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Real and complex indices of vector fields on complete
intersection curves with isolated singularity

Oliver Klehn

ABSTRACT

If (V,0) is an isolated complete intersection singularity and X a holomorphic vector field
tangent to V', one can define an index of X, the so-called GSV index, which generalizes
the Poincaré-—Hopf index. We prove that the GSV index coincides with the dimension of
a certain explicitly constructed vector space, if X is deformable in a certain sense and V'
is a curve. We also give a sufficient algebraic criterion for X to be deformable in this way.
If one considers the real analytic case one can also define an index of X which is called
the real GSV index. Under the condition that X has the deformation property, we prove
a signature formula for the index generalizing the Eisenbud—Levine Theorem.

1. Introduction

1.1 Classical results

Assume that the continuous map germ g: (R™,0) — (R™,0) defines an isolated zero. Then the map
g/llgll: Si~t — S™=1 of spheres around the origin has a degree, the so-called Poincaré-Hopf index
indgn 0(g) of g. If ¢ is analytic one has algebraic interpretations of this index, that we first want to
describe. If g: (C",0) — (C",0) is holomorphic, let @), be the algebra obtained by factoring Ocn o
by the ideal generated by the components of g. One has the following theorem.

THEOREM 1.1 [AGVS85, GHTS].
indcn o(g) = dime Qq.
Here we have made the identification C* = R?" of course. Now let érn o be the ring of real
analytic function germs on (R",0) and further g: (R",0) — (R™,0) be finite and real analytic, in
the sense that @), is finite dimensional as an R-vector space and where @), is the algebra obtained

by factoring &gr» o with the ideal generated by the components of ¢ in this case. If one denotes by
Jgy the determinant of the Jacobian of g, one has the following famous theorem:

THEOREM 1.2 (Eisenbud-Levine Theorem). Let I: ), — R be a linear form with [(J,) > 0. Then

indgn o(g) = signature(, );.

Here (,); is the induced bilinear form defined by (h1, ha); := l(h1 - ho).

1.2 Generalization to complete intersections

Now let (V,0) := ({fi = --- = fq = 0},0) C (C",0) be an isolated singularity of a complete
intersection (ICIS) and X := Y 1" | X;9/0z; be the germ of a holomorphic vector field on (C",0)
tangent to V, say Xf = Cf with an isolated zero on V. In this situation one can also define an
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index indy(X), called the (complex) GSV index (see [ASV98, BG94, GSVI1]); and it is the
Poincaré-Hopf index when V' is smooth. The definition of the index is as follows:

Choose a sufficiently small sphere Ss around the origin in C” which intersects V transversally
and consider the link K = V N Ss of V. The vectors X,V fi,...,Vf, are linearly independent for
all points of K and we have a well defined map

(X,Vfi,....Vfy): K = Wy (C"),

where W, 1(C™) denotes the manifold of (¢+1)-frames in C" and we consider the complex gradients
of course. We have

Hon—2q-1(K) 22,  Han24-1(Wg1(C")) = Z,
and therefore the map has a degree. We let K be oriented as the boundary of the complex manifold

V' \ {0} here. The index indy,o(X) of X is defined to be the degree of this map. (If V' is a curve,
K can have more components; we will then sum over the degrees of the components.)

We now want to formulate our main theorems. We need a definition first.

DEFINITION 1.3. We have that X is called a good vector field (with respect to V), if there is a
holomorphic deformation X; of X, so that for all t € C? sufficiently close to zero X; is tangent to
the t-fibre V; of f. Then X; is called a good deformation of X.

We will prove a sufficient criterion for a vector field to be good, which states that X is good
whenever all coefficients of the matrix C' are contained in the ideal generated by the maximal minors
of the Jacobian of f in Ocn . It follows from the definition of the index that it equals the sum of
the indices of a good deformation on a smooth fibre.

After a linear generic change of coordinates one can assume that (fi,..., fq, X1,... Xp—y) is a
regular Ocn g-sequence (see [LSS95]), and we always assume the coordinates to be chosen in this
way in this paper. Let %y := Ocno/(f1,..., fq: X1,...,Xn_q). Due to the chosen coordinates % is
finite dimensional as a complex vector space. We also set 6y := %y /anng, (DF'), where

DF:zdet( Ofr - fo) >

O(Zn—qg+1,---+2n)

We prove (in § 4.3) an index formula for vector fields in the case ¢ =n — 1:
THEOREM 1.4. Let X be a good vector field and V' a curve. Then
indv70 (X) = dim(c (50.

Now let
(VE,0) = ({fi = -+~ = £ = 0},0) € (R",0),
defined by real analytic function germs. If f denotes the complexification of f® we assume that f
defines an ICIS of dimension n — ¢q. Furthermore let the real analytic vector field X® be tangent to
(Vk,0) with an algebraic isolated zero on (V¥,0). One defines the real GSV index of X® similarly
to the complex index (see [ASV98]), and denotes this index by indy=z (X R)if n — ¢ is odd and by
ind%/R’O(X R) if n — ¢ is even. For topological reasons one can only define a (mod 2)-index if n — ¢ is
even. The definition of X® to be good is as in the complex case using real analytic deformations.

