛽 (𝑝

𝜑𝛽 ) is forced by �𝑝𝛽 to be ≤∗
Q𝛽

-preserving in the cone below
𝑝∗𝛽 . In particular, assuming 𝜑𝛽 is order preserving and �𝑟𝛽+1 ≥ �𝑠𝛽+1 ∈ P𝛽+1/ �𝑝

𝛽+1, �𝑟𝛽+1 = �𝑟𝛽⌢〈𝑟𝛽〉,
�𝑠𝛽+1 = �𝑠𝛽⌢〈𝑠𝛽〉, we have that if �𝑟𝛽 � 𝑟𝛽 ≥∗

Q𝛽
𝑠𝛽 then 𝜑𝛽 (�𝑟𝛽) � 𝜓𝛽 (𝑟

𝜑𝛽

𝛽 ) ≥∗
Q𝛽
𝜓𝛽 (𝑟

𝜑𝛽

𝛽 ) = 𝜑𝛽+1(�𝑠
𝛽+1)𝛽 .

The same conclusion holds for ≤Q𝛽 which is also ordinal definable in V.
We conclude that, first, 𝑝∗𝛽 , 𝑞

∗
𝛽 are forced to be direct extensions of 0Q𝛽 whenever 𝑝𝛽 , 𝑞𝛽 are, which

in turn, implies that �𝑝𝛼, �𝑞𝛼 are conditions of P𝛼 for all 𝛼 ≤ 𝜅. Hence, (i) is satisfied. Second, for every
�𝑟𝛼, �𝑠𝛼 ∈ P𝛼/ �𝑝

𝛼 and 𝛽 < 𝛼, if �𝑟𝛼 � 𝛽 � 𝑟𝛽 ≥∗
Q𝛽
𝑠𝛽 , then 𝜑𝛼 (�𝑟𝛼) � 𝛽 � 𝜑𝛼 (�𝑟𝛼)𝛽 ≥∗

Q𝛽
𝜑𝛼 (�𝑠

𝛼)𝛽 , and
similarly, when replacing ≤∗

Q𝛽
with ≤Q𝛽 . It follows at once from this and the definition of the ordering

≤P𝛼 of the Magidor iteration that 𝜑𝛼 is a cone isomorphism. Hence, (ii) holds. �

8.2. Homogeneous change of cofinalities

Our approach to construct a model with an 𝜔-strongly measurable cardinal 𝜅 is to force over a ground
model satisfying 𝑉 = HOD with a weakly homogeneous poset (i.e., therefore also cone-homogeneous)
to form a generic extension 𝑉 [𝐺] with a cardinal 𝜅, which satisfies the conditions of Lemma 2.4. In
light of Lemma 2.5 above, we see that many regular cardinals in V need to change their cofinality in
𝑉 [𝐺]. The main challenge in that regard is to change the cofinality of many cardinals with a weakly
homogeneous forcing.

Fortunately, such forcing has been constructed in [5], where the theory of nonstationary support
iteration of Prikry-type forcings is developed and employed to form a weakly homogeneous variant of
the Gitik iteration ([11]). We note that, as opposed to an Easton-style version of the Gitik iteration,
which has a good chain condition (i.e., 𝜅-c.c. when iterating up to a Mahlo cardinal 𝜅), the nonstationary
support variant of [5] has a weaker, fusion-type property.