For the case ¢ = n—1 we prove (in § 5.1) the following formula generalizing the Eisenbud-Levine
Theorem:

THEOREM 1.5. Let VE® be a curve, X® a good vector field and I: €50 — R a linear form with
l(c1) > 0. Then

indva(XR) = signature(, );.
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Here ‘%K is defined as in the complex case using &g o instead of Ocn o, 1 is the coefficient of ¢
in the formal power series expansion of det(¥ + tDX®)/det(¥ + tC), where DX® is the Jacobian
of X®, and (,); is the induced bilinear form defined as in the classical case. Finally, C'is defined by
the tangency condition X fR = Cff.

2. Residues of holomorphic vector fields
To prove our main theorems we need a few results on residues of holomorphic vector fields that we
want to collect in this section.
Let g: (C*,0) — (C",0) be a holomorphic map germ with isolated zero. Then the residue
rest, o(h) of any h € Ocn o with respect to g is defined as

1 hdzy A--- Ndzy,
et o(1) = (e [ o

where I" is the real n-cycle I' :== {|g;| = €;, i = 1,...,n} for ¢; € Ry small enough with orientation
given by d(arg gi) A --- Ad(arg g,) > 0. Sometimes we denote this residue also by

rescoo [, !
e g1 gnl’

If we denote by J, the Jacobian determinant of g, we have the following classical result:

THEOREM 2.1 [AGVS85, GHTS].
i) The residue resg:np: Qg — C defines a linear form.

ii) The induced bilinear form (,)resgn , Is non-degenerate.

iii) The index indcn o(g) = dime Qg = res%n’O(Jg).

If we consider linear forms [: Q — F on commutative F-algebras for an arbitrary field in this
paper, the induced bilinear form (, ); on @ is always the bilinear form defined by (hq, ho); := I(hy-hs).
The second statement in the theorem is usually called ‘local (Grothendieck) duality’ and it states
that (), is a Gorenstein algebra. This means that the annihilator of the maximal ideal, the socle, of
Qg4 is one-dimensional and it is well known that it is generated by the class of J,. One immediately
concludes that for any linear form I: Q, — C with [(J;) # 0 the induced pairing (,); is non-
degenerate.

As in the second part of the Introduction, let (V,0) := ({fi = --- = f, = 0},0) C (C™,0) be
an isolated singularity of a complete intersection (ICIS) and X := """ | X; 9/0z; be the germ of a
holomorphic vector field on (C",0) tangent to V', say Xf= Cfwith an isolated zero on V. Further let

Li={fi==fi=0X1]=e,.. ., [Xng| =g}
be a small real (n — ¢)-cycle with orientation determined by
d(arg X1) A --- ANd(arg Xp,—q) = 0.
Then we define the relative residue of any h € Ocn ¢ with respect to X to be

1 hdzy N~ Ndzy—g
27-”')”—(] n Xl LI Xn_q '

reséo(h) = (

The absolute residue of h with respect to X is defined as

h
resén,o(h) 1= Tescn |:X1 X of1 Lol
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Now let ¢,,—4 be the coefficient of "7 in the formal power series expansion of
det(W¥ + tDX)/det(¥ + tC),

where DX is the Jacobian of X. We have the following theorem proven in [LSS95].

THEOREM 2.2 [LSS95].

indy,o(X) = reséo(cn_q).

The author has proven in [Kle02] that one always has reséo(h) = resénp(hDF ), where we have

set
8(f1,---afq) >
8(Zn_q+1, PN ,Zn) '
This means that we also have indyo(X) = resén’o(cn_q DF), which is one of the main tools in the
proof of our main theorems.

DF = det (

3. Vector fields tangent to smooth varieties

To prove our main theorems we first prove them for the smooth situation, which is done in this
section, and use good deformations to generalize to the singular case. We also look at the socle
of €y. We use the notation as introduced in the first and second sections.

3.1 The complex situation
Let 1 <41 <--- <ig <nbefixedand 1 < j; < -+ < ju—g < n be the complement of i1,...,%, in

{1,...,n}. Furthermore we set
DI':= det (—8(f1’ o2 Jo) >
8(22'1, PN 7Ziq)
and let o7 be the permutation defined by

(1 .e. m—q n—q+1 ... n)
or:=1|. } ) o)
J1 - Jn—gq i1 g
where [ is the multiindex I := (i1,...,i,). We also set
Ocn
Bt = £r,0

(froe oo f Xy X y)
and if DI(0) # 0

Np = SigHU[det 8(Xj17~'ann_q7fl7---7fq) )
DI (21, 2n)
LEMMA 3.1. Let DI(0) # 0. Then
indyo(X) = dimc %,

Proof. By the implicit mapping theorem it is not hard to show that X|y corresponds to the vector

field
0

OYn—q
on (C"9,0), where ¥: (C"9,0) — (V,0) is a biholomorphic map as in the implicit mapping
theorem. From

0
Y:leowa—yl—i—_‘_xjn*qow

ﬁ(C"*‘LO o %é
(le o ¢, st 7Xjn—q o 1/})
the claim follows. O
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LeMMA 3.2. Let DI(0) # 0. Then we have for any h € Ocn g

h DI
Xj "'Xjnqul"'fq '

Proof. By the transformation formula for residues [GH78], we have to show that there is a matrix A
with

resgnp(h DF') = signoyrescn o

(Xla o 7Xn—q7f17’ .- 7fq)tA(Xj17‘ . JXjn_q7f17 .. '7fq)t
and det A = signo; DF/DI. From Xf= Cf we get

b oo SN Ot [
— Of— 1y--+5Jq > 1y--+5Jq : ' 1
f <8(zi1,...,ziq) 8(2]‘1,---,2]‘”,(1) X'. (1)
J

X; -
Now let i1,...,i € {1,...,n — ¢} and ixy1,...,iq € {n — ¢+ 1,...,n}. Then it follows that
Jis-eordn—g—k € {1,...,n —q} and Jp—gpt1,.-50n—q € {n —q+1,...,n}. For k = 0 the claim
follows immediately. With (1) we obtain a matrix B with

(Xj17 e 7Xjn,q+k7Xi17’ .. 7Xik7fl7’ .. 7fq)t = B(X]U .- 7Xjn_q7f17 e 7fq)t'

If o’ € S,,—4 is the permutation with

o — <1 . n—q+k n—qg+k+1 ... n—q)

I .- Jn—q—k 21 .. ik ’
we have det A = sign ¢’ det B. Then det B is the determinant of the upper right (k x k) block of the
matrix

B ( Ofr-- 1) >‘1 Ofr .- fy)
8(Zi1,...,ziq) a(zjl,...,zjniq)

If dj , is the determinant of the matrix obtained by replacing the /th column of

8(f17 .. '7fq)

8(22'1, PN ,Ziq)
by the mth column of

8(f17' .. afq)

8(2]'1, . ,Zjn_q)’

and if
L =n—q—k+1,....,n—
D = (dl,m)lrilﬁ.,g ! q’
we have to show that

detD:(DT)k—ldet< 01, o) - )>.

8(zjn—q—k+l7 e 7zjn7q7 zik+17 ..

This can be done by induction over k where k = 1 is obvious. The conclusion is straightforward and
we do not want to write it down here. O

LEMMA 3.3. If V' is smooth, then
indv70 (X) = dim(c Cg().

Proof. Let DI(0) # 0. By Lemma 3.1 we have
indyo(X) = dime %].
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If we map a class [h] € 6 to the class [h]" of h in %] we obtain an isomorphism of C-algebras, since
by Lemma 3.2 and local duality the following holds:

[h] =0 in 6y <= hDF € Ocno(f1,..., fg- X1, Xn—q)
= resémo(gh DF) =0 forall ge Ocny
gh DI
X X S fy
< hDIc Ocno(Xj,. . . X0y f1.---5 fq)
> [h)] =0 in %} O
LEMMA 3.4. Let DI(0) # 0. Then in 6 the equation ¢, = yr holds.

Proof. By the transformation formula for residues and Lemma 3.1 we have

resgn o(DF7y;) = indy,o(X)

<= rescn o =0 forallge Ocnp

and further for h € mg,

8(21, s 7Zn)
Xj .. 'Xjnqul R fq

and therefore DF vy generates the one-dimensional socle of %j. By the remarks of the Introduction
we have

h det (8(Xj1,---annq’flv""fq)>
resén’O(DF'y[h) =Trescn =0

resgn o(DF cp—q) = indy,o(X),
and therefore DFc¢,,_4 # 0 in %. Since V' is smooth there is a small deformation X; of X tangent
to V, so that X; has only simple zeros p; for sufficiently small ¢ on V in a small neighbourhood of
the origin. We can also assume that for these zeros DI(p;) # 0 holds. For h € Mgen , We have

signorDIc,_qzh
X)X J1 I

— %E% Z h(pi)indy,, (X;)

= 0.