We briefly describe the construction of the nonstationary support iteration P of iteration of Prikry-
type forcings Q𝛼 from [5]. The iteration, which is based on the given coherent sequence of measures
〈𝑈𝛼,𝜏 | 𝛼 < 𝜅, 𝜏 < 𝑜U (𝛼)〉, is nontrivial at each 𝛼 < 𝜅, 𝑜U (𝛼) > 0. As this 𝛼, the forcing Q𝛼 adds a
cofinal closed unbounded set 𝑏𝛼 to 𝛼 of order-type 𝜔𝑜 (𝛼) (ordinal exponentiation). More specifically,
given a V-generic filter 𝐺𝛼 ⊆ P𝛼, which adds clubs 𝑏𝛽 , for 𝛽 < 𝛼, 𝑜U (𝛽) > 0, one considers finite
sequences 𝑡 = 〈𝜈0, . . . , 𝜈𝑘−1〉 with the property that for every 𝑖 < 𝑘 − 1, if 𝑜U (𝜈𝑖) < 𝑜U (𝜈𝑖+1) then
𝜈𝑖 ∈ 𝑏𝜈𝑖+1 and 𝑏𝜈𝑖+1 ∩ 𝜈𝑖 = 𝑏𝜈𝑖 . Such sequences are called coherent (with respect to 𝐺𝛼). If 𝜌 is an
ordinal so that 𝑜(𝜈𝑖) < 𝜌 for all 𝑖 < 𝑘 , then we say t is 𝜌-coherent. Otherwise, we denote by 𝑡 � 𝜌 to be
the subsequence of 𝜈𝑖 ∈ 𝑡 so that 𝑜(𝜈𝑖) < 𝜌.
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Working at 𝑉 [𝐺𝛼], one constructs posets Q𝛼,𝜏 , 𝜏 ≤ 𝑜U (𝛼) and simultaneously shows by induction
on 𝜏 ≤ 𝑜U (𝛼) that, for each 𝜏-coherent sequence t, 𝑈𝛼,𝜏 ∈ U extends to 𝑈𝛼,𝜏 (𝑡). We define Q0

𝛼 to be
the trivial poset, and given that the measures 𝑈𝛼,𝜏′ (𝑡

′) have been defined for every 𝜏′ < 𝜏, and every
𝜏′-coherent sequence 𝑡 ′, the forcing Q𝜏𝛼 consists of pairs 𝑞 = 〈𝑡, 𝑇〉 where t is 𝜏-coherent, 𝑇 ⊆ [𝛼]<𝜔 is
a tree whose stem is ∅ and for every 𝑠 ∈ 𝑇 , succ𝑇 (𝑠) := {𝜇 < 𝜅 | 𝑠⌢〈𝜇〉 ∈ 𝑇} ∈

⋂
𝜏′<𝜏 𝑈𝛼,𝜏′ (𝑡

⌢𝑠 � 𝜏′).
Direct extensions and end extensions of Q𝜏𝛼 are defined as usual. Q𝜏𝛼 is a Prikry-type forcing whose
direct extension is 𝛼-closed. With Q𝛼,𝜏 determined, we consider the V-ultrapower by 𝑈𝛼,𝜏 , by taking
𝑗𝛼,𝜏 : 𝑉 → 𝑀𝛼,𝜏 � 𝑈𝑙𝑡 (𝑉,𝑈𝛼,𝜏), and define for each 𝜏-coherent sequence t a𝑉 [𝐺𝛼] measure𝑈𝛼,𝜏 (𝑡)
by 𝑋 = 𝑋

˜ 𝐺𝛼 ∈ 𝑈𝛼,𝜏 (𝑡) if there exist 𝑝 ∈ 𝐺𝛼 and a valid tree T such that

𝑝⌢〈𝑡, 𝑇〉⌢ 𝑗𝛼,𝜏 (𝑝) \ (𝛼 + 1) � 𝑗𝛼,𝜏 (P) �̌� ∈ 𝑗𝛼,𝜏 (𝑋˜
).

Fact 8.6.

1. For each 𝛼 such that 𝑜U (𝛼) > 0, 𝑏𝛼 is a cofinal sequence at 𝛼 of order type 𝜔𝑜U (𝛼) (ordinal
exponentiation).

2. For each 𝛼 ≤ 𝜅, (P𝛼, ≤, ≤∗) is a Prikry-type forcing.
3. For every 𝛾 < 𝛼 ≤ 𝜅, the quotient (P𝛼/P𝛾 , ≤, ≤∗) is a Prikry-type forcing whose direct extension

order ≤∗ is 𝛾-closed. In particular, the quotient P𝛼/P𝛾 does not add new bounded subsets to 𝛾.
4. For every 𝛾 < 𝛼, the iteration P𝛼/P𝛾+1 is weakly homogeneous.
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