This follows from the continuous principle for residues, from the fact that the algebras

resémo(DFcn_qh) = rescn [

ﬁ(cnvpz
(XtJl? s >Xt,jn—q’ Jio.. qu)

are one-dimensional and by the transformation formula that signo;DIc,—4(t) is a unit in these
algebras. Therefore c,,_,DF generates the one-dimensional socle of % too and since we have

resén,o(DFcn_q) = resé(mO(DF'y[)

it follows that DF(c,—q — 1) = 0 in %y and therefore ¢,_q = vy in €. O

3.2 The real analytic situation
LEMMA 3.5. Let (V®,0) be smooth and I: 6* — R a linear form with [(c,—,) > 0. Then we have
indyz o(X™) = signature(, );.
Proof. Let DI(0) # 0. With the implicit mapping theorem it is not hard to show that the vector
field X®|, & corresponds to

0
OYn—q’

R 0
Y .= X X'R
= jIO’¢F—§I —+ e+ . O’¢

In—q
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where ¢: (R"79,0) — (VE,0) is a diffeomorphism with v;, (y) = y;, for k = 1,...,n — ¢. By the
chain rule one has
~1
8(¢zl,>¢zq)_ a(f]lR”f;R)O'lb a(f]leaqu)
OY1,--+Yn—q) 8(mi1,...,xiq) 8(mj1,...,:1:jn_q)

0.
Applying the chain rule again we get

OY1,... Yy ) OXS,  XE )

In—q

Y1, +Yn—q) 8(a:j1,...,:1:jn_q)
OXE,... . XE ) AR, B\ a(fE,... fB)
o o1 3

8(1'2'17“'71'1}1) a(wil,...,xiq) (l‘jl?""l‘jnfq)

oY

o 1.

A well known lemma from linear algebra states

A B\ 1
det <C’ D> =det A-det(D — CA™"B),

where A and D are square and A is invertible. The application of this lemma shows that the
determinant of the Jacobian of Y is given by ~; o 9. By the Eisenbud-Levine Theorem it follows
that for any linear form

éaRnqu)

. ORM40 p
7, Yy

with ¢(yr 09) > 0 the statement indy= (X) = signature(, ), holds. The isomorphism of algebras
given by 1 shows that we have for any linear form &: %éR — R with ®(v7) > 0 the formula
indy= o(X) = signature(,)s and this is also true in 43, because the isomorphism of algebras in
Lemma 3.3 also gives an isomorphism of the corresponding real algebras. On the other hand one

has in 6y the equation ¢,—; = 7 and this equation also holds in %(%R. Therefore the statement
follows. O

4. An algebraic formula for the complex index

4.1 Good vector fields

First we want to prove a sufficient criterion for good vector fields.

PROPOSITION 4.1 (Sufficient criterion for good vector fields). Let all coefficients of the matrix C' be
contained in the ideal generated by the maximal minors of the Jacobian of f in Ocn . Then X is a
good vector field.

Proof. We prove a bit more: there is a deformation X; of X such that X;(f —t) = C(f —t) holds.
For (iy,...,iq) € {1,...,n}? and (j1,...,jq-1) € {1,...,n}9"! define

e ( a(fl,...,fq>)> wd e de (a(fl,...,fk,...,fq)>_

8(Zi17---7ziq 8(2]'1,...,qu_1)

If C = (c1m) let
l7
Clm = Z Cilrf..,iqfh,...,iq-

(7:17"'7iq)€{17"'7n}q

For k=1,...,q— 1, we set

i =gl R
J1s0g—1 : Jlyes Jk—1500k+15-Jg—1 : 2,015--,Jq—1
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and further
q

l7
Ot == D ) Cil g
m=1 (7'17 7Zq)€{17 .7n}q
We define the deformation by

q
Y. i,] j+1 ¢
Xt’z =X+ Z Z 5j17---7jq—1(_1)] fjlv---vjq—l'

J=1 (j1,eeerdig—1)€{1,...,n}a1

Then we have

gfl Xt i Z q mfm Z 57l;17___7iqfi1,...iq = z_:l Cl,m(fm - tm)- O

(11,000g)E{1,...,n}9

In the case of a hypersurface this means that, if ¢ is contained in the ideal generated by the
partials of f, the vector field is good. If

of 0 f
c=0o D21 +--ta 8zn
the deformation is simply defined as X;; := X; — ta;. We have

X (f —t) :cf—Ztaig—Z =c(f —1).
i=1

)

4.2 The socle of %
LEMMA 4.2. The residue res{%o(-) defines a linear form on 6y such that
res%;{o(hg) =0forall h € Ocnp=9g=01in%
holds.
Proof. We have resé-{o(h) = resgn’o(h DF) and this means that the residue res%,{o(-) vanishes on

anng, (DF'). Furthermore reséo(hg) = 0 for all h € Ocn implies resémo(hg DF) =0 for all h €
Ocno. Now local duality gives

gDF € ﬁ(C”,O(le s 7Xn—q7 flv sy fq)
and therefore g € anng, (DF). O
PROPOSITION 4.3. The socle of 6 is generated by the class of c,—g.

Proof. Lemma 4.2 states that res%,{o(-) induces a non-degenerate bilinear form on %, which means
that €y has a one-dimensional socle if ¢ is not trivial. On the other hand for any h € mg, , we
have

res‘\)/(,o(hcn—(I) = %E}% Z h(pl) indVLPi (Xt) =0,
(2
which means that c,_, generates the socle. O

4.3 Proof of Theorem 1.4

For a good vector field, indy,o(X) is the sum of Poincaré-Hopf indices of X; on a smooth fibre V;
of f, where one sums over all zeros of X; which tend to zero. This follows directly from the definition
of the index.

If ¢ = n — 1 we denote by m; the minor of the Jacobian matrix of f obtained by cancelling
the ith column. We have DF = m; of course. Recall that we always assume the coordinates to be
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chosen so that (f1,..., fn—1,X1) is a regular Ocn g-sequence. For simplicity we also may assume
that m;(0) =0fori=1,...,n.

LEMMA 4.4. Let ¢ = n — 1. Then the following hold:

i) (f1,..., fn—1, DF) is a regular Ocn g-sequence.

ii) The dimension of %, does not depend on the choice of coordinates, provided that the
Ocn o-sequence (f1,. .., fn—1,X1) is regular in each system of coordinates.

iii) After linear changes of coordinates in C® and C"~! one can assume that (f1,..., fn_2, DF,ms)
is a regular Ocn g-sequence.

Proof. i) All computations are done in the ring Oy,o = Ocn o/(f1,. .., fn—1). We have to show that
DF is not a zero divisor in this ring. Applying Cramer’s rule to the equation Xf= Cf we obtain the
equations

fori =1,...,n. Now let ¢ DF' = 0 in Oy,. Multiplication with X;, Equation (2) and using that
X1 is not a zero divisor in Oy, give gm; = 0 for all ¢ = 1,...,n. The ring obtained by divid-
ing Oy by all m; is artinian and therefore there must be complex numbers a1,...,®, so that
h = aymi + -+ 4+ a,m, is not a zero divisor in Oy. On the other hand we have gh = 0 in Oy
and therefore g = 0 in Oyp.

ii) Let ¢: (C*,0) — (C™,0), ¢(y) = 2, be biholomorphic and 1) := ¢~ !. We denote by Y the
vector field computed in y-coordinates and by DFY the minor computed in y-coordinates. Standard
computations give

Yio X
1:¢ :5(1/11,,1%) '1
Ynoqj) 8(21,...,2n) Xn
and
e 1 )
DFY oty =) (=1)7*!(det D) o) 5,
j=1 J

Set B := Ocno/(f1,--., fn-1,Y109) and €} := %6/anH@6(DFy 01)). We construct an epimorphism
p: 6o — ;. For any g € Ocn o we also denote by g the classes of g in these algebras and define
©(g) = g. Again all computations are done in the ring 0y . We want to show that ¢ is well defined.
Let g DF = o X;. Multiplying with m;, using Equation (2) and the fact that DF is not a zero divisor

in Oy, we obtain gm; = (—1)""1aX; for i = 1,...,n. Then for each i we get
gDFY o) = (det D) o 1) En :(_1)1'“—81’[’1 gm;
i=1 Oz
- O
= (det D X;—
(@t Do) o 3 axis

= a(det D) o1p Y7 0.

This shows that ¢ is well defined. The surjectivity is obvious and the other direction analogous.
Therefore dime¢ % does not depend on the choice of coordinates in C™. If one considers changes of
coordinates in the image space C"~!, the invariance of dimc % is obvious.

iii) After a general linear change of coordinates in C"~!, see [Loo84], one can assume that
(f1,-.., fn—2) defines an ICIS and the 1-form df,,—; has an isolated zero on this ICIS. Now Lemma 3.4
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in [Kle02] shows that, after a linear change of coordinates in C", (fi,..., fn—2, DF,m2) is a regular
Ocn p-sequence. O

Proof of Theorem 1.4. Let ¢ = n — 1 and consider good deformations X; of X. For small neigh-
bourhoods U (respectively T') of the origins in C" (respectively C"~!) consider Z C U x T defined

by
Z:={fi1 =" = fin—1 = X1 =0},
where we have set f;; := f; —t;. Let m: Z — T be the finite projection. We define
Ocn
By = Sp B= P By Z=]%.

)
(feas s frn—1,Xe1) pen (1) o7

% has the natural structure of a holomorphic vector bundle over 1" which is induced by the locally
free sheaf m,07. Similarly we define

— Bp o —
Cgt,p = W’ Ct = @ Cgt,py € = U ;-
pem—1(t) te’rT

We want to show that ¢ has the natural structure of a holomorphic vector bundle of rank indy,o(X)
over T

By Lemma 4.4, part ii, we may assume that the coordinates are chosen as in Lemma 4.4, part iii.
Via 7 we view 0z /(DF) as a finitely generated Or-module and claim that

Oz,
depthﬁT,OW =n—1.
Fork=1,....,n—1let
Oz
trg =0 i : .
w9 " (DF)tlv"'>tk—l)

This means that there are representatives with

Ogan-1
(fe1s o finet1st1, ..o tg—1, DF)
Applying Cramer’s rule to the tangency equation Xf= Cf we obtain

kg = aXy1 in

ﬁCQn—l70
(feas--os fn1st1, ..o tp—1, DF)
By Lemma 4.4, part i and the choice of coordinates, t; and msy are not zero divisors in the last

algebra since (f1,..., fin—1,t1,...,tn—2, DF,my) is a regular Ogan-1 g-sequence. This shows the
claim.

trgmo =0 in

Now the Syzygy Theorem and the Auslander-Buchsbaum formula show that &7,/(DF) is a
free Orp-module. We have an exact sequence of 07 g-modules

Oz, Oz,
—_ 5 Oy — — 0.
anng, (DF') ’ (DF)
The Depth Lemma, see [JP00, 6.5.18], shows that
Oz0
depth, ————=n—1
Pthor anng, ,(DF) s

which by the Syzygy Theorem and the Auslander-Buchsbaum formula again means that the
Orp-module 0z /anng, ,(DF) is free. We have seen that the coherent &7-module

F =m,0z/anng, (DF)
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is free for T' chosen small enough. By [Dou68]| this is equivalent to the statement that the function
v: T — N defined by

v(t) == dim¢ F; ®g,, C
is constant. Now from the exact sequence
0— F — (muO2)y — (107 /(DF))y — 0
we obtain by tensoring with C the last part of the long exact sequence of torsion
0— F ®¢p, C— By — B/(DF) — 0,
where we have used that (7,07 /(DF)); is a free O7p-module, which is equivalent, see [Dou68], to
the statement that
Tor{™ ((x,0z/(DF));,C) = 0.
Since we also have an exact sequence
0 — % — B — B,/(DF) — 0,

this means that v(t) = dimc %; for all t € T. By Lemma 3.3, for regular ¢, v(t) equals the sum of
Poincaré-Hopf indices of X; on the t-fibre of f for ¢ # 0 which is equal to indyo(X) and therefore
dimc 6y = indy,o(X). The map -DF: %8 — % between vector bundles has constant rank and
provides % with the natural structure of a holomorphic vector bundle. ]

4.4 Examples and remarks

We want to give a few examples of good vector fields on curves. We can always take the exterior
product of the rows of the Jacobian matrix of f. In this way one obtains a vector field with isolated
zero on the singularity, where the matrix C' is trivial and the index equals zero.

An example of a family of non-trivial good vector fields on a plane curve is the following:

Dy: f=a?y+y"", k>4

and
0 0
X = (k-2 — +22"y— >3
( ).T ax + T yay? m )
with ¢ = 2(k — 1)2™. We have an exact sequence
0 — anng,(DF) — By 25 By — (f;}g) —0

and therefore

B
dimc anng, (DF') = dim¢ (D—}?‘)'

It is easy to compute that dim¢ %Ay/(DF) = 2(k — 1) and dim¢c %y = (k — 1)(m + 1) holds and
therefore indy,o(X) = (kK —1)(m —1).
An example of a family of good vector fields on a space curve is
fl I:$2—|—y2+22, f2 =2y,
with
0 0 0
X =2z — — — — [ >1.
Zle—y) (xam +y8y * z8z> ’

o G |
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In this case (f1, f2, X3) is a regular sequence and we have to permute the coordinates. This means
that the index is given by the dimension of the factor space obtained from factoring the algebra

Ocs o/ (f1, f2, X3) by the annihilator of
det (23; 2y> .
y x

In this case we get a non-trivial index, which one may compute with computer algebra programs
such as Singular [GPS01]. Note that dimg¢ %) is always equal to dim¢ %y — dime By /(DF). The last
two dimensions are easy to compute with computer algebra.

We now want to explain why Theorem 1.4 is false in the general case of a complete intersection.
Consider the case n = 3 and ¢ = 1 and set f; := 9f/0z; for i = 1,2,3. We use the notation as in
the proof of Theorem 1.4, i.e. Oz := Oyo/(f —t, X1, X1 2) and (f, X1, X2) is a regular sequence
in 03, and consider the coherent &r-module 7,07 /(f3) where T is a small neighbourhood of 0
in C. After shrinking 7" we can assume that this sheaf is locally free over all ¢ # 0. Obviously t is
not a zero divisor in %y and therefore we have a law of conservation of numbers as in the proof of
Theorem 1.4 and we get

indv’o(X) = dim¢ % ®ﬁT,o C.

We further have the exact sequence
0 — Tor; " (1.020/(f3),C) — Fo @y, C — By — Bo/(f3) — 0,
and this means that
indy,o(X) = dime % + dime Tor! ™ (1, 670/ (f3), C).

We now show that dimc TorlﬁT’O (m+070/(f3),C) > 0 if the hypersurface is not smooth, which
is equivalent to the statement that t is a zero divisor in Oy o/(f3). Set Oy = C{z1, 22, 23,1}.
The functions (f —t, f1, fo, f3) define an isolated zero in (C*,0) and therefore these define a regular
04 0-sequence. We have

J1Xe1 + foXi2=0
in the ring O40/(f — t, f3). It follows that there are v;,72 € Oy such that X;; = 7 f2 and
Xio = y2f1 in Ous0/(f —t, f3) holds. Inserting this in the tangency equation shows that there is
a7y € Oyp such that Xy = vf2 and Xyo = —yf1 in Os0/(f — ¢, f3) holds. On the other hand

Oz0/(f3,t) is artinian and therefore (f —t,7, f3,t) is a weak regular Oy g-sequence. This means
that we have an exact sequence
Oup -y Oy 2%

0= (f_t7fl7f27f3) - (f_t77f177f27f3) - (f_t7f)/7f3) —Y

with
Ox0 ~ Ozp
(f =tvfivfe f3)  (fs)
The sequence shows that depthg,. 07z0/(f3) = 0. If 7(0) # 0 this is obvious. If 7(0) = 0 we can
apply the Depth Lemma using

040
depth ’ =0
ep Or,0 (f —t, fl, f2, f3)
and
Os0
depthﬁT,om -t
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5. A signature formula for the real index

Now let
(VE,0) = ({fif =--- = f = 0},0)  (R",0)

be a geometric complete intersection of dimension n — ¢, denote by V and f the complexifications
and assume that f defines an ICIS. Furthermore let the real analytic vector field X® be tangent to
(Vi,0) with an algebraic isolated zero on (VE,0). As before T is a small neighbourhood of the origin
in C? and let T® be the corresponding subset in R?. We also assume that X% is good in the real
analytic sense. We keep the notation of the previous section for all complexifications and for real ¢
we denote the real algebra corresponding to ¢, by ‘4[%,, it X R|‘/tR (p) =0 and p € R™ holds.

5.1 Proof of Theorem 1.5

First we prove a law of conservation of numbers for the signature. Theorem 1.5 then follows as a
corollary. We also remark that the sufficient criterion for good vector fields also holds in the real
analytic case. The proof is word for word as in the complex case.

PROPOSITION 5.1. Let ¢ = n — 1, X® be a good vector field and 1: %(ER — R a linear form with
I(c1) > 0, and for any regular value t € T® of f® and any p with XiR|VtR (p) =0 let l: ‘Ktﬂfp — R be
a linear form with l; (¢t p1) > 0. Then

signature(, ); = Z signature(, )y, .
{XF R (r)=0}

where the sum goes over the zeros tending to zero.

Proof. We consider the vector bundle % over T defined in the proof of Theorem 1.4 and denote by 7
the map given by complex conjugation. For any ¢t € T® we consider the set of invariant multigerms
h € €;. These are the multigerms with 7 o h = h o 7. We denote this set by %;*. We have

% = (OxDi) @ (BUE) | (3)

where each component D;. corresponds to an algebra %Ei,k for a real zero py of X|y and where each
component

E = (Cgt,ql @ CKLE)R

corresponds to a pair of complex conjugated zeros and (%, @ %@)R is the subset of invariant
elements of (€4, ® €;g). It consists of elements of the form

h = Za;zl—FZa_fzI.
Here ¢ (respectively @) are not real of course. If y is the real dimension of €F then p is given
by dimc €. The set €F := User= €} has, for T' chosen small enough, the natural structure of a
real analytic vector bundle of rank p over T®. We can continue [ real analytically to a family I
and obtain a real analytic family of non-degenerate bilinear forms (,);,. Equation (3) gives an
orthogonal decomposition. By dividing the algebra FE; by its maximal ideal one obtains C and
therefore Ej contributes nothing to the signature; see [EL77]. Therefore the signature of (,);, is the
sum of signatures of (,);, , that are defined as the restrictions to the components Dj. On the other
hand we have l; p(cp,1) > 0 and therefore the claim follows by continuity of signatures and by the
Eisenbud-Levine Theorem if we choose a fixed regular value t € T® of f. O

Proof of Theorem 1.5. For a good vector field the index counts the sum of indices of a good de-
formation of the vector field on a regular fibre in a neighbourhood of the origin by the properties
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of the real index given in Theorem 2.10 in [ASV98]. Now the claim follows from Lemma 3.5 and
Proposition 5.1. ]

We want to consider an example. Let f®(x,y) := 22 —y? and X® := 22 0/0x + 2y 0/dy. A good
deformation is given by

XP = (2 —t) o + 2y—

with ¢; = ¢ = 2z. Set F} := V*NB; where Bj is a small ball around the origin in R. Then F} consists
of two branches of a hyperbola and we have x(F;) = 2. If [ is a linear form as in Theorem 1.5 we
obtain signature(,); = 0. Let t = 1, By := {2? + %% = 3} and F := F}. Then X® deforms to

SR, 9 0 0

X" = (2 — 1)% —i—a:ya—y.
The boundary points of F are P, = (v/2,1), Py = (vV/2,-1), P3 = (—/2,—1) and P, = (—v/2,1).
At the points P; and P» the vector field Xk points outwards, but inwards at the points P3 and P;.
From the symmetry of the problem (only the directions of XE are not symmetric) we find that
the sum of the indices of X® vanishes on F and this is what Theorem 1.5 says. This can also be
computed explicitly: the zeros of X® on F are (—=1,0) and (1,0). We can parametrize both branches
via o1 (s) := (V1 + s2,5) and write X® in the coordinate given by s. One immediately sees that
the index in (—1,0) has the value —1, and the value 1 in (1,0).

If we want to count the Euler characteristic of F; we have to choose a good vector field whose
deformation points outwards at all boundary points. This means that we have to choose a good
vector field which points outwards at all boundary points of the intersection of the singular fibre
with a small closed ball around the origin.

5.2 Relations to results of Gémez-Mont and Mardesié

Gomez-Mont and Mardesi¢ have proven similar signature formulas [GM99, GM97]. These formulas
hold for vector fields on isolated hypersurface singularities which have an isolated zero not only on
the variety but also in the ambient space. We want to compare these formulas with our formula for
vector fields on plane curves. Let X be a real analytic vector field in (R", 0) with an isolated zero and
(V,0) : ({f =0},0) € (R™,0) an odd-dimensional hypersurface with algebraic isolated singularity.
Further let X be tangent to V', i.e. Xf= cf. We omit the upper R to indicate that we are working
in the real analytic category. Define

Ern 0 Ern 0

Ai=——"— and B:=—"——.
(fl?fn) (Xl7---7Xn)
Here the f; are the partials of f. Let Hy be the Hessian determinant of f. Then det DX and Hy
generate the socles of B (respectively A). Now we have well determined classes
H A DX B
=t . detpx™ .= 1TPX
¢ anng(c) c anng(c)

1.
Hy =

defined in the obvious way, which generate the socles of these algebras. Let

A
R, Iy: L —R
anng(c)

1 —
anng (c)
be linear forms with ll(H}el) > 0 and lz(det DX™!) > 0. We have the following result.
THEOREM 5.2 (Gémez-Mont and Mardesi¢).

indy,o(X) = signature(, );, — signature(, );, .
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To compare this result with our theorem we additionally assume n = 2, the & = R{z,y}-
sequence (f, X71) to be regular and the vector field to be good. We first give an explicit construction
of all vector fields fulfilling both conditions. Denote the good deformation by X;. We also set
&30 = R{x,y,t} and &y := &,0/(f —t). The tangency condition gives

Xi1f1+ Xi2fo =0 in Syp.

Since (f1, f2) is a regular &y g-sequence, it follows immediately that there are 7, (5~1,5~2 € &3, such
that

X = (1 611 = D)5 + (= + 827 ~ )5

Setting t = 0 we obtain that there are 1, 02,7 € &, such that

0 0
X =/ +51f)% + (=vf1 + 52f)a—y-

We have ¢ = §1 f1 + d2f2 and this means signature(, );, = 0. We now claim that anng(c) = B(y, f).
Using

cf = 1Xa + f2Xo,

cy = 02X1 — 61 Xo,

we obtain B(v, f) C anng(c). Now let cg = a3 X1 + aaX5. Multiplication with f gives

(fr9—a1f) X1+ (fog — asf)Xe =0.

Since (X1,X32) is a regular &;g-sequence there must be an h € & with fog — asf = hXj.
Since (f,X1) is a regular &-sequence this also holds for f, fo. Therefore we have g = hy in
&2.0/(f), which shows the claim. That % (v) = ann%%g( f2) is obvious. We have obtained
cg(])R _ B _ &0 .
anng(c) (7, f)
To prove that Theorems 1.5 and 5.2 produce the same values one has to check that there is a positive
real number r such that rcc; = det DX in B. We have

(v, f)
A(z,y)
in B. We verify the existence of such an r in the following example.

Set f = ‘],'2 + yk-‘rl’ PY = y7 51 = _(k + 1)’ 52 = yl We have
X1 =—(k+ 1)x2 and X = —2xy + 5132yl + yl+k+1.

c-c1 = c trace DX — & = cdet

One computes
det DX = —2(k + 1)(1 + k + 1)ay'tF

and

(. f)

d(z,y)

cdet = —2(k 4 1)ay'™*

in B. Here we have r = [ + k + 1.
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